



Abstract—Self-checking designs will gain increasing interest

in industrial applications if they satisfy the following

requirements: high fault coverage and reduced hardware cost

with reduced design effort. The aim of this work is to contribute

to reach these requirements for the design of self-checking

adders/ALUs. In this paper, we present efficient self-checking

implementations for adder schemes using the dual duplication

code. Among the known self-checking adder designs, the dual

duplicated scheme has the advantage to be totally self-checking

for single faults. The drawback of this scheme is that it requires

generally the maximum hardware overhead. In this work, we

propose a low cost implementation for self-checking adder. The

proposed design is based on a novel differential XOR gate

implemented in CMOS pass transistor logic, and performed

with only four transistors.

Index Terms—Totally self-checking circuits; self-checking

adder; differential XOR; CMOS Logic Styles; CMOS pass

transistor logic.

I. INTRODUCTION

 Interest in on-line error detection continues to grow as

VLSI circuits increase in complexity [1]. Concurrent

checking is increasingly becoming a desirable characteristic

thanks to its ability to detect transient faults that may occur in

a circuit during normal operation. Accordingly, Concurrent

Error Detection (CED) techniques allow the detection of

transient faults, which probably not be detected in off-line

testing, since they may not occur in test mode. CED also

provides an opportunity for self-diagnosis and self-correction

within a circuit design, especially in specific applications

domains requiring very high levels of reliability

(fault-tolerant computers, safety critical applications, etc.)

and eventually evolving in hostile environments (e.g. space).

On the other hand, addition is one of the most fundamental

operations for digital computations. Thus, much effort has

been invested in research that has led to faster and more

efficient ways to perform this operation [2]–[8].

In addition, designing self-checking arithmetic units is a

much more complex task than designing self- checking

memory systems, register files, and shifters. Arithmetic units

(i.e. adders, ALUs, multipliers and dividers) are an essential

Manuscript received April 6, 2011; revised September 22, 2011.

Belgacem Hamdi is with the Electronic & microelectronic‟s LAB,

Monastir, Tunisia. PH.D. in Microelectronics from INP Grenoble (France).

Assistant Professor at ISSAT Sousse, Tunisia. His main areas of interest are:

IC design, Test, Built In self Test, DFT tools, self-checking and Fault tolerant

systems. (E-mail: belgacem.hamdi@issatgb.rnu.tn)

Chiraz Khediri is with the Electronic & microelectronic‟s LAB, Monastir.

Pursuing PH.D. in Electronic & microelectronic design at Tunis University,

Tunisia.

Tourki Rached is the director of the Electronic & microelectronic‟s LAB,

Monastir. Professor at FS Monastir university (Tunisia) (E-mail:

rached.tourki@fsm.rnu.tn)

element of computers. Therefore, designing efficient

self-checking arithmetic units is an important challenge in the

area of self-checking and fault tolerant computers. That is

why from the very early developments of fault tolerant

computers, an important amount of effort had been done on

designing self-checking arithmetic units. The first ones are

based on arithmetic residue codes [9]–[11]. Then a parity

prediction scheme has been proposed in [12] and [13]. A

Berger code prediction scheme has been also developed in

[14], and more recently self-checking fully differential

design has been proposed [15].

Parity prediction self-checking arithmetic units [16]–[18]

and logic units [12] have also been proposed. This scheme

detects the single errors produced on the outputs of the

arithmetic unit. Parity prediction arithmetic units require the

lower hardware overhead among all known self-checking

arithmetic unit schemes [14], [16]. This scheme is compatible

with parity checked data paths (which requires the minimum

hardware overhead) and with parity encoded self-checking

memory systems. It also can be modified to be compatible

with Hamming SEC/DED memory systems [16], [19].

However, a single fault in an arithmetic unit can produce an

error on a carry signal, which can be propagated to several

outputs of the arithmetic unit. Thus, the parity scheme does

not ensure the fault secure property for single faults.

In this paper, we propose a self-checking full adder design

based on two-rail encoding scheme. The area overhead of the

proposed design is kept within an acceptable limit by the use

of a novel differential XOR gate implemented in CMOS pass

transistor logic, and realized with only four transistors.

II. BACKGROUND

A. Self-checking (SC) circuits

Self-checking circuits are increasingly becoming a suitable

approach to the design of complex VLSI circuits, to cope

with the growing difficulty of on-line and off-line testing [1].

Self-checking circuits are class of circuits in which

occurrence of fault can be determined by observation of the

outputs of the circuits. An important subclass of these

self-checking circuits is known as totally self-checking (TSC)

circuits.

B. Totally self-checking (TSC) circuits

TSC circuits are used to detect errors concurrently with

normal operation. These circuits operate on encoded inputs to

produce encoded outputs. TSC checkers are used to monitor

the outputs to indicate error when a non-code word is

detected. The concept of TSC circuits was first proposed in

[20], and then generalized in [21], as follows:

 Definition 1: A circuit is fault-secure for a set of faults, F,

iff for any valid input code word; any single fault, the circuit

Pass Transistor Based Self-Checking Full Adder

Hamdi Belgacem, Khedhiri Chiraz, and Tourki Rached,

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

608

either produces an invalid code word on the output, or

doesn‟t produce the error on the output.

 Definition 2: A circuit is self-testing for a set of faults F, if

for every fault in F, the circuit produces a non-code output for

at least one code input (i.e. any single fault is detectable by

some valid input code word).

 Definition 3: A circuit is totally self-checking if it is

fault-secure and self-testing.

 Definition 4: A circuit is code disjoint if it always maps

code word inputs into code word outputs and noncode word

inputs into noncode word outputs.

 Definition 5: A circuit is a totally self-checking checker if it

is self-testing and code-disjoint.

Thus, a totally self-checking (TSC) functional block

satisfies the two following properties:

(1) For any valid input code word and any single fault, the

circuit, either produces an invalid code word on the output, or

does not produce the error on the output (fault secure

property).

