

Abstract—Software evaluation has a crucial role in the life

cycle of software production system. Producing suitable data
for testing the behavior of the software is a subject of many
researches in software engineering. In this paper software
quality control with criteria of covering application paths is
considered and a new method based on genetic algorithm for
generating optimal test data is proposed. In this algorithm, the
fitness function, population production mechanism and other
parameters of genetic algorithm is determined. In addition, the
population production stopping criteria is based on critical
edges of control flow graph. Critical edges are those that their
presence in a control flow graph path represents the presence of
other edges and the edges test shows the adequacy of graph test
paths. The simulation results on prototype test data show the
effectiveness of the proposed method.

Index Terms—Software engineering, genetic algorithm, path
covering, data.

I. INTRODUCTION
Software architecture assessment includes evaluating of

architectural decisions attributes and combination possibility
of these attributes to access the expected quality features.
Software quality control by producing suitable test data is a
topic of interest in software engineering. One of the classical
methods for software evaluation is white box test in which
the structure of the program is used for testing the program.
In this method, first the program structure is presented by
control flow graph and then according to the graph, the
program test is done. Control flow graph is a graph program
which each node represents a program instruction and every
edge represents a control transfer between two instructions of
program.

White box test is divided into four types [1] based on the
type of coverage provides for control flow graph: 1) white
box test with instruction coverage criterion, 2) white box test
with edge coverage criterion, 3) white box test with condition
coverage criterion and 4) white box test with path coverage
criterion. In the first method, the test must guarantee to run
any instructions (passing over of each graph node) at least
once. In the second method, test must guarantee to traverse
every graph edge at least once. In the third method, test must
guarantee the implementation of each condition of program
(traversing of each Graph branch) at least once. In the fourth
method, test must guarantee traversing of every program’s
(graph) path at least once. A path is a set of edges from the

Manuscript received March 16, 2011; revised July 20, 2011.
S. Keshavarz is with the Computer Engineering Department at Islamic

Azad University, Arak branch, Arak, Iran (Corresponding author, e-mail:
skc1359@gmail.com).

R. Javidan is with Department of Computer Engineering and Information
Technology, Shiraz University of Technology, Shiraz, Iran (e-mail:
reza.javidan@gmail.com).

beginning of graph to its end. Since just a conditional
instructions and function calling cause to separate paths in
the program, a sequential non-conditional instruction is
displayed with a node and the edge is not created between
them.

The fourth method is the most complete kind of white box
test but it faces with "many paths and being impractical test
of all the paths” in complex (most paths) programs. A
program with n branches (condition) has 2n paths in
maximum state that between them, some dependent paths
could be. A dependent path is the path that each edge of it
exists in previous traversal of graph paths at least so far.

 In fact, if we traverse a program control flow graph using
first depth and traversal path, this path is a dependent path.
According to theory of McCabe [2], the control flow graph is
a program with n+ 1 independent path which n is the number
of graph’s branches. Therefore, independent paths of a
program are an adequacy criterion test for all program paths.

 Fig. 1 shows the control flow graph for program P that the
sequential conditional instructions are displayed with a node
and each condition is displayed with a separate node. If we
traverse the graph with first depth method, six paths P1 to P6
is obtained that four paths, P1, P2, P3 and P5, are
independent. The P4 and P6 paths are repeated because their
edges appeared in four previous paths.

An ideal data test set is a necessary and sufficient set. It
means that its implementation by the program all paths
causes to traverse all independent paths (necessary condition)
and no additional path (dependent) is not traversed (sufficient
condition). Producing such set has always been challenging
so far and the different methods are presented for that.

Genetic Algorithm (GA) is one of the methods that can be
used for generating optimal test data. In general, the idea of
using genetic algorithms is be attention in software testing by
researchers seriously [5, 8].

In this paper we suggest the genetic algorithm to produce
this complex data. We will offer a fitness function that will be
considered one of the following three adequate criteria of
population production (set of test data): 1) all independent
paths are traversed, 2) percent of the independent paths are
traversed and continuing the producing of data does not
increase the percent, or 3) the production time of the test data
is not more than determined time.

