



Abstract—Learning vector quantization (LVQ) is an effective

network model to solve classification tasks in a wide variety of

real world applications. The usage of LVQ has been extended to

hybrid data type. In this paper, we propose a weighted version

of BNCLVQ, which incorporates the cost matrix into prototype

learning and labeling by means of instance weighting.

Empirical results show the superiority of proposed algorithm

over original NBCLVQ and some variants on both binary-class

data and multi-class data.

Index Terms—Classification, Cost-sensitive learning,

Learning vector quantization, Hybrid data type.

I. INTRODUCTION

The misclassification cost plays an important role in

decision making due to the fact that the costs of different

errors are usually unequal. For example, in medical diagnosis

misclassifying a life-threatening disease as healthy is much

more serious than false alarm. In bankruptcy prediction, the

missing prediction of a bankruptcy company will result in a

higher loss than the opposite type of error. In software detect

process, the misclassification of defect-prone modules

usually incurs higher cost than that of not-detect-prone ones.

This makes the classification cost occupy a unique position in

the research of cost-sensitive learning.

Many classification methods are able to handle certain

type of data. For data with hybrid numeric and nominal

features, a transformation procedure is the commonly used

approach, but usually damages the nature of data [1]. As an

extension of standard LVQ, BNCLVQ (Batch Numeric and

Categorical Learning Vector Quantization) is able to classify

hybrid numeric and categorical data [2]. In this paper we

advance the usage of BNCLVQ to cost-sensitive learning.

We present a weighted BNCLVQ algorithm (wBNCLVQ),

integrating the instance weights which convey the cost of

errors into the network learning and labeling. A number of

data sets with both binary-class and multi-class are used in

the experiments. The proposed algorithm is compared with

Manuscript received July 30, 2010; revised March 17, 2011. This work

was supported by project C2007-FCT/442/2006-GECAD/ISEP (Knowledge

Based, Cognitive and Learning Systems).

Ning Chen is with GECAD, Instituto Superior de Engenharia do Porto,

Instituto Politecnico do Porto (telphone: 351-22-8340500; fax:

351-22-8321159; email: ningchen74@gmail.com).

Bernardete Ribeiro is with CISUC, Department of Informatics

Engineering, University of Coimbra, Portugal (email: bribeiro@dei.uc.pt).

Armando Vieira is with Instituto Superior de Engenharia do Porto,

Instituto Politecnico do Porto (email: asv@isep.ipp.pt).

João Duarte is with GECAD, Instituto Superior de Engenharia do Porto,

Instituto Politecnico do Porto (email: jmmd@isep.ipp.pt).

João C. Neves is with ISEG, School of Economics, Technical University

of Lisbon, Portugal (email: jcneves@iseg.utl.pt).

original BNCLVQ and some cost-sensitive implementations

in terms of classification error and expected misclassification

cost. Experimental results demonstrate that the proposed

algorithm outperforms the competing algorithms on lowering

misclassification cost and improving the robustness in

different situations. The paper is organized as follows. In

section II, an introduction study of LVQ and cost-sensitive

learning is presented. In section III, the methodology of

weighted BNCLVQ algorithm is explained. In section IV, the

empirical study is reported. The contributions and future

remarks are addressed in section V.

II. RELATED WORK

Classification is a supervised machine leaning method to

separate the instances into predefined classes. It is usually

performed in the manner that derives the inherent models

from a training data set of previously labeled samples and

predicts the class of new samples based on the learned model.

In the literature, a large number of algorithms have been

proposed to solve the classification tasks, such as decision

tree, neural network, support vector machine, case-based

reasoning, fuzzy logic, rough set, discriminant analysis,

bayesian networks, hidden markov model, hybrid and

ensemble approach. Meantime, the application of

classification has covered almost all domains in the real

world including image analysis, drug discovery, medical

diagnosis, computer vision, speech and handwriting

recognition, biometric identification, credit scoring, fraud

detection etc.