(2) Any single fault is detectable by some valid input code

word (self-testing property).

A circuit (functional block and checker) is TSC if the

functional block and the checker are both TSC. Fig. 1 gives

the basic structure of TSC circuits.

Coded outputs

Error
Indication

(E.I)

Coded
inputs

Functional

block

Checker

Fig. 1.Basic structure of totally self-checking circuit

The checker determines whether the output of the circuit is

a valid code word or not. It also detects a fault occurring

within itself [23]. Double-rail checker is based on the dual

duplication code as shown in Fig. 2a. It compares two input

words X and Y that should normally be complementary

(Y X) and delivers a pair of outputs coded in dual-rail.

Two-rail

checker

f

fd

X

Y

0 0 error
0 1 OK
1 0 OK
1 1 error

f fd conclusion

(a)

 X

fd

Yd

f

Xd Y

(b)

Fig. 2. (a): Principle of dual-rail checker, (b): Dual-rail checker cell

A self-testing dual-rail checker can be designed as a parity

tree where each XOR gate is replaced by a dual rail checker

cell. The dual-rail checker cell is shown in Fig. 2(b). The

resulting checker is also an easily testable circuit since only

four code inputs are needed to test a dual rail checker of any

length [22]. This checker is important in self-checking design

since it can be used to check dual blocks (and duplicated

blocks by inverting the outputs of one of them). However, its

more significant use consists on the compaction of the error

indication signals delivered by the various checkers of a

complex self-checking circuit. Each checker delivers a pair

of outputs coded in dual-rail. Thus, the dual-rail checker can

compact the dual-rail pairs delivered by the various checkers

of the system into a single dual-rail pair. This pair delivers the

global error indication of the system. The dual rail checker of

the Fig. 2(b) is a totally self-checking checker given that it is

self-testing and code-disjoint [16]. It can be implemented in

static CMOS, with 16 transistors.

In self-checking adder/ALUs using double-rail code, the

functional block receives dual inputs and generates dual

outputs. Thus, self-checking functional block is performed

with a dual complementation of the basic (not self-checking)

function (e.g. addition). The proposed design is an

improvement of the known differential self-checking adder

presented in [14]. This target structure includes two

differentials XOR and a differential carry gate as shown in

Fig. 3.

ci+1

ci

Pi

ci+1

ci
 ai

bi

T
o
 d

u
a

l-
ra

il
c
h
e
c
k
e
r Si

Pi

Si

ai

bi

D
iffe

re
n
tia

l

X
O

R
 2

D
iffe

re
n
tia

l

X
O

R
 1

Dual carry gate

Fig. 3.Target structure SC

adder

The differential XOR gate and the dual carry gate of the

Fig. 3 can be implemented using AND, OR and NOT CMOS

symmetric gates. However, this solution requires large

hardware overhead. An optimized design of these gates will

certainly, improve the performance and reduce the hardware

overhead of the self-checking adders and ALU data paths.

Consequently, a great effort had been done in order to

propose static CMOS self-checking implementations [14],

[15], [19].

On the other hand, new

circuit techniques that go beyond

full-CMOS circuitry have been given a great deal of attention

in order to improve

speed, area and power. These include

cascode voltage switch logic (CVSL) [24], [25, differential

split-level logic [26], domino-like dynamic gates [27]

and

pass-transistor based logics [28]–[30]. Among these,

pass-transistor logic is one of the most appealing design

styles, as it results in area effective, fast and robust logic

circuits.

In this paper, we propose an efficient self-checking adder

schemes based on an optimized XOR/XNOR gate

implemented in CMOS pass transistor logic.

III. PROPOSED DIFFERENTIAL XOR GATE

The exclusive-OR (XOR) and exclusive-NOR (XNOR)

are fundamental components in full adders [31], [32], and in

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

609

larger circuits such as parity checkers [17]. The performance

of these larger circuits is affected by the individual

performance of the included XOR/XNOR gates.

A. Design

Pass transistor logic is attractive as fewer transistors are

needed to implement important logic functions, smaller

transistors and smaller capacitances are required, and it is

faster than conventional CMOS. However, the pass transistor

gates generate degraded signals, which slow down signal

propagation. This situation will be more critical when the

output signals should be propagated to next stage as is the

case for the carry gate in ripple carry adder.

A novel differential XOR designed in CMOS pass

transistor logic is presented in Fig. 4. This gate has dual

inputs and generates dual outputs. XOR and XNOR functions

are performed with only four transistors.

N1

a

P1

X=a  b

b
P2

N2

a

b

Xb = a  b

Fig. 4. Differential XOR Gate

The scheme has the advantage of the pass transistor CMOS

gates, which are very fast and low power gates. The speed

can be evaluated using the critical path (in term of transistors

number). Accordingly, the critical path of the differential

XOR gate is only one transistor. The drawback of this

scheme (as pass transistor gates) is that it generates “weak”

logical levels at the outputs, and input signals are not fully

transmitted. This occurs when an NMOS transmits logic ‟1‟

or a PMOS transmits logic ‟0‟. To cope with this situation,

the signals can be restored by adding static CMOS inverters

at the outputs.

B. Analysis of the differential XOR (TSC property)

The correct operation of TSC circuits rests on following

two assumptions:

(1) Faults occur one at a time.

(2) Sufficient time elapses between any two faults so that

all the required code inputs can be applied to the circuit.

With the fault secure property it is guaranteed that, a first

fault always generates detectable errors. Then, assuming that

between the occurrence of two faults a sufficient time elapses

so that the functional block receives all inputs required to test

its faults (i.e. sufficiently long MTBF), the self-testing

property guaranties that the first fault is detected before a

second fault occurs in the self-checking system. This way the

TSC goal is achieved for a TSC functional block [18].

In the following, we analyze the behaviour of the

differential XOR gate shown in Fig. 4 in terms of fault secure

and self-testing properties with respect to the set of faults

including logical stuck-at faults, transistor stuck-on and

transistor stuck-open faults.

