

Abstract

volumes of data available in several fields, which we can make
use of effectively, for decision making. This can be achieved by
inducing rules through various rule induction approaches that
are available. In this paper, we proposed a rule induction
algorithm, ELEM, which is an enhanced version of one of the
existing rule induction algorithms, LEM1 [3]. This is made
effective by reducing the database scans required to generate
the rules. Also, it provides an incremental approach which
makes use of ELEM and deals with any kind of data changes in
a dynamic information system. The incremental technique is a
way to solve the issue of added-in data without re-implementing
the original algorithm in a dynamic database. In this paper, an
incremental rule-extraction algorithm is proposed to resolve
therefore mentioned issues. Applying this algorithm, while a
new object is added to an information system, it is unnecessary
to re-compute rule sets from the very beginning. The proposed
approach updates rule sets by partially modifying the original
rule sets, which increases the efficiency. This is especially useful
while extracting rules in a large database.

Index Terms— ELEM, Global cover, Incremental approach,
Rule Induction

I. INTRODUCTION
 Now-a-days, we are inundated with volumes of data.

Business concerns have been accumulating vast amounts of
data in accounting, inventory and sales records. Also large
amounts data are available on internet. For decades this data
has been entered and stored on computers. However, if the
training data is viewed as an information system, then the
procedures and methods of data mining can be used to find
the previously unrecognized relationships in the data that will
convert the data to information.

Rough set theory is a new mathematical approach to
imperfect knowledge developed by Pawlak (7). The main
advantage of rough set theory in data analysis is that it does
not need any preliminary or additional information about data.
Thus it has gained importance in rule induction.

To obtain meaningful decision rules, we underwent the
following stages. Firstly, the data is pre processed. And then
the rule induction algorithm ELEM is applied to the
pre-processed data. This global cover, also known as relative
reduct, based rule induction algorithm generates decision

Manuscript received October 9, 2010; revised July 10, 2011.
B. K. Tripathy and Kumaran K., VIT University, Vellore, India, email:

tripathybk@vit.ac.in
M. Sumaithri, LAPG ,SISO, Bangalore, India, email:

sumaithri.m@samsung.com
T. Swathi, Retail Divison, TCS India, email:

thallamswathi89@gmail.com

rules, which can reveal profound knowledge and provide
new insights. The current traditional approaches do not
consider the added-in data and the classification quality of
decision tables. This also resulted in numerous studies in
incremental approaches (3), (4), and (6). However, the
existing incremental approaches still cannot deal with the
problems of a large database. Moreover, for dealing with the
new added-in data set, these approaches often re-implement
the reduction algorithm and rule extraction which results in
more computational time and wastage of memory space.

Therefore, to solve this dynamic database problem, an
incremental rule extraction algorithm (1) is proposed based
on the ELEM. Applying this algorithm, while a new object is
added to an information system, it is unnecessary to
re-compute rule sets from beginning, instead, we can make
use of an incremental approach for the same.

II. LITERATURE REVIEW

A. Basic Rough Sets
Let U be a universe of discourse, which cannot be empty

and R be an equivalence relation or indiscernibility relation
[4], [8], [10] over U. By U/R we denote the family of all
equivalence class of R, referred to as categories or concepts
of R and the equivalence class of an element x U is denoted
by [x]R. By a knowledge base, we understand a relational
system k = (U, R), when U is as above and R is a family of
equivalence relation or indiscernibility relation over U and k
is called an approximation space. Elementary sets in k are the
equivalence classes of R and any definable set in k is a finite
union of elementary sets in k.

