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Abstract—Self-checking designs will gain increasing interest 

in industrial applications if they satisfy the following 

requirements: high fault coverage and reduced hardware cost 

with reduced design effort. The aim of this work is to contribute 

to reach these requirements for the design of self-checking 

adders/ALUs. In this paper, we present efficient self-checking 

implementations for adder schemes using the dual duplication 

code. Among the known self-checking adder designs, the dual 

duplicated scheme has the advantage to be totally self-checking 

for single faults. The drawback of this scheme is that it requires 

generally the maximum hardware overhead. In this work, we 

propose a low cost implementation for self-checking adder. The 

proposed design is based on a novel differential XOR gate 

implemented in   CMOS pass transistor logic, and performed 

with only four transistors. 

 
Index Terms—Totally self-checking circuits; self-checking 

adder; differential XOR; CMOS Logic Styles; CMOS pass 

transistor logic.  

 

I. INTRODUCTION 

  Interest in on-line error detection continues to grow as 

VLSI circuits increase in complexity [1]. Concurrent 

checking is increasingly becoming a desirable characteristic 

thanks to its ability to detect transient faults that may occur in 

a circuit during normal operation. Accordingly, Concurrent 

Error Detection (CED) techniques allow the detection of 

transient faults, which probably not be detected in off-line 

testing, since they may not occur in test mode. CED also 

provides an opportunity for self-diagnosis and self-correction 

within a circuit design, especially in specific applications 

domains requiring very high levels of reliability 

(fault-tolerant computers, safety critical applications, etc.) 

and eventually evolving in hostile environments (e.g. space). 

On the other hand, addition is one of the most fundamental 

operations for digital computations. Thus, much effort has 

been invested in research that has led to faster and more 

efficient ways to perform this operation [2]–[8].  

In addition, designing self-checking arithmetic units is a 

much more complex task than designing self- checking 

memory systems, register files, and shifters. Arithmetic units 

(i.e. adders, ALUs, multipliers and dividers) are an essential 

 
Manuscript received April 6, 2011; revised September 22, 2011. 

Belgacem Hamdi is with the Electronic & microelectronic‟s LAB, 

Monastir, Tunisia. PH.D. in Microelectronics from INP Grenoble (France). 

Assistant Professor at ISSAT Sousse, Tunisia. His main areas of interest are: 

IC design, Test, Built In self Test, DFT tools, self-checking and Fault tolerant 

systems. (E-mail: belgacem.hamdi@issatgb.rnu.tn) 

Chiraz Khediri is with the Electronic & microelectronic‟s LAB, Monastir. 

Pursuing PH.D. in Electronic & microelectronic design at Tunis University, 

Tunisia. 

Tourki Rached is the director of the Electronic & microelectronic‟s LAB, 

Monastir. Professor at FS Monastir university (Tunisia) (E-mail: 

rached.tourki@fsm.rnu.tn) 

element of computers. Therefore, designing efficient 

self-checking arithmetic units is an important challenge in the 

area of self-checking and fault tolerant computers. That is 

why from the very early developments of fault tolerant 

computers, an important amount of effort had been done on 

designing self-checking arithmetic units. The first ones are 

based on arithmetic residue codes [9]–[11]. Then a parity 

prediction scheme has been proposed in [12] and [13]. A 

Berger code prediction scheme has been also developed in 

[14], and more recently self-checking fully differential 

design has been proposed [15]. 

Parity prediction self-checking arithmetic units [16]–[18] 

and logic units [12] have also been proposed. This scheme 

detects the single errors produced on the outputs of the 

arithmetic unit. Parity prediction arithmetic units require the 

lower hardware overhead among all known self-checking 

arithmetic unit schemes [14], [16]. This scheme is compatible 

with parity checked data paths (which requires the minimum 

hardware overhead) and with parity encoded self-checking 

memory systems. It also can be modified to be compatible 

with Hamming SEC/DED memory systems [16], [19]. 

However, a single fault in an arithmetic unit can produce an 

error on a carry signal, which can be propagated to several 

outputs of the arithmetic unit. Thus, the parity scheme does 

not ensure the fault secure property for single faults. 

In this paper, we propose a self-checking full adder design 

based on two-rail encoding scheme. The area overhead of the  

proposed design is kept within an acceptable limit by the use 

of a novel differential XOR gate implemented in CMOS pass 

transistor logic, and realized with only four transistors. 

 

II. BACKGROUND 

A. Self-checking (SC) circuits 

Self-checking circuits are increasingly becoming a suitable 

approach to the design of complex VLSI circuits, to cope 

with the growing difficulty of on-line and off-line testing [1]. 