For inputs, we consider the logical stuck-at fault model

(gate stuck-at 0 and gate stuck-at 1 faults). For this set of

faults, the scheme of Fig. 4 is fault secure for multiple faults.

Table I gives the response of the gate for all inputs

combinations. Any single or multiple fault on primary input

will result in a non-valid code word and produce no

complementary output (will be detected) as shown in Table I.

(a and a~, b and b~ are normally complementary data).

TABLE I: FAULT SECURE PROPERTY FOR PRIMARY INPUTS

Inputs

a a~ b b~

Outputs

X Xb

Conclusion

0 0 0 0 0 0 Multiple fault (detected)

0 0 0 1 0 0 Single fault (detected)

0 0 1 0 0 0 Single fault (detected)

0 0 1 1 0 0 Multiple fault (detected)

0 1 0 0 1 1 Single fault (detected)

0 1 0 1 0 1 OK (valid input word)

0 1 1 0 1 0 OK (valid input word)

0 1 1 1 0 0 Single fault (detected)

1 0 0 0 0 0 Single fault (detected)

1 0 0 1 1 0 OK (valid input word)

1 0 1 0 0 1 OK (valid input word)

1 0 1 1 1 1 Single fault (detected)

1 1 0 0 1 1 Multiple fault (detected)

1 1 0 1 1 1 Single fault (detected)

1 1 1 0 1 1 Single fault (detected)

1 1 1 1 1 1 Multiple fault (detected)

On the other hand, switch level fault models (stuck-open,

stuck-on, bridging) and transistor level fault models (shorts,

opens) are used for more accurate representations of defects

[33]–[35]. We consider then, the stuck-on and stuck-open

CMOS transistor model.To show that the differential XOR is

TSC for this class of faults, we will examine all possible

single faults (transisor stuck-on and transisor stuck-open)

within the circuit of the Fig. 4.

We consider first, transistor stuck-on faults. The

differential XOR gate of Fig. 4 is fault secure and self-testing

for all single stuck-on transistor faults (see Table II).

TABLE II: FAULT SECURE AND SELF-TESTING PROPERTIES FOR STUCK-ON

FAULTS (: LOGICAL LEVEL 0 OR 1 INDIFFERENTLY).

Transistor stuck-on Input vector (a,b) detecting the fault

P1 (,1)

P2 (,0)

N1 (,0)

N2 (,1)

We consider at present, transistor stuck-open faults. These

faults may cause output floating and the circuit will have a

sequential behaviour. The differential XOR is TSC for all

transistors stuck-open faults, if it is fault secure and self

testing for these faults.

The Fault secure property stipulate that For any valid input

code word, any single transistor open fault within the gate

produces an invalid code word on the output, or does not

produce an error on the output (fail safe). Let‟s examine the

behaviour of the differential XOR gate under any single

transistor open fault to make the proof that it is fault secure

for this class of faults. given that the differential XOR is

contains four Transistors, there are four possible transistor

open faults.

We note a-, b-, X- and Xb- the previous states of a, b, X and

Xb respectively.

Z: represents the output-floating state (in fact output

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

610

remains at its previous state).

(1) Transistor P1 stuck-open

case Inputs

a b

Outputs

without fault

X Xb

Outputs

with fault

X Xb

Conclusion

A 0 0 0 1 0 Z X (OK), Xb (?)

B 0 1 1 0 1 0 OK

C 1 0 1 0 1 Z X (OK), Xb (?)

D 1 1 0 1 0 1 OK

In cases B and D, the gate is fault secure because the fault

does not produce error on the output. For the cases A and D,

the fault secure property will not be lost and here is the proof.

Case A (a b = 00): The output Xb depends of the previous

states of inputs, three cases are considered:

 a- b- = 01 X- Xb- = 10 (when a b pass from 01 to 00) 

X Xb = 0Z = 00: invalid code word (will be detected)

 a- b- = 10  X- Xb- = 1Z → the case C.

 a- b- = 11  X- Xb- = 01  X Xb = 0Z = 01: valid code

word (the same as the fault free gate).

Case C (a b = 10): We have also three possibilities:

 a- b- = 00  X- Xb- = 0Z → case A

 a- b- = 01  X- Xb- = 10  X Xb = 1Z = 10: valid code

word (as if fault free gate)

 a- b- = 11  X- Xb- = 01  X Xb = 1Z = 11: invalid

code word (will be detected)

(2) Transistor P2 stuck-open

case Inputs

a b

Outputs

without fault

X Xb

Outputs

with fault

X Xb

Conclusion

A 0 0 0 1 0 1 OK

B 0 1 1 0 Z 0 ?

C 1 0 1 0 1 0 OK

D 1 1 0 1 Z 1 ?

In cases A and C, the gate is fault secure. For the cases B

and D, the fault secure property is not lost.

Case B (a b = 01): We have three possibilities:

 a- b- = 00  X- Xb- = 01, (when a b pass from 00 to 01)

 X Xb = Z0 = 00: invalid code word (will be

detected).

 a- b- = 10  X- Xb- = 10  X Xb = Z0 = 10: no error

produced the on the output (fail safe).

 a- b- = 11  X- Xb- = Z1 → the case D.

Case D (a b = 11): Three possibilities are to be treated:

 a- b- = 00  X- Xb- = 01  X Xb = Z1 = 01: the gate is

fail safe: does not produce the error on the output.

 a- b- = 01  X- Xb- = Z0 → the case B.

 a- b- = 10  X- Xb- = 10  X Xb = Z1 = 11: invalid

code word (will be detected).

(3) Transistor N1 stuck-open

case Inputs

a b

Outputs

without fault

X Xb

Outputs

with fault

X Xb

Conclusion

A 0 0 0 1 0 1 OK

B 0 1 1 0 1 Z ?

C 1 0 1 0 1 0 OK

D 1 1 0 1 0 Z ?

In cases A and C, the gate is fault secure. For the cases B

and D, the fault secure property will not be lost.