The remainder of this paper is organized as follows: in
Section II the white box test is explained. Genetic algorithm
is briefly explained in Section III. The proposed software
evaluation method based on generating optimal test data is
the subject if Section IV. Experimental results and discussion
is explained in Section V. Finally in Section VI conclusion
and remarks are outlined.

Software Quality Control Based on Genetic Algorithm

S. Keshavarz and Reza Javidan, Member, IACSIT

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

579

Program p and data sample for its testing

Fig. 1. Control flow graph of program P and its paths.

II. WHITE BOX TEST
White-box testing is a method of testing software that tests

internal structures or workings of an application, as opposed
to its functionality (i.e. black-box testing). In white-box
testing an internal perspective of the system, as well as
programming skills, are required and used to design test cases.
The tester chooses inputs to exercise paths through the code
and determine the appropriate outputs. While white-box
testing can be applied at the unit, integration and system
levels of the software testing process, it is usually done at the
unit level. It can test paths within a unit, paths between units
during integration, and between subsystems during a system
level test. Though this method of test design can uncover
many errors or problems, it might not detect unimplemented
parts of the specification or missing requirements

White box test or structural test is a test that tests the
behavior of a program on the structure. Structure of a
program is displayed by control flow graph (Fig. 1) and, as
we said in the first section, it traverses with four methods.
The fourth method is the most complete traversal which we
describe it with an example.

Suppose for the program P test, we have produced T set
test that includes three samples tests. Test sample s1 causes to
implement 1, 5 and 6 instructions, test sample s2 causes to
implement 1, 2, 4 and 6 instructions. Test sample s3 causes to
implement 1, 2, 3, 6 and 7 instructions. Since the T test set
has caused at least one to run per instructions, this set has
adequacy of program test with covered criteria of instructions.
Now, if we consider this set for traversal paths of program
control flow graph, it is determined that s1,s2 cause to

traverse independent path P1, P3 in order and s3 causes to
traverse dependent path P6. Since this set does not cover
some of the independent paths, it does not have the adequacy
criteria for program. Now if we consider the test sample s4: x
= 0; z = 2; y = 2, we see that program failed in 7th instruction.
Thus, despite of the complete coverage of program
instructions, T test set was not able to find the error. It means
it is inadequate.

The idea comes to mind that if the control flow graph (or
paths) of a program and an initial test set is available, how we
can use the genetic algorithm to create suitable population
from test’s data that covers all paths of control flow.
According to McCabe theory, the number of control flow
graph’s paths is equal to n+1 (n is number of branches), the
number of test data that is needed to cover all paths will be
equal to the McCabe’s number. For example, the number of
test data for program P is equal to 3+1 that three is the
number of branches in Fig. 2.

Fig. 2. Fitness functions for the conditional relationships [5]-[6]

III. GENETIC ALGORITHMS
In the evolutionary algorithm set, genetic algorithms are

multi-purpose and powerful optimization tools which model
the principles of the evolution. They are capable of offering
ideal solutions even in the most complex research
atmospheres.

In the 60's, Genetic algorithms was presented by John
Holland, mainly are used on issues that deal with the search
space [3]. These algorithms try to simulate the evolution of
living things through, find the appropriate answer to a
question of between the possible values space.

Evolutionary algorithms are implemented on a set of
encoded solutions, these solutions are chosen based on
quality and then it is used as a basis to provide new solutions
(this is sometimes done by changing the available
components). In the past, the research mechanism was not
related to the kind and range of the components. In the other
word, the combination and the alteration of the components
were done without knowing what the appropriate solutions
were. But using independent operators have been
documented to yield good results

Genetic algorithm is a method for the finite and infinite
optimization problem-solving based on natural selection; it is
a method which invokes the biological evolution. Population
genetic algorithm changes the individual solutions repeatedly.
In each phase, genetic algorithm selects some individuals by
the selected method (like random method) out of the present