Therefore for any given approximation space defined on
some universe U and having a n equivalence relation R
imposed on it, U is partitioned into equivalence classes called
elementary sets which may be used to define other sets in k;
Given that X ∈ U, X can be defined in terms of definable sets
in k by the following

Lower approximation of X in A is the set
≠ φ X =∪{Y∈ U | R: Y ⊆ X}

Upper approximation of X in A is the set

R X = ∪{Y∈ U | R: Y ∩ X ≠ φ }
Another way to describe the set approximations is as

follows. Given the lower and upper approximations R X and

R X, of X a subset of U, the R-positive region of X is
POSR(X) and is given by POSR(X) = R X, the R-negative

region of X is NEGR(X) and is given by NEGR(X) = U- R X,

Enhanced Rule Induction Using Incremental Approach for
a Dynamic Information System

B. K. Tripathy, Kumaran K., M. Sumaithri, and T. Swathi

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

509

— In the present day scenario, there are large

and the boundary or the R-borderline region of X is BNR (X)
and is given by BNR (X) = R X – R X. The elements of R X
are those of U which can certainly be classified as elements

of X and the elements of R X are those elements of U, which
can possibly be classified as elements of X, employing
knowledge of R. We say that X is rough with respect to R if

and only if R X R X, equivalently BNR (X) ≠ φ . X is

said to be R-definable if and only if, R X = R X or BNR (X)

≠ φ .

The tuple { R X, R X} composed of the lower and upper
approximations of X is called a rough set, associated with X
with respect to R.

B. Rule Induction
Rule induction [2], [3], and [5] is one of the most important

techniques of machine learning. Regularities hidden in data
are frequently expressed in terms of rules; rule induction is
one of the fundamental tools of data mining. Rules are
generally in the following form

If (attribute1, value1) and (attribute2, value2) and
(attributen, valuen) then (decision, value)

Data from which rules are induced are usually presented in
a form similar to a table in which cases (or examples) are
labels (or names) for rows and variables are labeled as
attributes and a decision. Attributes are independent variables
and the decision is a dependent variable. The set of all cases
labeled by the same decision value is called a concept. For
example, for the table 3.1, the set {1, 2, 4, 5} is a concept of
all cases affected by flu (for each case from this set, the
corresponding value of Flu is yes).

There are several studies of incremental approach in rough
set theory [1, 4 and 5]. However, these previous incremental
approaches cannot deal with the problems of a large database.
Moreover, for dealing with the new added-in data set, these
approaches often re-implement the reduction algorithm and
rule-extraction to generate reduces and decision rules. The
following table (Table 3.1) shows a simple example of the
same. Here, Temperature, Headache, Weakness, Nausea are
called Attributes, and the decision is Flu. The set of all cases
labeled by the same decision value is called a concept. For
Table3.1, case set {1, 2, 4, 5} is a concept of all cases affected
by flu (for each case from this set the corresponding value of
Flu is yes).

III. SOLUTION APPROACH

A. Data extraction and Attribute Reduction
In this step, we have a database to store the values. Since

the database cannot be accessible to everyone. We used the
xml query processing. This converts the table into an xml file
which is accessible to everyone. The xml file is then
converted into a text file using a Windows 32 application.
The major problem we face in rule induction is the null
values, or missing values or unknown. To avoid this, we can
create a web page and get the data from the user, where we
apply validation control so that it prevents entering null

values and missing values into the database. Thus
pre-processing is done and missing values are eliminated.
The necessary attributes are then selected as the condition
attributes which determine in making a decision.

B. ELEM
This module includes two components
1) Generation of global covering:

To select the best global cover of the existing ones, we can
make use of condition indispensible attributes accordingly.
Some points for Global covering in incremental approach
• We can generate a list of possible covering with a flag

field.
• Starting with the current global cover, as we proceed, if we

find a sub cover which is not a global covering we can
set the flag.

TABLE I: DECISION TABLE

• Next time, when we came across sub covers of another

global cover, just checking the flag we can discard it.
• This procedure shall reduce the search space.

2) Implementation of ELEM algorithm
• ELEM algorithm firstly calculates the minimal set of

attributes that must be present in generating the rule set
which is the global covering.

• ELEM then computes the necessary attribute value-pairs
and the unnecessary ones are removed and converted
into a rule set.
After the implementation of the algorithms, we found

ELEM is better equipped in handling the incremental
methodology and so we chose ELEM and proceeded for the
incremental approach.