Case B (a b = 01): We have three possibilities:

 a- b- = 00  X- Xb- = 01, (when ab pass from 00 to 01)

 X Xb =1Z = 11: invalid code word (will be detected)

 a- b- = 10  X- Xb- =10  X Xb =1Z =10: same outputs

as fault free gate (fail safe)

 a- b- = 11  X- Xb- = 0Z → case D.

Case D (a b = 11): Three possibilities:

 a-b- = 00  X- Xb- = 01  X Xb =0Z = 01: same outputs

as fault free gate (fail safe).

 a- b- = 01  X- Xb- = 1Z → case B.

 a- b- = 10  X- Xb- =10  X Xb =0Z = 00: invalid code

word (will be detected).

(4) Transistor N2 stuck-open

case Inputs

a b

Outputs

without fault

X Xb

Outputs

With fault

X Xb

Conclusion

A 0 0 0 1 Z 1 ?

B 0 1 1 0 1 0 OK

C 1 0 1 0 Z 0 ?

D 1 1 0 1 0 1 OK

In cases B and D, the gate is fault secure. For the cases A

and C, the fault secure property will not be lost.

Case A (ab = 00): We have three possibilities:

 a- b- = 01  X- Xb- = 10, (when ab pass from 01 to 00)

 X Xb = Z1 = 11: invalid code word (will be

detected).

 a- b- = 10  X- Xb- = Z0 → the case C.

 a- b- = 11  X- Xb- = 01, (when ab pass from 11 to 00)

 X Xb = Z1 = 01: same outputs as fault free gate (fault

secure).

Case C (a b = 10): we have also three possibilities:

 a- b- = 00  X- Xb- = Z1 → the case C.

 a- b- = 01  X- Xb- = 10  X Xb = Z0 = 10: same

outputs as fault free gate (fault secure).

 a- b- = 11  X- Xb- = 01  X Xb = Z0 = 00: invalid

code word (will be detected).

The self-testing property signify that for each single

transistor open fault within the gate there is at least one input

vector, occurring during the circuit normal operation that

detects it. To make the proof of the self-testing property of

the proposed design for single transistor open faults, we

propose to use fault equivalence concept.

In the simplified MOS transistor model for digital

applications, a transistor acts as a switch controlled by the

gate voltage. When passing, a transistor provides a resistive

path between source and drain. When opened, the source to

drain path has high impedance, and is effectively an open

circuit. Therefore, a PMOS transistor open is equivalent to a

PMOS whose gate is stuck-at 1, and a NMOS transistor open

is equivalent to a NMOS whose gate is stuck-at 0.

Let us examine the four possible single transistor

stuck-open faults within the XOR of the Fig. 4. (a a~ b b~)

are the inputs of the differential XOR gate (a and a~, b and b~

are normally complementary data).

(1) Transistor P1 stuck-open:

“P1 stuck-open” is equivalent to “b stuck-at 1”. As P1 gate

receives the signal b, then this fault is detectable by the input

vectors (a a~ b b~) = (0101) and (a a~ b b~) = (10 01) (see

Table I).

(2) Transistor N1 stuck-open:

“N1 stuck-open” is equivalent to “b stuck-at 0”. Given that

N1 gate receives the signal b, the input vector (a a~ b b~) =

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

611

(0110) or (10 10) detects this fault.

(3) Transistor P2 stuck-open:

“P2 stuck-open” is equivalent to ”b~ stuck-at 1”. Since P2

gate receives the signal b~, the input vector (a a~b b~) =

(0110) or (10 10) detects this fault.

(4) Transistor N2 stuck-open:

“N2 stuck-open” is equivalent to “b~ stuck-at 0”. As N2

gate receives the signal b~, the input vector (a a~b b~) =

(0101) or (10 01) detects this fault.

All these vectors belong to the set of valid input codes.

Consequently, the differential XOR is self-testing for all

single transistor stuck-open faults.

In this section, we made the proof that the scheme of the

Fig. 4 is fault secure for the logic stuck-at fault model and

transistor stuck-on/stuck-open fault model. That is to say, for

any valid input code word and any single fault from the

considered class of faults the proposed differential XOR gate

either produces an invalid code word on the output (fault

detected), or does not produce the error on the output (fail

safe). Moreover, the differential XOR gate is self-testing i.e.

any single fault is detectable by some valid input code word.

In consequence, the scheme proposed in this paper is totally

self-checking for all stuck-at, stuck-on and stuck-open single

faults.

IV. SELF-CHECKING FULL ADDER

In this section a self-checking full adder based on the

proposed differential XOR is presented and analyzed.

A. Design

The proposed self-checking full adder includes two sub

circuits: The differential carry gate and the differential sum

gate as shown in the target design presented in Fig. 3.

In static CMOS technology, the carry gate costs 12

transistors. As the majority voting function is auto-dual, the

carry gate is simply duplicated to generate double-rail carry.

This solution requires the maximum hardware overhead with

24 transistors. To cope with this problem, the carry gate can

be performed in pass transistor CMOS technology as

proposed in [31]. A significant gain in hardware overhead

could be obtained with this solution. However, the pass

transistor gates generate degraded signals, which slow down

signal propagation. This situation will be more critical when

the output signals should be propagated to next stage (e.g.

ripple carry adder, grouped carry look-ahead adder).

In [14] the differential carry gate is designed in static

CMOS with only 16 transistors (see Fig. 5). This scheme is

fault secure for stuck-at fault model. Sure enough, any single

fault on primary input will result in a non-valid code word

and produce no complementary output. In addition, this gate

is self-testing. Indeed, any single internal fault is detectable

by some valid input code word, since it will affect only one

output and produce no complementary data. Therefore, this

scheme is TSC for stuck-at fault model.