Self-checking circuits are class of circuits in which 

occurrence of fault can be determined by observation of the 

outputs of the circuits. An important subclass of these 

self-checking circuits is known as totally self-checking (TSC) 

circuits.  

B. Totally self-checking (TSC) circuits 

TSC circuits are used to detect errors concurrently with 

normal operation. These circuits operate on encoded inputs to 

produce encoded outputs. TSC checkers are used to monitor 

the outputs to indicate error when a non-code word is 

detected. The concept of TSC circuits was first proposed in 

[20], and then generalized in [21], as follows: 

 Definition 1: A circuit is fault-secure for a set of faults, F, 

iff for any valid input code word; any single fault, the circuit 
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either produces an invalid code word on the output, or 

doesn‟t produce the error on the output. 

 Definition 2: A circuit is self-testing for a set of faults F, if 

for every fault in F, the circuit produces a non-code output for 

at least one code input (i.e. any single fault is detectable by 

some valid input code word). 

 Definition 3: A circuit is totally self-checking if it is 

fault-secure and self-testing. 

 Definition 4: A circuit is code disjoint if it always maps 

code word inputs into code word outputs and noncode word 

inputs into noncode word outputs. 

 Definition 5: A circuit is a totally self-checking checker if it 

is self-testing and code-disjoint. 

Thus, a totally self-checking (TSC) functional block 

satisfies the two following properties: 

(1) For any valid input code word and any single fault, the 

circuit, either produces an invalid code word on the output, or 

does not produce the error on the output (fault secure 

property). 

(2) Any single fault is detectable by some valid input code 

word (self-testing property). 

A circuit (functional block and checker) is TSC if the 

functional block and the checker are both TSC. Fig. 1 gives 

the basic structure of TSC circuits. 
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Fig. 1.Basic structure of totally self-checking circuit 

The checker determines whether the output of the circuit is 

a valid code word or not. It also detects a fault occurring 

within itself [23]. Double-rail checker is based on the dual 

duplication code as shown in Fig. 2a. It compares two input 

words X and Y that should normally be complementary 

(Y X ) and delivers a pair of outputs coded in dual-rail. 
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Fig. 2. (a): Principle of dual-rail checker, (b): Dual-rail checker cell 

A self-testing dual-rail checker can be designed as a parity 

tree where each XOR gate is replaced by a dual rail checker 

cell. The dual-rail checker cell is shown in Fig. 2(b). The 

resulting checker is also an easily testable circuit since only 

four code inputs are needed to test a dual rail checker of any 

length [22]. This checker is important in self-checking design 

since it can be used to check dual blocks (and duplicated 

blocks by inverting the outputs of one of them). However, its 

more significant use consists on the compaction of the error 

indication signals delivered by the various checkers of a 

complex self-checking circuit. Each checker delivers a pair 

of outputs coded in dual-rail. Thus, the dual-rail checker can 

compact the dual-rail pairs delivered by the various checkers 

of the system into a single dual-rail pair. This pair delivers the 

global error indication of the system. The dual rail checker of 

the Fig. 2(b) is a totally self-checking checker given that it is 

self-testing and code-disjoint [16]. It can be implemented in 

static CMOS, with 16 transistors. 

In self-checking adder/ALUs using double-rail code, the 

functional block receives dual inputs and generates dual 

outputs. Thus, self-checking functional block is performed 

with a dual complementation of the basic (not self-checking) 

function (e.g. addition). The proposed design is an 

improvement of the known differential self-checking adder 

presented in [14]. This target structure includes two 

differentials XOR and a differential carry gate as shown in 

Fig. 3.  
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The differential XOR gate and the dual carry gate of the 

Fig. 3 can be implemented using AND, OR and NOT CMOS 

symmetric gates. However, this solution requires large 

hardware overhead. An optimized design of these gates will 

certainly, improve the performance and reduce the hardware 

overhead of the self-checking adders and ALU data paths. 

Consequently, a great effort had been done in order to 

propose static CMOS self-checking implementations [14],
 

[15], [19].
 

On the other hand, new
 
circuit techniques that go beyond 

full-CMOS circuitry have been given a great deal of attention 

in order to improve
 
speed, area and power. These include 

cascode voltage switch logic (CVSL) [24], [25, differential 

split-level logic [26], domino-like dynamic gates [27]
 
and 

pass-transistor based logics [28]–[30]. Among these, 

pass-transistor logic is one of the most appealing design 

styles, as it results in area effective, fast and robust logic 

circuits. 
 

In this paper, we propose an efficient self-checking adder 

schemes based on an optimized XOR/XNOR gate 

implemented in CMOS pass transistor logic. 
 