C. Incremental Approach
A rough set rule induction algorithm generates decision

rules, which can reveal profound knowledge and provide
new insights. But these traditional approaches do not
consider the added-in data and the classification quality of
decision tables. This resulted in numerous studies in
incremental rough set theory. However, the existing
incremental approaches still cannot deal with the problems of
a large database. Also, for dealing with the new added-in data
set, these approaches often re-implement the reduction
algorithm and rule extraction which results in more
computational time and wastage of memory space.

Therefore, to solve this dynamic database problem, a new
incremental approach is proposed as follows

The decision table is consists of condition attributes and
decision attributes. ELEM algorithm is applied to the
decision table to generate rules on the existing records. These

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

510

rules are stored in a file. When a new data set is added to the
decision table, in general, ELEM algorithm is applied on the
whole table again to generate the new rules. This seems to be
ineffective when many records are added. To resolve this
problem, a new approach using ELEM, Incremental
Approach, is proposed which is shown above.

Each step in the incremental approach diverges to different
cases. We considered all types of cases that can occur when a
new data is added. All the cases are explained in the
following. We now move on to the algorithm steps of
incremental approach.

Fig. 1. Incremental approach

Case 1: New tuple is dominated by the existing rules
If the new data set added is dominated by the existing rules

then there is no change in the existing rules and the new tuple
is added to the decision table.
Case 2: Total contradiction

Here, the conflict occurs with the existing rule, where there
is no change in any of the condition attributes of the rule and
the change is only in the decision attribute value. This can be
termed as total contradiction. The conflicting rule has to be
deleted from the set of rules.

The conflicting rule is placed in a new category named as
inconsistent rules. The remaining rules will be called as
consistent rules. ELEM algorithm is applied to the new data
set and the new rule is generated. This rule has to be placed in
the inconsistent rules. In due course time, we use support
value of the rules in inconsistent category to reduce their
number. This will optimize the number of rules which helps
user to consider minimum number of rules.
Case 3: Conflict Resolution

The new tuple conflicts with the rule due to change in the
condition attributes of the rule. Now, consider the tuples that
are being covered by the conflicting rule. ELEM algorithm is
applied combined on these tuples and the new data set. The
rules are updated with the new rules generated.
Case 4: No conflict and no domination

The new tuple might have a new attribute value where
there is no conflict and no domination. In this case ELEM is
applied on the new data set and the rules are generated. Rules
are updated with the new rules that are generated.

Fig. 2. ELEM Data flow diagram

IV. PROPOSED ALGORITHMS

A. ELEM
The following gives the algorithm for the ELEM approach.
Notations
A set of all attributes
{d} decision attribute
{d}* partition of {d}
{G} global cover where {G}={g1,g2, …, gn}, g1,g2, … gn

 ∈ A
ga attribute name, a= 1, 2, … p
vab value of the attribute ga, b= 1, 2, …q
(ga, vab) denotes a attribute-value pair
R set of rules generated
Input the decision table with c, condition attributes and d,

decision attributes
output rule sets
For each tuple in decision table
R′: =∅ , G′: =G
While (k > 1)
G′: =G′- gk

if (∩ (ga , vab)) ≤ {d}*) ∀ ga ∈ G’ of the tuple then

G′: =G′
Else

G′: =G′ + {gk}
K: =k-1
END if
If (k = 1)
R=G′
Else
R′=R′+ {gk}
END if
END while
R=R+{R′}
END for

Attribute-value pairs
generation

Generate the Global
cover

Rule induction

Classification

Input

Concept

Rule
s

data

DB

New
data

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

511

1) Test Cases for ELEM
Notations:
A- Set of all attributes
B- A non-empty subset of A
U- Set of all cases
IND (B) – an equivalence relation on U.
Equivalence classes of IND(B) – elementary sets of B
Consider a decision table (Table I),
A decision {d} depends on B, if and only if, B* ≤ {d}*

Let B = {Temperature, Headache}
A decision {d} depends on B are B* = {{1}, {2}, {3, 7},