This schema performs also, the dual generation

signals  ,G G
i i .These signals are useful for implementation

of fast adders such as group and full carry look-ahead ones.

ai Gi

ci+1

Pi

ci

bi

Pi

ci+1

ci

ai

bi

Fig. 5. Static CMOS differential carry gate

The sum function Si=aibiCi is implemented with two

differential XOR. The first differential XOR performs signals

Pi=aibi and P a b
i i i
  . These signals and the dual carry are

the inputs of the second differential XOR that generates the

dual sum function as shown in Fig. 6.

Note that degraded outputs of the first gate (diff XOR1)

are not used to drive the transistor gates of the second gate

(diff XOR2) and thus, signals are not degraded once more. In

fact, the output voltage does not depend on the number of

switch transistors that the signal travels through. It only

depends on the gate voltage of those switches. This gate

performs also, the dual propagation signals  ,i i
P P .

Diff_XOR1

Diff_XOR2 Pi

P3

Si = Ci  Pi

Ci

P4

N4 N3

Pib

Si = Ci  Pi

Ci

ai

P1

Pi = ai  bi

bi

P2

N2 N1

ai

Pi = ai  bi

bi

Fig.

Fig. 7 gives the scheme of the proposed self-checking full

adder. It is implemented with the differential SUM gate of the

Fig. 6 and the static CMOS dual carry gate of the Fig. 5.This

design combines the pass transistor CMOS technology with

static CMOS technology. Inverters are added to restore

degraded signals generated by the differential SUM gate.

This fully differential implementation requires only 28

transistors.

Gi

ci

Pi

ci+1

Gi

ci+1

ci
ai

bi

T
o

du
al

-r
ai

l c
he

ck
er

 Si

Pi

Si

ai

bi

D
ifferential

X
O

R
 2 (figure 4)

D
ifferential

X
O

R
 1 (figure 4)

Fig. 7.Differential full adder (28 transistors)

On the other hand, a conventional (not self-checking)

one-bit full adder has two operands, A and B, and input carry

Cin. It generates the sum S=A  B  Cin and the output carry

Cout=AB + BC + AC. A standard static CMOS

implementation of the 1-bit full adder costs 24 transistors

[38]. The area overhead for the proposed adder is only 17%

of a traditional adder.

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

612

6. Differential SUM Gate

B. Analysis (TSC property)

We made the proof in the previous sections that, the

sub-circuits of the full adder (differential XOR gate and

differential carry gate) are fault-secure. Thus, the proposed

differential full adder is fault-secure for the considered set of

faults. We now show that the proposed full adder is

self-testing by proving that every fault can be detected by at

least one input codeword.

The differential XOR1 is self-testing since it receives

primary inputs. The differential carry gate is also self-testing

[14]. However, the differential XOR2 gate receives dual-rail

carry signals that are not primary inputs since they are

generated by the previous stage.

As mentioned previously, transistor stuck-on/stuck-open

faults are equivalent to transistor gate stuck-at 0/1. Therefore,

we just have to demonstrate that any internal carry signal

1i
C

 (and 1iC ) can be set to “1” or “0” from primary inputs ai

and bi.

The carry out is given by the expression:

()
1

C a b PC a b a b C
i i i i i i i i i i

    


The input codeword 1010a a b bi i
i i

 sets the carry out

1
C

i  to high logical level whatever the state of the carry in

C
i signal (1010 10).1

1
a a b b C Ci i i
i i i

  


The input codeword 0101a a b bi ii i
 sets the carry out

1
C

i  to low logical level whatever the state of the carry in

C
i signal (0101 01).1

1
a a b b C Ci i i
i i i

  


 Therefore,

the differential full adder of the Fig. 7 is self-testing with

respect to the entire set of faults.

From the above arguments, we conclude that the proposed

design of SC full adder is TSC for all stuck-at, stuck-on and

stuck-open single faults.

Moreover, the proposed differential full adder delivers

propagation signals  ,P Pi i by the SUM gate, and

generation  ,G Gi i signals by the differential carry gate.

These signals are useful for the implementation of fast adders

(e.g. carry look-ahead, carry skip, etc.).

V. SIMULATION RESULTS

A. The differential XOR gate

The differential XOR is implemented in full-custom 32nm

CMOS technology [36]. SPICE simulations of the circuit

extracted from the layout, including parasitic, are used to

demonstrate that this gate has an acceptable electrical

behaviour.

The layout of the differential XOR gate with the two

restoring inverters is as shown in Fig. 9(a). It occupies an area

of 0.840×0.675 µm2. Fig. 9(b) gives SPICE simulation of the

differential XOR of the Fig. 4 with two inverters to restore

outputs. We can see on this simulation that inverters correctly

restore outputs. X is the output signal without inverter and

XR is the restored signal.

0
.8

4
0

 µ
m

0.675 µm

(a)

a

b

X

XR

3.2 6.4 9.6 12.8 16 19.2 22.4 25.6 Time (ns) 28.8

(b)

Fig. 9. differential XOR gate. (a): Layout, (b): SPICE simulation

On the other hand, in CMOS circuits there are two sources

for power dissipation: static and dynamic. To estimate the

power consumption of a circuit equation below is used [37].

2
_P C V f i V i Vsci i swing iD DD DDclk leak

i i


 
 
 
 

        

In this equation, Ci is the load capacitance, Vi_swing is the

voltage swing, αi is the probability of a switch, fclk is the clock

frequency, isc is the short-circuit current, ileak is the leakage

current and VDD is the supply voltage. The main components

of the power dissipation are the isc and Vi_swing components.

The ileak component of the equation is very low and is

sometimes omitted in literature. The voltage swing of a

circuit is the change in voltage that occurs during a transition.

It is equal to the voltage difference between logic ‟1‟ and

logic ‟0‟. When the signal transmission is perfect, the logic 1

is equal to VDD and the logic 0 is equal to VSS. The voltage

swing is therefore equal to the supply voltage and so, a

reduction in supply voltage results in lower power dissipation.

The voltage swing is also reduced when the signals are not

fully transmitted. A circuit that has a less driving capability

often dissipates less power. However, to do useful circuits in

this style, we need at least inverters or buffers.