III. PROPOSED DIFFERENTIAL XOR GATE 

The exclusive-OR (XOR) and exclusive-NOR (XNOR) 

are fundamental components in full adders [31], [32], and in 
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larger circuits such as parity checkers [17]. The performance 

of these larger circuits is affected by the individual 

performance of the included XOR/XNOR gates.  

A. Design 

Pass transistor logic is attractive as fewer transistors are 

needed to implement important logic functions, smaller 

transistors and smaller capacitances are required, and it is 

faster than conventional CMOS. However, the pass transistor 

gates generate degraded signals, which slow down signal 

propagation. This situation will be more critical when the 

output signals should be propagated to next stage as is the 

case for the carry gate in ripple carry adder. 

A novel differential XOR designed in CMOS pass 

transistor logic is presented in Fig. 4. This gate has dual 

inputs and generates dual outputs. XOR and XNOR functions 

are performed with only four transistors.  
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Fig.  4. Differential XOR Gate 

The scheme has the advantage of the pass transistor CMOS 

gates, which are very fast and low power gates. The speed 

can be evaluated using the critical path (in term of transistors 

number). Accordingly, the critical path of the differential 

XOR gate is only one transistor. The drawback of this 

scheme (as pass transistor gates) is that it generates “weak” 

logical levels at the outputs, and input signals are not fully 

transmitted. This occurs when an NMOS transmits logic ‟1‟ 

or a PMOS transmits logic ‟0‟. To cope with this situation, 

the signals can be restored by adding static CMOS inverters 

at the outputs. 

B. Analysis of the differential XOR (TSC property) 

The correct operation of TSC circuits rests on following 

two assumptions: 

(1) Faults occur one at a time. 

(2) Sufficient time elapses between any two faults so that 

all the required code inputs can be applied to the circuit. 

With the fault secure property it is guaranteed that, a first 

fault always generates detectable errors. Then, assuming that 

between the occurrence of two faults a sufficient time elapses 

so that the functional block receives all inputs required to test 

its faults (i.e. sufficiently long MTBF), the self-testing 

property guaranties that the first fault is detected before a 

second fault occurs in the self-checking system. This way the 

TSC goal is achieved for a TSC functional block [18]. 

In the following, we analyze the behaviour of the 

differential XOR gate shown in Fig. 4 in terms of fault secure 

and self-testing properties with respect to the set of faults 

including logical stuck-at faults, transistor stuck-on and 

transistor stuck-open faults. 

For inputs, we consider the logical stuck-at fault model 

(gate stuck-at 0 and gate stuck-at 1 faults). For this set of 

faults, the scheme of Fig. 4 is fault secure for multiple faults. 

Table I gives the response of the gate for all inputs 

combinations. Any single or multiple fault on primary input 

will result in a non-valid code word and produce no 

complementary output (will be detected) as shown in Table I. 

(a and a~, b and b~ are normally complementary data). 

TABLE I: FAULT SECURE PROPERTY FOR PRIMARY INPUTS 

Inputs 

a   a~  b  b~ 

Outputs 

X  Xb 

Conclusion 

0   0   0  0 0  0 Multiple fault (detected) 

0   0   0  1 0  0 Single fault (detected) 

0   0   1  0 0  0 Single fault (detected) 

0   0   1  1 0  0 Multiple fault (detected) 

0   1   0  0 1  1 Single fault (detected) 

0   1   0  1 0  1 OK (valid input word) 

0   1   1  0 1  0 OK (valid input word) 

0   1   1  1 0  0 Single fault (detected) 

1   0   0  0 0  0 Single fault (detected) 

1    0  0  1 1  0 OK (valid input word) 

1   0   1  0 0  1 OK (valid input word) 

1   0   1  1 1  1 Single fault (detected) 

1   1   0  0 1  1 Multiple fault (detected) 

1   1   0  1 1  1 Single fault (detected) 

1  1    1  0 1  1 Single fault (detected) 

1   1  1   1 1  1 Multiple fault (detected) 

On the other hand, switch level fault models (stuck-open, 

stuck-on, bridging) and transistor level fault models (shorts, 

opens) are used for more accurate representations of defects 

[33]–[35]. We consider then, the stuck-on and stuck-open 

CMOS transistor model.To show that the differential XOR is 

TSC for this class of faults, we will examine all possible 

single faults (transisor stuck-on and transisor stuck-open) 

within the circuit of the Fig. 4. 

We consider first, transistor stuck-on faults. The 

differential XOR gate of Fig. 4 is fault secure and self-testing 

for all single stuck-on transistor faults (see Table II).  

TABLE II: FAULT SECURE AND SELF-TESTING PROPERTIES FOR STUCK-ON 

FAULTS (: LOGICAL LEVEL 0 OR 1 INDIFFERENTLY). 