{4}, {5, 6}}
A Global covering of {d} is a subset B of A such that {d}

depends on B and B is minimal in A.
The following is the procedure for finding the global

cover.
{Temperature, Headache, Weakness, Nausea}* = {{1},

{2}, {3}, {4}, {5}, {6}, {7}}
{Flu}* = {{1, 2, 4, 5}, {3, 6, 7}}
{T, H, W, N}* ≤ {F}*

Dropping Temperature,
{H, W, N}* = {{1}, {2}, {3, 6}, {4}, {5, 7}} ≤ F*
Dropping headache,
{T, W, N}* = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} ≤ F*
So, {T, W, N} is accepted.
Dropping weakness,
{T, N}* = {{1}, {2}, {3, 7}, {4}, {5, 6}} ≤ F*

Dropping Nausea,
{T, W}* = {{1}, {2, 6}, {3}, {4, 7}, {5}} ≤ F*
Therefore, Total covering is {T, W, N}
Now, consider each case in the table,

Case 1:
(Temperature, very-high) & (Weakness, yes) & (Nausea,

no) → (Flu, yes)
Now, Drop (Temperature, very-high)
{1, 4, 5, 7} ∩ {1, 3, 5, 6, 7} = {1} covers cases {1, 5} and

{7} i.e, two different concepts.
So, (Temperature, very-high) cannot be dropped.
 Drop (Weakness, yes),
{1} ∩ {1, 3, 5, 6, 7} = {1} covers only case 1.
So, (Weakness, yes) can be dropped.
Therefore, (Temperature, very-high) & (Nausea, no) →

(Flu, yes)
Drop (Nausea, no),
{1} covers only case 1.
So, (Nausea, no) can be dropped.
Finally the rule is, (Temperature, very-high) → (Flu, yes)

Case 2:
(Temperature, high) & (Weakness, no) & (Nausea, yes) →

(Flu, yes)
Drop (Temperature, high),
{1, 4, 5, 7} ∩ {2, 4} = {4} covers case 2.
So, (Temperature, high) can be dropped.
Drop (Weakness, no),
{2, 4} covers {2, 4} cases from same concept
So, (Weakness, no) can be dropped,
Finally, (Nausea, yes) → (Flu, yes)

Case 3:
(Temperature, normal) & (Weakness, no) & (Nausea, no)

→ (Flu, no)
Drop (Temperature, normal),
{2, 3, 6} ∩ {1, 3, 5, 6, 7} = {3, 6} covers {3, 6} from same

concept.
So, (Temperature, normal) can be dropped.
Drop (Weakness, no),
{1, 3, 5, 6, 7} covers {1, 5} and {3, 6, 7} with different

concepts
So, (Weakness, no) cannot be dropped.
Drop (Nausea, no),
{2, 3, 6} covers {2} and {3, 6} with different concepts
So, (Nausea, no) cannot be dropped.
Finally, (Weakness, no) & (Nausea, no) → (Flu, no)

Case 4:
(Temperature, high) & (Weakness, yes) & (Nausea, no) →

(Flu, yes)
Drop (Temperature, high),
{1, 4, 5, 7} ∩ {1, 3, 5, 6, 7} = {1, 5, 7} covers different

concepts.
So, (Temperature, high) cannot be dropped.
Drop (Weakness, yes)
{2, 5, 6} ∩ {1, 3, 5, 6, 7} = {5, 6} covers different

concepts.
So, (Weakness, yes) cannot be dropped.
Drop (Nausea, no)
{2, 5, 6} ∩ {1, 4, 5, 7} = {5} covers same concepts.
So, (Nausea, no) can be dropped.

Finally, (Temperature, high) & (Weakness, yes) → (Flu, yes)

Case 5:
(Temperature, normal) & (Weakness, yes) & (Nausea, no)

→ (Flu, no)
Drop (Temperature, normal),

{1, 4, 5, 7} ∩ {1, 3, 5, 6, 7} = {1, 5, 7} covers different
concepts.