1-if (x < > 0) T={ s1: x=0; z=1; y=1;
2- then if (y>1) s2: x=1; z=2; y=1;
3- then y =5; s3: x=1; z=3; y=3;}
4- else y = y – x;
5- else z=x;
6-if (z>1 && y > 1)
7- then z = z /x;
8-end

if(x)… ξ =
0

K

⎧
⎨
⎩

True

False

if(x = = y)… ξ =
0

()abs x y−

⎧
⎨
⎩

x y

x y

=

≠

if(x<>y)… ξ =
0⎧
⎨
⎩

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

580

population who are the parents and who are used for giving
birth to the future generation. During the successive
generations the population evolves into an optimized solution.
Genetic algorithm is used to solve several optimization
problems: it fits standard optimization algorithm and it
includes problems in which the fitness function is
discontinuous, stochastic or nonlinear. Genetic algorithm
uses 3 major rules to make the next generation out of the
present population in each phase.

Selection rules: select some individuals as parents who are
involved in the next generation population.

Crossover rules: combine the parents for the creation of the
next generation.

Mutation rules: uses the random alterations for the
individuals’ parents to give birth to the children.

In Initial level, a population (usually arbitrary) is selected
from values (chromosomes) and then a new generation is
created by doing the intercourse and their mutant. Individuals
(chromosomes) of new population are evaluated by a
function called the evaluation fitness function and
Individuals with high fitness (powerful people) are selected
to create the next generation. The genetic algorithm is a
Directed random optimization method that moves towards
the optimal solutions gradually. The idea of using these
algorithms has been considered in software testing seriously
[5]-[8].

IV. PROPOSED METHOD
In this part software quality control with criteria of

covering application paths is considered and a new method
based on genetic algorithm for generating optimal test data is
proposed.

In testing a program with the covered path criterion (you
see parts 1 and 2), a test data is good data if cause to an
independent traversal of a path. A path is a continuous edges
set from start node to end node of program’s control flow
graph and an independent path is a path that at least one edge
of it is not traversed by other paths. In software testing, the
main worry is the automatic and ordered generation of data is
necessary and sufficient for testing. Data is a necessary and
sufficient only if it causes a traversal on an independent path.

In this section, we offer a systematic and automated
procedure to generate data necessary and sufficient test of a
program based on program control flow graph (see Section 2)
and the covered aim of critical edges. We say the edge is a
critical if its presence in a path represents an independent
path (see Section 4-1). Thus, despite the critical edges in a
path, we don’t need to search for other edges in path, and it
make close the search work of exponential order (n2) to
linear order (n) because each edge represents a independent
critical path and the number of independent paths have a
linear order.

Steps of the proposed method is the following: (1) finding
the critical edges of control the flow graph (genetic
algorithm input), (2) determine the fitness function, (3)
determine the covered table of critical edges, (4) determine
initial data (chromosomes) (5) calculation of covered edges
in graph with covered tables, (6) produce the generation and
the fitted amount of each chromosomes, (7) determining

corrupt chromosomes and replace them with optimal
chromosomes, (8) restore output value and covered table.
Steps 5 to 8 Repeat that the stopping criterion is according to
user or consumed time. The user’s opinion is asked based on
results of Stages 5 and 8, which are declared to user. In Next,
we will describe the steps of above method.