Transistor stuck-on Input vector (a,b) detecting the fault 

P1 (,1) 

P2 (,0) 

N1 (,0) 

N2 (,1) 

We consider at present, transistor stuck-open faults. These 

faults may cause output floating and the circuit will have a 

sequential behaviour. The differential XOR is TSC for all 

transistors stuck-open faults, if it is fault secure and self 

testing for these faults. 

The Fault secure property stipulate that For any valid input 

code word, any single transistor open fault within the gate 

produces an invalid code word on the output, or does not 

produce an error on the output (fail safe). Let‟s examine the 

behaviour of the differential XOR gate under any single 

transistor open fault to make the proof that it is fault secure 

for this class of faults. given that the differential XOR is 

contains four Transistors, there are four possible transistor 

open faults. 

We note a-, b-, X- and Xb- the previous states of a, b, X and 

Xb respectively.  

Z: represents the output-floating state (in fact output 
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remains at its previous state). 

(1) Transistor P1 stuck-open 

case Inputs 

a b 

Outputs 

without fault 

X Xb 

Outputs 

with fault 

X  Xb 

Conclusion 

A 0 0 0  1 0  Z X (OK), Xb (?) 

B 0 1 1  0 1  0 OK 

C 1 0 1  0 1 Z X (OK), Xb (?) 

D 1  1 0  1 0 1 OK 

In cases B and D, the gate is fault secure because the fault 

does not produce error on the output. For the cases A and D, 

the fault secure property will not be lost and here is the proof.  

Case A (a b = 00): The output Xb depends of the previous 

states of inputs, three cases are considered: 

 a- b- = 01 X- Xb- = 10 (when a b pass from 01 to 00)  

X Xb = 0Z = 00: invalid code word (will be detected) 

 a- b- = 10  X- Xb- = 1Z → the case C. 

 a- b- = 11  X- Xb- = 01  X Xb = 0Z = 01: valid code 

word (the same as the fault free gate). 

Case C (a b = 10): We have also three possibilities: 

 a- b- = 00  X- Xb- = 0Z → case A 

 a- b- = 01  X- Xb- = 10  X Xb = 1Z = 10: valid code 

word (as if fault free gate) 

 a- b- = 11  X- Xb- = 01  X Xb = 1Z = 11: invalid 

code word (will be detected) 

(2) Transistor P2 stuck-open 

case Inputs 

a b 

Outputs 

without fault 

X Xb 

Outputs 

with fault 

X Xb 

Conclusion 

A 0 0 0 1 0  1 OK 

B 0 1 1 0 Z 0 ? 

C 1 0 1 0 1  0 OK 

D 1 1 0  1 Z  1 ? 

In cases A and C, the gate is fault secure. For the cases B 

and D, the fault secure property is not lost. 

Case B (a b = 01): We have three possibilities: 

 a- b- = 00  X- Xb- = 01, (when a b pass from 00 to 01) 

 X Xb = Z0 = 00: invalid code word (will be 

detected). 

 a- b- = 10  X- Xb- = 10  X Xb = Z0 = 10: no error 

produced the on the output (fail safe). 

 a- b- = 11  X- Xb- = Z1 → the case D.  

Case D (a b = 11): Three possibilities are to be treated: 

 a- b- = 00  X- Xb- = 01  X Xb = Z1 = 01: the gate is 

fail safe: does not produce the error on the output. 

 a- b- = 01  X- Xb- = Z0 → the case B. 

 a- b- = 10  X- Xb- = 10  X Xb = Z1 = 11: invalid 

code word (will be detected). 

(3) Transistor N1 stuck-open 

case Inputs 

a   b 

Outputs 

without fault 

X   Xb 

Outputs 

with fault 

X    Xb 

Conclusion 

A 0   0 0   1 0   1 OK 

B 0  1 1   0 1  Z ? 

C 1  0 1   0 1   0 OK 

D 1 1 0   1 0   Z ? 

In cases A and C, the gate is fault secure. For the cases B 

and D, the fault secure property will not be lost. 

Case B (a b = 01): We have three possibilities: 

 a- b- = 00  X- Xb- = 01, (when ab pass from 00 to 01) 

 X Xb =1Z = 11: invalid code word (will be detected) 

 a- b- = 10  X- Xb- =10  X Xb =1Z =10: same outputs 

as fault free gate (fail safe) 

 a- b- = 11  X- Xb- = 0Z → case D.  

Case D (a b = 11): Three possibilities: 

 a-b- = 00  X- Xb- = 01  X Xb =0Z = 01: same outputs 

as fault free gate (fail safe).          

 a- b- = 01  X- Xb- = 1Z → case B.  

 a- b- = 10  X- Xb- =10  X Xb =0Z = 00: invalid code 

word (will be detected). 