Short-circuit current isc is established by a direct path

between VDD and VSS. The repeated presence of such

connection causes higher power consumption. This part of

the power is less when direct paths from VDD to VSS are

limited or become non-existent when either (or both) VDD or

VSS is not present, as in the case of the differential XOR

proposed in this paper.

On the other hand, the transistors P1 and N1 (respectively

P2 and N2) of the differential XOR gate do not conduct

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

613

simultaneously, since they have the same signal on theirs

gates (respectively b and b).

B. The differential full adder

In order to evaluate the usefulness of the differential XOR

and to demonstrate that this is an acceptable design style, we

analyze in the following, the performance of the differential

full adder shown in Fig. 7 in terms of power consumption

and propagation delay. The differential full adder of the Fig.

7 is implemented in full-custom 32nm CMOS technology at

0.8V power supply. All transistors lengths are at the

minimum size (LN=LP=2λ=30nm). The NMOS transistors

are at the minimum width size (WN=60nm). For the PMOS

transistors we take WP=2.5WN=150nm. We apply these

sizes for the two XOR gates of the differential full adder of

the Fig. 7. However, the output inverters are upsized in order

to restore efficiently the degraded output signals

(LN=LP=30nm and WN=120nm, WP=240nm). Fig. 10(a)

gives the layout of the self-checking full adder. It occupies an

area of 2,730×1,770 µm2.

The electrical circuit of the adder was extracted from the

layout, and simulated with SPICE. Fig. 10(b) gives

simulation result of this circuit. Simulations are performed at

varying frequencies to take into account the fact that different

applications work at different frequencies. The same applies

to capacitive loading conditions.

1
.7

7
0

 µ
m

2.730 µm

(a)

a

b

Sout

Cin

Cout

Sout

Cout

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0 Time (ns)

(b)

Fig. 10. Differential full adder. (a): Layout; (b): Electrical simulation

(SPICE)

For completeness, we implement a conventional (not

self-checking) CMOS 1-bit full adder in 32nm CMOS

technology and simulate it in same conditions.

Fig. 11(a) gives the average power dissipation of the

proposed scheme and the standard full adder for different

capacitive loading at the output node Si. The measurements

of this figure are carried out on the layout of the differential

full adder of the Fig. 7 and the standard full adder.

The average power dissipation is obtained by simulating

circuits to compare (SC and conventional adder) for the same

number of cycles and the same inputs setting. The power

consumption we get by this way corresponds to a specific

working frequency. Power consumption of CMOS circuit is

directly proportional to the working frequency. Both designs

are simulated for the same time simulation (from 0 to 80ns,

which corresponds practically, to a simulation for 10 cycles)

and with the same inputs setting (the input signals

frequencies are kept the same for both circuits).

As expected, the average power dissipation is lower for the

proposed self-checking adder than the conventional CMOS

adder since it was partially implemented in CMOS pass

transistor logic.

We analyze also, the response time of the circuit in term of

rise and fall delays at the output node Si. The Fig. 11(b) gives

rise and fall delays vs. load capacitance.

0

1

2

3

4

5

6

0 4 7
11

.5
15

,7 18
21

.5 24 28

Load capacitance (fF)

P
o

w
e

r
 d

is
s

ip
a

t
io

n
 (

µ
W

)

Standard CMOS full

adder (Not self-checking)

Proposed CMOS self-

checking adder

(a)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 6 10 15 20 25 30 35 40 45

Load capaciatance (fF)

D
e

la
y

 a
t
 t

h
e

 S
u

m
 (

S
i)

 n
o

d
e

 (
n

s
)

Fall delay

Rise delay

(b)

Fig. 11. (a): Average power consumption, vs. load capacitance, (b): Delays

vs. load capacitance

The formal proof of TSC propriety is done in the section 3.

However, in order to verify the self-checking proprieties for

realistic circuit defects, we simulate the differential full adder

in the presence of faults. Some faults are voluntary injected

on the physical layout of the circuit. As it proved in section 4,

any single fault produces an invalid code word on the output

or/and on the carry out, and will be therefore detected.

Fig. 12 simulates the circuit with N2 of the XOR1 opened.

Fig. 13 shows simulation with P1 of the XOR1 opened. In

both cases, the fault either does not produce an error on the

outputs, or generates non code word and therefore detected

by the double-rail checker. Similar results are observed when

the XOR2 is faulty with N4 or P4 opened. Fig. 14 and Fig. 15

simulate the differential full adder with one shorted transistor.

These faults are detected by producing errors on outputs

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

614

or/and carries signals.

a

b

Sout

Cin

Cout

Sout

Cout

8.8 9.6 10.4 11.2 12 12.8 13.6 14.4 Time (ns)

Fig. 12.simulation with the fault: N2 (XOR1) stuck- open

a

b

Sout

Cin

Cout

Sout

Cout

8.8 9.6 10.4 11.2 12 12.8 13.6 14.4 Time (ns)

Fig. 13.simulation with the fault: P1 (XOR1) stuck-open

a

b

Sout

Cin

Cout

Sout

Cout

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 Time (ns)

Fig. 14. simulation with the fault: P1 (XOR1) stuck-on

a

b

Sout

Cin

Cout

Sout

Cout

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 Time (ns)

Fig. 15.simulation with the fault: P2 (XOR2) stuck-on

The above simulations show that under single fault, the

produced erroneous outputs do not belong to the output code.

(Si, = iS : error detected by the double-rail checker) or/and on

the carry out (Ci+1= 1iC  : error propagated to the next stage).

We note also, that transistors stuck-on faults involve a

large difference between normal operating current and

current under faulted condition. These faults can be therefore,

detected by an additional IDDQ testing. Fig. 16 simulates

differential full adder and gives Idd current in the cases of

fault free circuit and under transistor short fault.