A. Determining the critical edges
For finding the critical edges of control flow graph, first,

we divided the graph into classes that every class includes a
simple branching (branch does not include any other branch)
or a composite branch (nesting branches). Then for each class,
we do the following operations: (1) – we select the innermost
branch and mark it as critical edges, then we mark them and
keep them in the critical edges set, (2) we mark other
sub-path edges that includes the critical edge. This sub-path
is a path that starts from the first edge class and ends with last
node of that class. (3) If the unmarked edge remained in class,
we return to first step. For make Clear in finding critical
edges procedure, we go to work this procedure for Fig. 1 :
the first step, the graph is divided into two class, the first class
includes 1-6th nodes or two nested branches and the second
class contains 6 – 8th nodes or a simple branch. In step 1,we
consider the first class and find the innermost of its branch
(Node 2), and we record its critical edges, the 3 and 4th edges,
in CE = {3,4}, and mark them as viewed edges. In step 2,
sub-paths are found that they include critical edges including,
2-3-6 and 2-4-7 sub-paths and its non-critical edges, 2, 6 and
7th edges, are marked. Now, 1 and 5th edges remain in the first
class that we repeat the first step of algorithm that determines
the rest of the critical edges. We identify the First Edge as a
critical edge and add it into CE set and mark it as a viewed
edge. So critical edges set from the first class is a set with
three elements, 1, 3 and 4. In next step, edge 5 is marked as a
next noncritical edge. Because other noncritical edges did not
remain in the first class, we choose second class. This class
has a simple branch that its critical edges, i.e. edges 8 and 9
are added to the CE set and CE = {3, 4, 1, 8, 9} is resulted.
Critical edges 8 and 9 are marked and in the next step, the
noncritical edge 10 is marked.

With identifying the critical edges, there is no need to
review other edges of graph and their sub-paths. Hereby, the
space of a sub-path is centered in a small part of the graph. It
is worth noting that because of nested branches that are used
in large and complex programs in greater depth and variety,
the using of critical edges reduces in number and time of
paths reviews noticeably.

B. Determine the tables of covered critical edges
 As was expressed in section 4-1, the critical edges are

represent the General Representative of control flow graph
that with examining their mode (traversal or not traversal),
we can estimate the percent of graph that covers test data. In
fact, this estimate represents program instructions that are
covered by this test data. Now we form a table called the
covered table for critical edges and their corresponding
instructions. In a similar way, [4] used the covered branches
table that is much longer than the covered critical edges table
that is used in this paper. Using this table, a stopping criterion
is created for reproduction in genetic algorithms, that this

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

581

criterion offers a reasonable number of traversal paths by the
program which is close to the McCabe number. At the
beginning, Covered critical edges table takes random data or
user data that we call these data the candidate chromosome or
the initial chromosome of genetic algorithms.

C. Fitness function
 Since the fitness function in a genetic algorithm, plays

an essential role and in the proposed method, this function
plays a major role in directing the production of optimal test
data, we introduce a fitness function and assess related
conditions to critical edges with it: 1- control flow graph
Formation of program and corresponding branches
determination with the critical edges, and then finding the
corresponding conditional instructions with their in the
program, 2- Determining the critical edges, 3- Determining
the logical propositions based on conditional instructions
obtained from before step and making logical sentences with
the conjunction and seasonal composition of propositions.
Seasonal composition between propositions is for composite
instruction such as IF and CASE that simultaneous
implementation of them is not possible with a sample data. So
if THEN and ELSE parts of a IF were in the corresponding
instructions with a critical edges of graph, we use a
combination of these parts to make a logical sentence and we
use it for the remaining combination. 4 - determine the fitness
function: the logical sentences obtained in step 3: (1) Each
seasonal operator replace with the minimum and turning
operator with the maximum function (2) Any conditional
relationship is replaced with the equivalent function in Fig. 2.
The result function will be the favorite fitness function. Fig. 2
functions are used as rules to build fitness functions [6]. In
these functions (for example, fifth function in Fig. 2),
because subtracting x and y is negative per true of condition,
the function returns the zero value and otherwise (failure to
establish the condition) value of subtracting two variables
(the amount is positive).Of course like a second function, the
return value is not clear that the value difference is positive or
negative in not establishing of condition, we consider the
absolute magnitude of it; you assume in the fourth function, x
== y, then the function gain the x-y value that is zero that
would be equal with the value of establish state in the same
condition, so very small amount K (such as 10-6) is added to it
then the function restore different value conditions to
establish modes.

D. Genetic Algorithms of proposed method
Steps 4 – 8 in the proposed method includes genetic

algorithm that its pseudo code is expressed in Fig. 3. In this
algorithm, we form the appropriate fitness function based on
two functions in Fig. 2.