(4) Transistor N2 stuck-open 

case Inputs 

a   b 

Outputs 

without fault 

X    Xb 

Outputs 

With fault 

X  Xb 

Conclusion 

A 0  0 0   1 Z   1 ? 

B 0   1 1   0 1     0 OK 

C 1   0 1   0 Z    0 ? 

D 1   1 0  1 0   1 OK 

In cases B and D, the gate is fault secure. For the cases A 

and C, the fault secure property will not be lost. 

Case A (ab = 00): We have three possibilities: 

 a- b- = 01  X- Xb- = 10, (when ab pass from 01 to 00) 

 X Xb = Z1 = 11: invalid code word (will be 

detected). 

 a- b- = 10  X- Xb- = Z0 → the case C.  

 a- b- = 11  X- Xb- = 01,  (when ab pass from 11 to 00) 

 X Xb = Z1 = 01: same outputs as fault free gate (fault 

secure).   

Case C (a b = 10): we have also three possibilities: 

 a- b- = 00  X- Xb- = Z1 → the case C. 

 a- b- = 01  X- Xb- = 10  X Xb = Z0 = 10: same 

outputs as fault free gate (fault secure).  

 a- b- = 11  X- Xb- = 01  X Xb = Z0 = 00: invalid 

code word (will be detected). 

The self-testing property signify that for each single 

transistor open fault within the gate there is at least one input 

vector, occurring during the circuit normal operation that 

detects it. To make the proof of the self-testing property of 

the proposed design for single transistor open faults, we 

propose to use fault equivalence concept.  

In the simplified MOS transistor model for digital 

applications, a transistor acts as a switch controlled by the 

gate voltage. When passing, a transistor provides a resistive 

path between source and drain.  When opened, the source to 

drain path has high impedance, and is effectively an open 

circuit. Therefore, a PMOS transistor open is equivalent to a 

PMOS whose gate is stuck-at 1, and a NMOS transistor open 

is equivalent to a NMOS whose gate is stuck-at 0. 

Let us examine the four possible single transistor 

stuck-open faults within the XOR of the Fig. 4. (a a~ b b~) 

are the inputs of the differential XOR gate (a and a~, b and b~ 

are normally complementary data). 

(1) Transistor P1 stuck-open:  

“P1 stuck-open” is equivalent to “b stuck-at 1”. As P1 gate 

receives the signal b, then this fault is detectable by the input 

vectors (a  a~ b  b~) = (0101) and (a  a~ b  b~) = (10 01) (see 

Table I). 

(2) Transistor N1 stuck-open: 

“N1 stuck-open” is equivalent to “b stuck-at 0”. Given that 

N1 gate receives the signal b, the input vector (a  a~ b  b~) = 
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(0110) or (10 10) detects this fault. 

(3) Transistor P2 stuck-open: 

“P2 stuck-open” is equivalent to ”b~ stuck-at 1”. Since P2 

gate receives the signal b~, the input vector (a a~b b~) = 

(0110) or (10 10) detects this fault. 

(4) Transistor N2 stuck-open: 

“N2 stuck-open” is equivalent to “b~ stuck-at 0”. As N2 

gate receives the signal b~, the input vector (a a~b b~) = 

(0101) or (10 01) detects this fault. 

All these vectors belong to the set of valid input codes. 

Consequently, the differential XOR is self-testing for all 

single transistor stuck-open faults. 

In this section, we made the proof that the scheme of the 

Fig. 4 is fault secure for the logic stuck-at fault model and 

transistor stuck-on/stuck-open fault model. That is to say, for 

any valid input code word and any single fault from the 

considered class of faults the proposed differential XOR gate 

either produces an invalid code word on the output (fault 

detected), or does not produce the error on the output (fail 

safe). Moreover, the differential XOR gate is self-testing i.e. 

any single fault is detectable by some valid input code word. 

In consequence, the scheme proposed in this paper is totally 

self-checking for all stuck-at, stuck-on and stuck-open single 

faults. 

 

IV. SELF-CHECKING FULL ADDER 

In this section a self-checking full adder based on the 

proposed differential XOR is presented and analyzed. 

A. Design 

The proposed self-checking full adder includes two sub 

circuits: The differential carry gate and the differential sum 

gate as shown in the target design presented in Fig. 3. 

In static CMOS technology, the carry gate costs 12 

transistors. As the majority voting function is auto-dual, the 

carry gate is simply duplicated to generate double-rail carry. 