These simulations are performed with the input “a” set to

logical “0” (VSS) and “ā” set to logical “1” (VDD) in the

differential full adder of the Fig. 10(a). Under these

conditions, and for some specific inputs combinations (b and

Cin), there will exist a direct conducting or partially

conducting path in the circuit between VDD and VSS. Thus, an

abnormal Idd increasing can be observed in SPICE

simulations.

Fig. 16 illustrates Idd current for transistor N2 (XOR1)

stuck-on fault and for transistor P4 (XOR2) stuck-on fault.

(a): Idd current of Fault free Adder

(b): Idd current under transistor N1 stuck-on Fault

(c): Idd current under transistor P4 stuck-on Fault

0.02

0.04

0.06

0.08

0. 1

Id
d

(m
A

)

0.00

Id
d

(m
A

)
Id

d
(m

A
)

0.02

0.04

0.06

0.08

0. 1

0.00

0.02

0.04

0.06

0.08

0. 1

0.00

Fig. 16.Idd current: (a) the fault-free circuit, (b), (c) faulty circuit

We obtain similar results for all transistors short faults in

the two differential XOR gates of the differential full adder

layout of the Fig. 10(a).

VI. CONCLUSION

In this paper, we proposed new 4-transistor differential

XOR gate. This gate is fault secure and self-testing for all

stuck-at, stuck-on and stuck-open faults. The proposed

differential XOR gate had been designed and analyzed using

32nm CMOS technology.

In order to evaluate the usefulness of the proposed scheme,

a self-checking full adder was implemented, simulated and

analyzed. This scheme combine two CMOS styles: pass

transistor CMOS technology to perform the sum function and

static CMOS technology for the carry gate to avoid

propagation problems. After that, we made the proof that the

proposed design is TSC for the entire set of faults. In addition,

this scheme costs only 28 transistors and for the known

self-checking schemes, it requires the lowest hardware

overhead. The proposed differential full adder involves only

17% area overhead of a traditional adder without error

detection.

Then, the layout of the proposed full adder had been

implemented and simulated. The proposed full adder can

operate at low voltages, yet giving quite a good speed.

Finally, the differential full adder was simulated with

voluntary injected faults to verify the self-checking

proprieties, and show the effectiveness of the proposed

design for realistic circuit defects. Simulation results were

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

615

widely in accordance with theoretical study.

As a future work, we can plan the employment of the

analyses of the section 3 in a CAD tool for automatically

analyzing TSC property for a CMOS circuit according to a

class of fault and a self-checking technique. Moreover, the

optimized differential XOR gate and full adder can be used to

implement SC adder data path such as ripple carry adder. It

can be, as well, adopted to implement faster SC adders (e.g.

carry look-ahead, carry select, carry skip, etc.). The

optimized differential XOR gate and full adder can also, be

used to implement others SC arithmetic operators such as

multipliers and dividers.

REFERENCES

[1] M. Nicolaidis, „On-line testing for VLSI: state of the art and trends‟,

Integration, the VLSI Journal, Volume 26, Issues 1-2, 1 December

1998, pp. 197-209.

[2] Y. Jiang, A. Al-Sheraidah, Y. Yang, E. Sha and J. G. Chung, „A novel

multiplexer-Based Low-Power Full Adder‟, in IEEE Trans. on circuits

and system II, Vol. 51, No. 7, July 2004, pp. 345-348.

[3] K. Navi and N. Khandel, „The Design of a High-Performance Full

Adder Cell by Combining Common Digital Gates and Majority

Function‟, in European Journal of Scientific Research, Vol. 23 No. 4,

2008, pp. 627-639.

[4] V. Foroutan, K. Navi and M. Haghparast, „A New Low Power

Dynamic Full Adder Cell Based on Majority Function‟, in World

Applied Sciences Journal 4, 2008, pp. 133-141.

[5] M. Ruholamini, A. Sahafi, S. Mehrabi and N. Dadkhahi, „Low-Power

and High-Performance 1-Bit CMOS Full-Adder Cell‟, in Journal of

Computers, Vol. 3, No. 2, February 2008, pp. 48-54.

[6] T. Kowsalya, „Tree Structured Arithmetic Circuit by using different

CMOS Logic Styles‟, in ICGST International Journal on

Programmable Devices, Circuits and Systems, Volume 8, No. 1,

December 2008, pp. 11-18.

[7] M. H. Moaiyeri, R. F. Mirzaee and K. Navi, „Two New Low-Power and

High-Performance Full Adders‟, in Journal of Computers, Vol. 4, No. 2,

February 2009, pp.119-126.

[8] K. Navi, M. R. Saatchi and O. Dael, „A High-Speed Hybrid Full Adder‟,

in European Journal of Scientific Research, Vol .26. No.1, 2009, pp.

29-33.

[9] W. W. Peterson, „On checking an Adder‟, IBM J. Res. Develop. 2,

April 1958, pp. 166-168.

[10] W. W. Peterson., E. J. Weldon, „Error-Correcting Codes‟, Second Ed.,

The MIT press, Cambridge, Massachusetts, 1972.

[11] Avizienis, „Arithmetic Algorithms for Error-Coded Operands‟, in IEEE

Trans. on Computer, Vol. C-22, No.6, June 1973, pp. 567-572.

[12] O.N. Garcia and T.R.Ν. Rao, „On the method of checking logical

operations‟, in 2nd Annual Princeton Conf. Inform. Sci. Sys., 1968, pp.

89-95.

[13] F. F. Sellers, M. Y. Hsiao and L. W. Bearson, „Error Detecting Logic

for Digital Computers‟, Mc GRAW-HILL publishers, New-York,

1968.

[14] M. Nicolaidis, „Efficient implementations of self-checking adders and

ALUs‟, in 23rd International Symposium on Fault-Tolerant Computing,

June 1993, pp. 586-595.

[15] M. Lubaszewski., S. Mir, V. Kolarik, C. Nielsen and B. Courtois,

„Design of self-checking fully differential circuits and boards‟, in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Volume

8, Issue 2, Apr 2000, pp. 113 -128.