So, (Temperature, normal) cannot be dropped.
Drop (Weakness, yes),
{3, 4, 7} ∩ {1, 3, 5, 6, 7} = {3, 7} covers same concepts.
So, (Weakness, yes) can be dropped.
Drop (Nausea, no),
{3, 4, 7} covers different concepts
So, (Nausea, no) cannot be dropped.
Finally, (Temperature, normal) & (Nausea, no) → (Flu,

no)
Therefore, the rule sets of ELEM algorithm are:
(Temperature, very-high) → (Flu, yes)
(Nausea, yes) → (Flu, yes)
(Weakness, no) & (Nausea, no) → (Flu, no)
(Temperature, high) & (Weakness, yes) → (Flu, yes)
(Temperature, normal) & (Nausea, no) → (Flu, no)

B. Incremental Approach
The following gives the algorithm for the incremental

approach.
Notations
D it is the new data set added.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

512

Dc data set’s condition values
Dd data set’s decision values
P set of all rules (in general consistent)
P any rule
ICR Inconsistent rules
p’ newly added rules
DT Decision Table
R a tuple for DT (decision table)
Step 1: Check if new data set conflicts with any existing

rules with no change in condition attributes. (i.e. a tuple
already exists such that, the change is only in decision
attributes) CASE 2 – Total Contradiction

for each p in P
if (Dc=pc and Dd≠pd) then
for each R in DT
if (Dc=Rc) then
goto Step 6
else goto Step 2
END if
END for
END if
END for
Step 2: Check if the new data set conflicts with any

existing rules with a change in condition attributes. CASE 3 –
Conflict resolution

for each p in P
 if (Dc=pc and Dd≠pd) then
for each R in DT
if (Dc≠Rc) then
goto Step 7
else goto Step 3
END if
END for
END if
END for
Step 3: Check if the new data set conflicts with one rule

and another rule dominates it. CASE 3 – Conflict resolution.
flag:=0
for each p in P
if (Dc=pc and Dd=pd) then
flag:=1
END if
END for
for each p in P
if (Dc=pc and Dd≠pd) then
for each R in DT
if (Dc≠Rc) AND (flag=1) then
goto Step 7
else goto Step 4
END if
END for
END if
END for
Step 4: Check if the data set is neither conflicting nor

dominated by the existing rules. CASE – 4
count:=0
for each p in P
if (Dc≠pc) then
count++
END if

END for
if (count= |rules|) then
Goto Step 8
else goto Step 3
END if
Step 5: Check if the new data set is dominated by existing

rules. CASE – 1
for each p in P
if (Dc=pc and Dd=pd) then
Add the tuple to decision table
END if
END for
Step 6: Total Contradiction
Step 6.1: Add p to Inconsistent rules
Step 6.2: Remove the conflicting rule from the set of rules
Step 6.3: Apply ELEM to D, and the new rules:= p’
Step 6.4: Update Inconsistent rules by adding p’
Step 6.5: Add the tuple to decision table
Step 7: Conflict Resolution
Step 7.1: Retrieve the tuples [{R}] covered by the

conflicting rule p
Step 7.2: Apply ELEM to D + {R}, and the new rules:=p’
Step 7.3: Update the consistent rules by adding p’
Step 7.4: Add the tuple to decision table
Step 8: Neither a conflict nor domination, but the existing

rules do not cover the new data set
Step 8.1: Apply ELEM to D, and the new rules:=p’
Step 8.2: Update the consistent rules by adding p’
Step 8.3: Add the tuple to decision table
In the similar way, when a tuple is deleted,
If there is a rule that covers only the deleted record, then it

can be removed
 else, only the tuple is removed from the table and the

rule sets remain intact.
1) Test Cases for Incremental Approach

Consider the TABLE I and now the rule sets P are
1. (Temperature, very high) ⇒ (Flu, yes) covers 1st tuple.
2. (Nausea, yes) ⇒ (Flu, yes) covers 2nd and 4th tuple.
3. (Weakness, no) & (Nausea, no) ⇒ (Flu, no) covers 3rd and
6th tuple.
4. (Temperature, high) & (weakness, yes) ⇒ ((Flu, yes)
covers 5th tuple.
5. (Temperature, normal) & (Nausea, no) ⇒ (Flu, no) covers
7th tuple.