GC ()
{
 Input: Program: Changes version of program to be tested;

InitData: Set of test data; CE: Crucial Edges;
 Output: Final: A solution test case set;

CovTable: recorded CEs with status;
 #defines MaxTimes m; //Max acceptable time;
 #defines MC acceptable number of McCabe number;
 Variables declaration:

CanCH1&2: Candidate chromosomes;
TCE:Traversed Crucial l Edge;
 CovTable: Coverage Table;
 NextPop, CurPop: a set of test data;
OpCH1&2: Optimal Chromosomes;
Counter: iteration;
 Begin
Step1: Make CanCH 1&2 by InitData;
 Get fitnessFUN() to Initial OpCH1 and CovTable;
 Initial CurPop;
Step2: While (! fill CovTable with Y || counter <
 MaxTimes ||! Reach MC ||! User request) {
Use Crossover and Mutation operations;

Compute fitnessFUN ();
Compute NextPop and Save OpCH2;
Step3: for each chromosome of NextPop

If (IsDefect (NextPop))
 Replace with OpCH1 one;
 CurPop = NextPop; OpCH1 = OpCH2;
Step4: if (counter mod 10 == 0) {

Compute number of TCE by CovTable;
Show CovTable and Ask to continue ;} Counter++;

 } Final = CurPop;
 Return Final and CovTable;
 End.
}
Boolean IsDefect (chromosome)
{ v = Fitness value of best OPCH1;
 if fitness value is less than v/l return true;
 else return false; //l is an optional value
}

Fig. 3. Genetic Algorithm of proposed method

In the first step, data is produced by the user or randomly,
the candidate chromosomes and equivalent binary of each it
forms genes of chromosomes.

Then we run the program with the initial chromosomes (in
fitness function) and for every critical edge is traversed (TCE
in pseudo code), the value "Y" is inserted in the covered
critical edges table for it. Second step of algorithm shows
beginning of loop of data population production
(chromosomes). In this loop, mating and mutation functions
are called for each produced data, after that the fitness
function determines the data fitness using of traveled edges.
Thus the new generation is produced, whatever the amount of
fitness will be more, and the chromosome is stronger and will
have a more chance to participate in the next round. Since
there is possibility that the optimal chromosomes in the
current generation will be not product in the next rounds, we
save them in the OPCH2 variable. If the fitness value of
chromosome is less than a specified minimum amount, the
chromosome corrupts (bad) and it will be removed from the
present population (third step) and for compensate the
shortage of chromosome in current population , we replace
the most optimal chromosomes in the previous generation.

At the end of the loop, after several run of generation
producing, we compute the number of traversal critical edges
intervals through the covered table, and we display this
number with covered table to the user (step 4), if the user
want a request to continue the implementation of algorithm,
the loop will be continued. We use a Counter variable for

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

582

counting the number of repeated of population production,
till it will not be more than certain quantity.

E. Stopping criterion of Genetic Algorithms
The proposed Genetic algorithm has four stopping

criterion: (1) traversal of all critical edges (this traversal is
studied with examining the covered table after each update),
(2) proximity of the number of covered paths to the McCabe
number, (3) the time limitations (this is based on the amount
that the algorithm used it and if it is more that this amount, its
performance loses) and (4) user satisfaction (after several run
of the algorithm, covered table and number of covered paths
are announced to user until user satisfaction that the
algorithm will be stopped).

V. PLAN A PROBLEM

Fig. 4. Control flow graph of program Q

 In this section, first we discuss a integration program of
two arrays sorted (Program Q) that each array element is two
elements, and then with applying the steps of proposed
method, we produce the test data for these programs. In this
program, U and V and S respectively the first, second and
embedded arrays and h and m were presented sizes of the first
and second arrays. fprintf instructions (instructions without
number), are not the main instructions for the program Q and
they have been added to this program for printing the
numbers of graph control flow graph edges. Program control
flow graph on program Q is shown in Fig. 4.