[16] B. Hamdi, H. Bederr and M. Nicolaidis, „A tool for automatic

generation of self-checking data paths‟, in 13th IEEE VLSI Test

Symposium, 30 Apr-3 May 1995, pp 460 – 466.

[17] M. Nicolaidis, R. O. Duarte, S. Manich, and J. Figueras, „Fault-Secure

Parity Prediction Arithmetic Operators‟, in IEEE Design & Test of

computers, Vol. 14, Apr 1997, pp. 60-71.

[18] M. Nicolaidis and L. Anghel, „Concurrent Checking in VLSI‟, in

Microelectronic Engineering, Vol. 49, Nov 1999, pp 139-156.

[19] E. Fujiwara and K. Harut, „A Fault-tolerant Arithmetic Logic Unit

Using Parity Based Codes‟, in The transactions of the IECE of Japan,

Vol. E64, No 10, October 1981, pp. 653-660.

[20] D. A. Anderson and G. Metze, „Design of totally self-checking check

circuits for m-out-of-n codes‟, in IEEE Trans. on Computers, vol. 22,

No. 3, March 1973, pp. 263-269.

[21] K. Pradhan and J. J. Stiffler, „Error correcting codes and self-checking

circuits in fault-tolerant computers‟, in IEEE Computer Magazine, Vol.

13, March 1980, pp. 27-37.

[22] D. A. Anderson, „Design of self-checking digital networks using

coding techniques‟, Univ. Illinois Coordinated Sci. Lab., Urbana, IL,

Tech. Rep. R-527, Sept. 1971.

[23] P. Oikonomakos and M. Zwolinski, „On the Design of Self-Checking

Controllers with Data path Interactions‟, in IEEE Transactions on

Computers, Volume 55, No 11, Nov 2006, pp. 1423 – 1434.

[24] L. G. Heller, W. R. Griffin, „Cascode voltage switch logic: a

differential CMOS logic family‟, in IEEE International Solid-State

Circuits Conference, February 1984, 27 pp. 16-17.

[25] K. M. Chu and D. L. Pulfrey, „A comparison of CMOS circuit

techniques: Differential cascode voltage switch logic versus

conventional logic‟, in IEEE Journal of Solid-State Circuits, Vol. 22,

August 1987, pp. 528-532.

[26] L.C. Pfennings, W.J. Mol, J.J. Bastiaens, and J.M. VanDijk,

„Differential split-level CMOS logic for subnanosecond speeds‟, in

IEEE Journal of Solid-State Circuits, vol. SC-20, 1985, pages

1050-1055.

[27] P. Ng, P. T. Balsara and D. Steiss, „Performance of CMOS differential

circuits‟, in IEEE Journal of Solid-State Circuits, Vol. 31 No. 6, June

1996, pp. 841-846.

[28] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi and A.

Shimizu, „A 3.8-ns CMOS 16×16-b multiplier using complementary

pass-transistor logic‟, in IEEE Journal of Solid-State Circuits, Vol. 25,

No. 2, April 1990, pp. 388–395.

[29] A. P. Chandrakasan and R.W. Brodersen, „Low-power digital CMOS

design‟, Boston, MA: Kluwer Academic Publishers, 1995.

[30] R. Zimmermann and W. Fichtner, „Low-power logic styles: CMOS

versus pass-transistor logic‟, in IEEE Journal of Solid-State Circuits,

Vol. 32, No. 7, July 1997, pp. 1079–1090.

[31] H. Tien Bui, Y. Wang and Y. Jiang, „Design and Analysis of

Low-Power 10 Transistor Full Adders Using Novel XOR-XNOR

Gates‟, in IEEE Trans. on circuits and system-II, Analog and Digital

Signal Processing, Vol. 49, No. 1, January 2002, pp. 25-30.

[32] S .R. Chowdhury, A. Banerjee, A. Roy and H. Saha,‟ A High Speed 8

Transistor Full Adder Design using Novel 3 Transistor XOR Gates‟. In

International Journal of Electronics, Circuits and Systems II, 2008, pp.

217-223.

[33] J. A. Abraham and W. K. Fuchs, „Fault and Error Models for VLSI‟, in

IEEE Proceedings, Vol. 74, No. 5, May 1986, pp. 639–654.

[34] R. R. Fritzemeier, C. F. Hawkins and J. M. Soden, „CMOS IC Fault

Models, Physical Defect Coverage, and Iddq Testing‟, in IEEE Custom

Integrated Circuits Conference, May 1991, pp. 13.1.1- 13.1.8.

[35] F. Vargas, M. Nicolaidis and B. Hamdi, „Computation of Iddq Current

Based on Quality Requirements‟, in the 11th IEEE VLSI Test

Symposium, Atlantic City, USA, April 1993.

[36] E. Sicard, Microwind and Dsch version 3.1, INSA Toulouse, ISBN

2-87649-050-1, Dec 2006.

[37] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, „Low-Power

CMOS Digital Design‟, IEEE Journal of Solid State Circuits, Vol. 27,

No. 4, April 1992, pp. 473–484.

[38] N. Weste and D. Harris, „CMOS VLSI Design: A Circuits and Systems

Perspective‟ (3rd edition), Addison-Wesley Educational Publishers,

2004.

 Belgacem Hamdi is with the Electronic &

microelectronic‟s LAB, Monastir, Tunisia. PH.D. in

Microelectronics from INP Grenoble (France). Assistant

Professor at ISSAT Sousse, Tunisia. His main areas of

interest are: IC design, Test, Built In self Test, DFT

tools, self-checking and Fault tolerant systems. E-mail:

belgacem.hamdi@issatgb.rnu.tn

Chiraz Kediri is with the Electronic & microelectronic‟s LAB,

Monastir. Pursuing PH.D. in Electronic & microelectronic design at Tunis

University, Tunisia.

Tourki Rached is the Director of the Electronic &

microelectronic‟s LAB, Monastir. Professor at FS

Monastir university (Tunisia) E-mail:

rached.tourki@fsm.rnu.tn

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

616