This solution requires the maximum hardware overhead with 

24 transistors. To cope with this problem, the carry gate can 

be performed in pass transistor CMOS technology as 

proposed in [31]. A significant gain in hardware overhead 

could be obtained with this solution. However, the pass 

transistor gates generate degraded signals, which slow down 

signal propagation. This situation will be more critical when 

the output signals should be propagated to next stage (e.g. 

ripple carry adder, grouped carry look-ahead adder). 

In [14] the differential carry gate is designed in static 

CMOS with only 16 transistors (see Fig. 5). This scheme is 

fault secure for stuck-at fault model. Sure enough, any single 

fault on primary input will result in a non-valid code word 

and produce no complementary output. In addition, this gate 

is self-testing. Indeed, any single internal fault is detectable 

by some valid input code word, since it will affect only one 

output and produce no complementary data. Therefore, this 

scheme is TSC for stuck-at fault model. 

This schema performs also, the dual generation 

signals  ,G G
i i .These signals are useful for implementation 

of fast adders such as group and full carry look-ahead ones. 
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Fig. 5. Static CMOS differential carry gate 

The sum function Si=aibiCi is implemented with two 

differential XOR. The first differential XOR performs signals 

Pi=aibi and P a b
i i i
  . These signals and the dual carry are 

the inputs of the second differential XOR that generates the 

dual sum function as shown in Fig. 6. 

Note that degraded outputs of the first gate (diff XOR1) 

are not used to drive the transistor gates of the second gate 

(diff XOR2) and thus, signals are not degraded once more. In 

fact, the output voltage does not depend on the number of 

switch transistors that the signal travels through. It only 

depends on the gate voltage of those switches. This gate 

performs also, the dual propagation signals  ,i i
P P . 
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Fig. 

Fig. 7 gives the scheme of the proposed self-checking full 

adder. It is implemented with the differential SUM gate of the 

Fig. 6 and the static CMOS dual carry gate of the Fig.  5.This 

design combines the pass transistor CMOS technology with 

static CMOS technology. Inverters are added to restore 

degraded signals generated by the differential SUM gate. 

This fully differential implementation requires only 28 

transistors. 
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Fig. 7.Differential full adder (28 transistors) 

On the other hand, a conventional (not self-checking) 

one-bit full adder has two operands, A and B, and input carry 

Cin. It generates the sum S=A  B  Cin and the output carry 

Cout=AB + BC + AC. A standard static CMOS 

implementation of the 1-bit full adder costs 24 transistors 

[38]. The area overhead for the proposed adder is only 17% 

of a traditional adder. 
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6. Differential SUM Gate 



 

 

 

B. Analysis (TSC property) 

We made the proof in the previous sections that, the 

sub-circuits of the full adder (differential XOR gate and 

differential carry gate) are fault-secure. Thus, the proposed 

differential full adder is fault-secure for the considered set of 

faults. We now show that the proposed full adder is 

self-testing by proving that every fault can be detected by at 

least one input codeword. 

The differential XOR1 is self-testing since it receives 

primary inputs. The differential carry gate is also self-testing 

[14]. However, the differential XOR2 gate receives dual-rail 

carry signals that are not primary inputs since they are 

generated by the previous stage. 

As mentioned previously, transistor stuck-on/stuck-open 

faults are equivalent to transistor gate stuck-at 0/1. Therefore, 

we just have to demonstrate that any internal carry signal 

1i
C

  (and 1iC  ) can be set to “1” or “0” from primary inputs ai 

and bi.  

The carry out is given by the expression: 

( )
1

C a b PC a b a b C
i i i i i i i i i i

    


 

The input codeword 1010a a b bi i
i i

  sets the carry out 

1
C

i   to high logical level whatever the state of the carry in 

C
i  signal ( 1010 10).1

1
a a b b C Ci i i
i i i

  


 

The input codeword 0101a a b bi ii i
  sets the carry out 

1
C

i   to low logical level whatever the state of the carry in 

C
i  signal ( 0101 01).1

1
a a b b C Ci i i
i i i

  


 Therefore, 

the differential full adder of the Fig. 7 is self-testing with 

respect to the entire set of faults. 

From the above arguments, we conclude that the proposed 

design of SC full adder is TSC for all stuck-at, stuck-on and 

stuck-open single faults. 

Moreover, the proposed differential full adder delivers 

propagation signals  ,P Pi i by the SUM gate, and 

generation  ,G Gi i signals by the differential carry gate. 

These signals are useful for the implementation of fast adders 

(e.g. carry look-ahead, carry skip, etc.). 

 

V. SIMULATION RESULTS 

A. The differential XOR gate 

The differential XOR is implemented in full-custom 32nm 

CMOS technology [36]. SPICE simulations of the circuit 

extracted from the layout, including parasitic, are used to 

demonstrate that this gate has an acceptable electrical 

behaviour. 