#1 void merge (int h,int m,const int*U,const int*V,int*S){
#2 int i = 0, j = 0, k = 0;
#3 while(i < h && j < m) {
 fprintf(p,"9-");ph[9]++;
#4 if(U[i] < V[j]){
 fprintf(p,"12-");ph[12]++;
#5 S[k] = U[i]; i++;

fprintf(p,"13-");ph[13]++;}
 else{fprintf(p,"10-");ph[10]++;
#6 S[k] = V[j];j++;

 fprintf(p,"11-");ph[11]++;
#7 }k++;
 fprintf(p,"14-");ph[14]++;
#8 }fprintf(p,"0-");ph[0]++;
#9 if (i < h){ fprintf(p,"5-");ph[5]++;
#10 for(int cnt = k; cnt<h+m;cnt++){

fprintf(p,"7-");ph[7]++;

#11 S[cnt] = U[i]; i++;
fprintf(p,"8-");ph[8]++;}

#12 fprintf(p,"6-"); ph[6]++; }
#13 else{ fprintf(p,"1-");ph[1]++;
#14 for(int cnt1 = k; cnt1<h+m; cnt1++){

fprintf(p,"3-");ph[3]++;
#15 S[cnt1] = V[j]; j++;

fprintf(p,"4-");ph[4]++;}
 fprintf(p,"2-"); ph[2]++;}
#16 }

Program Q- merging of two sorted arrays

Fig. 5. The proposed fitness function for evaluating the tes t data of program

Q

Fig. 6. Paths of program Q and its critical edges (CE)

Now we introduce the steps of proposed method for
program Q. First step: determine the critical edges of control
flow graph (Fig. 4): This graph consists of two classes that
the first class of the nodes 3 to 7 and the second class of the
nodes are 3 to 17. CE={10,12,7,6,3,2}is the critical edges set
that 10 and 12th nodes from first class and others from
second class.(see part 4.1). After obtaining the critical edges,
e must form the fitness function. So for that, we find
conditions of problem that have relative with critical edges.
These conditions are U[i]<V[j] ،cnt<h+m and cnt1<h+m.
Then we make the following logical proposition:

ξ ={ () (p x cnt h m= ≤ + ∪ 1) ()cnt h m A B≤ + <∩

For making easy, we show U[i] with A and V[j] with B.
now. Based on part 4.3 description, we transform this logical
proposition to fitness function using of Fig. 2 function (Fig.
5). The graph of program Q (Fig. 4) has 12 paths (Fig. 6) that
P0 ،P1 ،P2 ،P3 ،P4 and P8 paths are independent. In proposed
method, we survey only critical edges (CE in Fig. 6) that
show a considerable reduction compared to the paths in all
other methods. May be reminded in the worst case, the
number of paths of a program’s control flow graph is 2n that

P0: 0-1-2, P1:0-1-3-4-2, P2:0-5-6, P3:0-5-7-8-6,
P4: 9-10-11-14-0-1-2, P5:9-10-11-14-0-1-3-4-2,
P6: 9-10-11-14-0-5-6, P7:9-10-11-14-0-5-7-8-6,
P8:9-12-13-14-0-1-2, P9:9-12-13-14-0-1-3-4-2,
P10:9-12-13-14-0-5-6, P11:9-12-13-14-0-5-7-8-6
CE = {2, 3, 6, 7, 10, 12}

Procedure fitnessFUN()
{
Run the program; Get TCE to Update CovTable;

Return (Max (0

()A B K− +

⎧
⎨
⎩

A B

othetwise

<
,

Min

⎛
⎜
⎜
⎜
⎜
⎝

0

(())

0

(1 ())

cnt h m k

cnt h m K

− + +

− + +

⎧
⎨
⎩

⎧
⎨
⎩

1

cnt h m

otherwise

cnt h m

otherwise

≤ +

≤ +

⎞
⎟
⎟
⎟
⎟
⎠

)

}

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

583

n is the number of branches in program’s control flow graph.

A. Implementation of genetic algorithm for program Q
 Whereas data input in program Q must be two sorted

arrays, we consider that user has entered two initial
chromosomes which each them contains two input and sorted
arrays: arr1 and arr2.