Example for case 1:
S
N
o

Temperature Headach
e

Weaknes
s

Nause
a

Flu

8 Normal Yes No No No

Step 5: Dominating existing rules
For each rule p in P
if ((Dc{(Temperature , normal) & (Nausea , no)} = pc

{(Temperature , normal) & (Nausea , no)}) &
(Dd {(flu , yes)} = pd {(flu , yes)})) i.e, the new data set

dominates the existing rules
then
Add 8th tuple to the decision table and no change in the

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

513

existing rules.
End if
End for

Fig. 3. Case 1

Example for case 2:

S
N
o

Temperature Headach
e

Weaknes
s

Nause
a

Flu

9 High Yes No Yes No

Step 1: Total contradiction
Check if new data set conflicts with any existing rules with

no change in condition attributes. (i.e, a tuple already exists
such that, the change is only in decision attributes)

for each p in P
if ((Dc{(Nausea , yes)} = pc{(Nausea , yes)}) &
(Dd{(flu , yes)} ≠ pd{(flu , no)})) i.e, the new data set is

conflicted by the 3rd rule in the decision
Attribute, then
for each R in decision table(DT)
if(Dc{(Temperature , high) & (Headache , yes) &

(Weakness , no) & (Nausea , no)} =
 Rc{(Temperature , high) & (Headache , yes) &

(Weakness , no) & (Nausea , no)})
i.e the new data set is totally contradicted by the 2nd tuple

and 2nd rule , then
GOTO step 6.
Step 6: Total contradiction
Step 6.1 Add 2nd rule to the Inconsistent rules.
Step 6.2 Remove the 2nd rule from the set of rules.
Step 6.3 Apply ELEM to the new data set 9 and generate

new rules p′.
Step 6.4 Update the inconsistent rules by adding p′.
Step 6.5 Add 9th tuple to the decision table.

Example for case 3:

S
N
o

Temperature Headach
e

Weaknes
s

Nause
a

Flu

10 high yes Yes no no

Step 2: Conflict resolution

Fig. 4. Case 2

Check if the new data set conflicts with any existing rules
with a change in condition attributes.

for each p in P
if((Dc{(Temperature,high)&(Weakness,yes)}=pc{(Temp

erature , high) & (Weakness , yes)}) &
Dd{(flu , no)} ≠ pd{(flu , yes)}) i.e., new data set is

conflicted by 4th rule since it has same
 Condition attributes and different decision attribute which

covers 5th tuple, then
for each R in decision table(DT)
if(Dc{(Temperature , high) & (Headache , yes) &

(Weakness , yes) & (Nausea , no)} ≠
Rc{(Temperature , high) & (Headache , no) & (Weakness ,

yes) & (Nausea , no)} i.e, the new data set
has different condition attributes to the 5th tuple , then
GOTO step 7.
Step 7: Conflict resolution
Step 7.1 Retrieve 5th tuple covered by the conflicting rule.
Step 7.2 Apply ELEM to new data set and the 5th tuple and

generate new rules p′.
Step 7.3 Update the consistent rules by p′.
Step 7.4 Add the new tuple to the decision table.

Example for case 3:

S
N
o

Temperature Headach
e

Weaknes
s

Nause
a

Flu

11 Very High No No No No

Step 3: Conflict resolution
Check if the new data set conflicts with one rule and

another rule dominates it.
Let us consider flag:=0
for each p in P
if((Dc{(Weakness , no) & (Nausea , no)} = pc{(Weakness ,

no) & (Nausea , no)}) &
Dd{(flu , no)} = pd{(flu , no)}) i.e the new data set is

dominated by the 3rd rule , then
Flag:=1
End if

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

514

Fig. 5. Case 3

if((Dc{(Temperature , very high)} = pc{(Temperature ,
very high)}) & Dd{(flu , no) ≠ pd {(flu , yes)})

i.e, the new data set is conflicted by the 1st rule which
covers 1st tuple then ,

for each R in decision table(DT)
if(((Dc{(Temperature , very high) & (Headache , no) &