The layout of the differential XOR gate with the two 

restoring inverters is as shown in Fig. 9(a). It occupies an area 

of 0.840×0.675 µm2. Fig. 9(b) gives SPICE simulation of the 

differential XOR of the Fig. 4 with two inverters to restore 

outputs. We can see on this simulation that inverters correctly 

restore outputs. X is the output signal without inverter and 

XR is the restored signal.  
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Fig. 9. differential XOR gate. (a): Layout, (b): SPICE simulation  

On the other hand, in CMOS circuits there are two sources 

for power dissipation: static and dynamic. To estimate the 

power consumption of a circuit equation below is used [37].  

2
_P C V f i V i Vsci i swing iD DD DDclk leak

i i


 
 
 
 

          

In this equation, Ci is the load capacitance, Vi_swing is the 

voltage swing, αi is the probability of a switch, fclk is the clock 

frequency, isc is the short-circuit current, ileak is the leakage 

current and VDD is the supply voltage. The main components 

of the power dissipation are the isc and Vi_swing components. 

The ileak component of the equation is very low and is 

sometimes omitted in literature. The voltage swing of a 

circuit is the change in voltage that occurs during a transition. 

It is equal to the voltage difference between logic ‟1‟ and 

logic ‟0‟. When the signal transmission is perfect, the logic 1 

is equal to VDD and the logic 0 is equal to VSS. The voltage 

swing is therefore equal to the supply voltage and so, a 

reduction in supply voltage results in lower power dissipation. 

The voltage swing is also reduced when the signals are not 

fully transmitted. A circuit that has a less driving capability 

often dissipates less power. However, to do useful circuits in 

this style, we need at least inverters or buffers. 

Short-circuit current isc is established by a direct path 

between VDD and VSS. The repeated presence of such 

connection causes higher power consumption. This part of 

the power is less when direct paths from VDD to VSS are 

limited or become non-existent when either (or both) VDD or 

VSS is not present, as in the case of the differential XOR 

proposed in this paper. 

On the other hand, the transistors P1 and N1 (respectively 

P2 and N2) of the differential XOR gate do not conduct 
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simultaneously, since they have the same signal on theirs 

gates (respectively b and b ). 

B. The differential full adder 

In order to evaluate the usefulness of the differential XOR 

and to demonstrate that this is an acceptable design style, we 

analyze in the following, the performance of the differential 

full adder shown in Fig.  7 in terms of power consumption 

and propagation delay. The differential full adder of the Fig. 

7 is implemented in full-custom 32nm CMOS technology at 

0.8V power supply. All transistors lengths are at the 

minimum size (LN=LP=2λ=30nm). The NMOS transistors 

are at the minimum width size (WN=60nm). For the PMOS 

transistors we take WP=2.5WN=150nm. We apply these 

sizes for the two XOR gates of the differential full adder of 

the Fig. 7. However, the output inverters are upsized in order 

to restore efficiently the degraded output signals 

(LN=LP=30nm and WN=120nm, WP=240nm). Fig. 10(a) 

gives the layout of the self-checking full adder. It occupies an 

area of 2,730×1,770 µm2. 

The electrical circuit of the adder was extracted from the 

layout, and simulated with SPICE. Fig. 10(b) gives 

simulation result of this circuit. Simulations are performed at 

varying frequencies to take into account the fact that different 

applications work at different frequencies. The same applies 

to capacitive loading conditions. 
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Fig. 10. Differential full adder. (a):  Layout; (b): Electrical simulation 

(SPICE) 

For completeness, we implement a conventional (not 

self-checking) CMOS 1-bit full adder in 32nm CMOS 

technology and simulate it in same conditions. 

Fig. 11(a) gives the average power dissipation of the 

proposed scheme and the standard full adder for different 

capacitive loading at the output node Si. The measurements 

of this figure are carried out on the layout of the differential 

full adder of the Fig. 7 and the standard full adder.  

The average power dissipation is obtained by simulating 

circuits to compare (SC and conventional adder) for the same 

number of cycles and the same inputs setting. The power 

consumption we get by this way corresponds to a specific 

working frequency. Power consumption of CMOS circuit is 

directly proportional to the working frequency. Both designs 

are simulated for the same time simulation (from 0 to 80ns, 

which corresponds practically, to a simulation for 10 cycles) 

and with the same inputs setting (the input signals 

frequencies are kept the same for both circuits).  

As expected, the average power dissipation is lower for the 

proposed self-checking adder than the conventional CMOS 

adder since it was partially implemented in CMOS pass 

transistor logic. 