CH1:[arr1{-1, 0}, arr2{1, 7}],
CH2:[arr1{-5, -4}, arr2{-1, 0}]

If we run program Q for these data, the traversal edges in

graph of program Q look like table 1. Table 2 shows the
covered critical edges for table 1 after running the first round
of program Q.

N or Y of the CE’s first column in table 2 shows the
covered critical edge or no covered with CH1. N or Y of the
CE’s second column shows respectively the covered critical
edge or no covered with CH2. With going on the run of
genetic algorithm and stopping it, 6 chromosomes are
produced as following that cover all critical edges. Table 3
shows that these chromosomes traverse respectively P2 ،P0 ،
P1 ،P3 ،P8 and P4 paths.

CH1:arr1 {-7, -8}, arr2:{-7, -8}, CH2:arr1 {-8, 7},arr2{7,8}
CH3:arr1{11,22}, arr2{15, 39},CH4:arr1{5, 6}, arr2{5, 6}
CH5:arr1{-1, 3}, arr2: {8, 13},CH6 arr6{-11, 0}, arr2{0,8}

TABLE I. TRAVERSAL EDGES OF FIG. 4 GRAPH PER TWO INITIAL
CHROMOSOMES

87 6 5 4 32 1 0 #Edge
00 0 0 2 21 1 1 CH1
00 0 0 2 21 1 1 CH2

TABLE II. COVERED OF CRITICAL EDGES IN FIRST ROUND OF RUNNING
PROGRAM Q

14 13 12 11 10 9 #Edges
1 2 2 0 0 2 CH1
2 2 2 0 0 2 CH2

TABLE III. THE TRAVERSAL EDGES OF FIG. 4 GRAPH PER FINAL
CHROMOSOMES

CE (Y:teste N:
untested)

Branch(#CE) Predicate Line(No
de)

Y Y
N N

True(12)
False(10)

If(A < B) #4 1

N N
N N

True(7)
False(6)

If(cnt < h+m)#10 2

Y Y
Y Y

True(3)
False(2)

If(cnt1 <
h+m)

#14 3

VI.

CONCLUSION

In this paper, a new method based on genetic algorithm to
generate data of white box test is presented. In the proposed
method we determined the fitness function, chromosomes to
produce the optimum population and stopping criterion for
the production of population based on critical edges of
control flow graph program. White box test itself is based on
structure of the programs. Therefore we cannot use it for
programs that their source code or structures are not available
and we must use black box test [6].

Compared with the same technique [5]–[6], since our
approach is based on the critical edges, table cover, so
covered table will be smaller and simpler and order times of
path searching is converted from exponential degree to linear
degree. Also with keeping the optimized Chromosomes at
each stage, we lead the algorithm to come near to goal
(producing appropriate test samples) more quickly. In this
approach, though the steps of progress, user is known its
improvement and type (the traversal paths) by us.

REFERENCES

[1]

C.Ghezzi, M.Jazayeri and D.Mandrioli. Fundamentals of Software
Engineering, 2nd Edition, Prentice-Hall, 2003.

[2]

A.H.Watson, T.J. McCabe. Structural Testing: A Testing Methodology
Using the Cylomatic Complexity Metric, Computer Systems
Laboratory, National Institute of Standards and Technology
Gaithersburg, MD 20899-0001, 1996.

[3]

S.N. Sivanandam, S. N. Deepa. Introduction to Genetic Algorithms,
Springer, 2007.

[4]

J.Miller, M.Reformat, H.Zhang. Automatic test data generation using
genetic algorithm and program dependence graph, Journal of
Information and Software Technology, Elsevier, 48(7), pp. 586-605,
2006.

[5]

I.Hermadi, M.A. Ahmed. Genetic Algorithm Based Test Data
Generator, In Proceedings of IEEE Congress on Evolutionary
Computation, Vol. 1, pp. 85-91, 2003.

[6]

M.A.Ahmed, I.Hermadi. GA-based multiple paths test data generator,
Journal of Computers & Operations Research, Elsevier, 35(10), pp.
3107-3124, 2008.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

584