(Weakness , no) & (Nausea , no)} ≠
 Rc{(Temperature , very high) & (Headache , yes) &

(Weakness , yes) & (Nausea , no)}) AND
(flag:=1)) i.e, the new data set is conflicted by the 1st rule

with no similar tuple and flag =1 is
satisfied , then
GOTO step 7 which is already described above.
 Same procedure has to be followed by retaining the

dominated rule and the rules are updated.

Fig. 6. Case 4

Example for case 4:
S

No
Temperat

ure
Headach

e
Weaknes

s
Nause

a
Flu

12 High No moderate no Ye
s

Step 4: Check if the data set is neither conflicting nor

dominated by the existing rules.
Let us consider count:=0
for each p in P

if((Dc{(Temperature , high) & (Headache , no) &
(Weakness , moderate) & (Nausea , no)} ≠ pc{∅})

i.e no rule dominates or conflicts the new data set , then
increment count

count = 5 (checks for all the five rules)
End if
End for
if(count = |rules|) i.e, count(5)=|rules|(5) is satisfied then
GOTO step 8
Step 8:
Step 8.1 Apply LEM1 to new data set and generate new

rules p′.
 Step 8.2 Update the consistent rules by p′.

Step 8.3 Add the new tuple to the decision table.
END

Thus, all the cases are tested and verified with examples as
shown above. This shows that the algorithm followed
through all the paths as it was specified.

 V.

CONCLUSION

 In this paper, we proposed an enhanced version of LEM1
i.e. ELEM, a rule induction algorithm which has several
advantages over the original algorithm. First, it requires less
number of database scans. Secondly, it facilitates in
providing an incremental approach which updates the rule
sets when there is a change in data in the information system.
We also dealt with addition and deletion of tuples in the
decision table. However, there is enough scope for
improvement in the proposed algorithm. For example, an
efficient technique to deal with the problem of generation of
global covers when there is a change in data. Also, one may
need to have knowledge about how often to check for
changes in the Information System which plays a crucial role
in implementing the incremental approach.

REFERENCES

 [1]

Blaszczynski J, Slowinski R, “Incremental Induction of Decision Rules
from dominance-based Rough approximations”, Electronic notes in
Computer Science (2003)

[2]

Grzymala-Busse J W, ″Rough Set Theory with Applications to Data
Mining″, KES Conference Tutorials (2004)

[3]

Grzymala-Busse J W, “Rule Induction”, Chapter 1, pp 01-19 in
Intelligent Decision support – Handbook of Application and Advances
of the Rough set Theory (Ed : Slowinski. R), Volume 11,(1992).

[4]

Guo, S Wang, Z Y Wu, Z C & Yan, “A novel dynamic incremental
rules extraction algorithm based on Rough set theory”, in the
proceedings of the fourth International Conference on machine
learning and cybernetics pp 18 – 21.

[5]

Slowinski. R., ed. Intelligent Decision support – Handbook of
Application and Advances of the Rough set Theory Volume 11 of
System Theory, Knowledge Engineering and problem solving, kluwer
Academic Publishers. Dordrecht, The Netherland(1992).

[6]

YU-Neng Fan, Tzu-Liang(Bill), Ching-Chin Chern, Chun-Che Huang,
“Rule induction based on an incremental Rough Sets”, Expert Systems
with Applications pp 11439 – 11450 (2009)

[7]

Zdzislaw Pawlak, Jerzy Grzymala-Busse, Roman Slowinski, and
Wojciech Ziarko, ”Rough Sets” Communications of the ACM, Vol. 38,
No. 11 (1995)

[8]

Zdzislaw Pawlak and Andrzej Skowron,“Rudiments of Rough Sets”
Institute of Mathematics Warsaw University Banacha 2, 02-097
Warsaw, Poland.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

515