We analyze also, the response time of the circuit in term of 

rise and fall delays at the output node Si. The Fig. 11(b) gives 

rise and fall delays vs. load capacitance. 
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Fig.  11. (a): Average power consumption, vs. load capacitance, (b): Delays 

vs. load capacitance 

The formal proof of TSC propriety is done in the section 3.  

However, in order to verify the self-checking proprieties for 

realistic circuit defects, we simulate the differential full adder 

in the presence of faults. Some faults are voluntary injected 

on the physical layout of the circuit. As it proved in section 4, 

any single fault produces an invalid code word on the output 

or/and on the carry out, and will be therefore detected.  

Fig. 12 simulates the circuit with N2 of the XOR1 opened. 

Fig. 13 shows simulation with P1 of the XOR1 opened. In 

both cases, the fault either does not produce an error on the 

outputs, or generates non code word and therefore detected 

by the double-rail checker. Similar results are observed when 

the XOR2 is faulty with N4 or P4 opened. Fig. 14 and Fig. 15 

simulate the differential full adder with one shorted transistor. 

These faults are detected by producing errors on outputs 
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or/and carries signals. 
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Fig. 12.simulation with the fault: N2 (XOR1) stuck- open 
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Fig. 13.simulation with the fault: P1 (XOR1) stuck-open 
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Fig. 14. simulation with the fault: P1 (XOR1) stuck-on 
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Fig. 15.simulation with the fault: P2 (XOR2) stuck-on 

The above simulations show that under single fault, the 

produced erroneous outputs do not belong to the output code. 

(Si, = iS : error detected by the double-rail checker) or/and on 

the carry out (Ci+1= 1iC  : error propagated to the next stage). 

We note also, that transistors stuck-on faults involve a 

large difference between normal operating current and 

current under faulted condition. These faults can be therefore, 

detected by an additional IDDQ testing. Fig. 16 simulates 

differential full adder and gives Idd current in the cases of 

fault free circuit and under transistor short fault. 

These simulations are performed with the input “a” set to 

logical “0” (VSS) and “ā” set to logical “1” (VDD) in the 

differential full adder of the Fig. 10(a). Under these 

conditions, and for some specific inputs combinations (b and 

Cin), there will exist a direct conducting or partially 

conducting path in the circuit between VDD and VSS. Thus, an 

abnormal Idd increasing can be observed in SPICE 

simulations. 

Fig. 16 illustrates Idd current for transistor N2 (XOR1) 

stuck-on fault and for transistor P4 (XOR2) stuck-on fault.  

 
 

 

 
 

 

(a): Idd current of Fault free Adder 

(b): Idd current under transistor N1 stuck-on Fault 

(c): Idd current under transistor P4 stuck-on Fault 
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Fig. 16.Idd current: (a) the fault-free circuit, (b), (c) faulty circuit 

We obtain similar results for all transistors short faults in 

the two differential XOR gates of the differential full adder 

layout of the Fig. 10(a). 

 

VI. CONCLUSION 

In this paper, we proposed new 4-transistor differential 

XOR gate. This gate is fault secure and self-testing for all 

stuck-at, stuck-on and stuck-open faults. The proposed 

differential XOR gate had been designed and analyzed using 

32nm CMOS technology. 

In order to evaluate the usefulness of the proposed scheme, 

a self-checking full adder was implemented, simulated and 

analyzed. This scheme combine two CMOS styles: pass 

transistor CMOS technology to perform the sum function and 

static CMOS technology for the carry gate to avoid 

propagation problems. After that, we made the proof that the 

proposed design is TSC for the entire set of faults. In addition, 

this scheme costs only 28 transistors and for the known 

self-checking schemes, it requires the lowest hardware 

overhead. The proposed differential full adder involves only 

17% area overhead of a traditional adder without error 

detection. 

Then, the layout of the proposed full adder had been 

implemented and simulated. The proposed full adder can 

operate at low voltages, yet giving quite a good speed.  

Finally, the differential full adder was simulated with 

voluntary injected faults to verify the self-checking 

proprieties, and show the effectiveness of the proposed 

design for realistic circuit defects. Simulation results were 
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widely in accordance with theoretical study. 

As a future work, we can plan the employment of the 

analyses of the section 3 in a CAD tool for automatically 

analyzing TSC property for a CMOS circuit according to a 

class of fault and a self-checking technique. Moreover, the 

optimized differential XOR gate and full adder can be used to 

implement SC adder data path such as ripple carry adder.  It 

can be, as well, adopted to implement faster SC adders (e.g. 

carry look-ahead, carry select, carry skip, etc.). The 

optimized differential XOR gate and full adder can also, be 

used to implement others SC arithmetic operators such as 

multipliers and dividers. 
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