Learning vector quantization (LVQ) was invented by

Kohonen as an improvement over labeled vector quantization.

The main objective is to approximate the data distribution

with a number of prototypes. Since its origination from

LVQ1 to LVQ2, LVQ2.1, and LVQ3 [3], a lot of variants

have been implemented to improve the convergence,

diminish the errors, simplify the network processing and

advance the usage. Some representative studies are as

follows. Generalized LVQ (GLVQ) uses a stochastic

gradient descent to minimize an explicit error function [4].

Concerning the limitation of Euclidian metric, the

importance of input dimensions is adapted in distinction

sensitive LVQ (DLVQ), or determined based on Hebbian

learning in common with standard LVQ (RLVQ) [5] and

generalized LVQ (GRLVQ) [6]. In an initialization

insensitive LVQ [7], the commonly used nearest neighbor

distance is substituted with harmonic average distance. In [8],

a subset of points located in risk zones contributes to the

learning of prototypes and consequently decreases the

misclassification errors. In [2], a batch type LVQ algorithm

Extension of Learning Vector Quantization to

Cost-sensitive Learning

Ning Chen, Bernardete Ribeiro, Armando Vieira, João Duarte, and João C. Neves

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

352

mailto:jcneves@iseg.utl.pt

(BNCLVQ) is proposed for classifying data with hybrid

numeric and nominal values. Nowadays, LVQ is widely

applied in many domains, such as bankruptcy prediction [9],

gene expression analysis [10], creditworthiness evaluation

[11] and image segmentation [12]. It is reported to achieve

comparable performance with other neural networks, support

vector machines and multivariate statistical methods [13].

Cost-sensitive learning becomes a hot research topic in the

recent study of classification. Many evidences have

demonstrated the necessity of incorporating different types of

cost into classification. Among them, the cost of

misclassification error is the mostly concerned one. As

indicated in [14], there are different categories of

misclassification cost, e.g., constant error cost, conditional

error cost on individual case, time, other instances or feature.

The present-day research concentrates on the former, in

which the instances belonging to a class have the same cost.

The proposed algorithms in this paper are related to the

class-dependent cost formalization.

The so far studies on cost-sensitive learning mainly follow

such methodologies as sampling, weighting and

threshold-moving. The misclassification cost can be

conveyed in the distribution of training data by means of the

often-used sampling techniques, such as over-sampling and

under-sampling. For example, over-sampling is applied to

obtain sensitive and accurate support vector machine

classifier on drug data [15]. Over-sampling duplicates the

expensive examples artificially, but simultaneously increases

the training time and leads to overfitting. On the contrary,

under-sampling discards inexpensive examples, which

usually results in a general loss of information and potentially

general rules [16]. These limitations can be ameliorated using

intelligent sampling, which attempts to remove redundant

inexpensive examples or generate new expensive examples

by interpolation [17].

A widely applied method is introducing some weights into

the underlying learning algorithms. The main issue is how to

set appropriate value of the weights and adapt the learning

methodology to specified weights. Regarding decision tree,

the pioneer method may be the cost-sensitive tree induction

employing the greedy divide-conquer algorithm [18]. The

instance-weighting C4.5 decision tree assigns the samples of

different classes with different weights proportional to the

corresponding costs [19]. The cost matrix is incorporated into

back-propagation neural network [20]. A cost-sensitive

regularized least square algorithm uses weights to penalize

different fractions of classes in medical diagnosis [21].

Weighting strategies are employed to introduce cost into the

weight-updating of a boosting algorithm [17]. The

weighted-instance approaches of online LVQ and batch LVQ

are described in [22] and achieve comparable performance.

Besides, some researchers pointed out that the cost-sensitive

classification can be solved by an optimization procedure

with well-defined objective functions for particular

classifiers [23]. By modifying the objective functions, the

cost is integrated into mathematical programming and

genetic algorithm based neural network [24].

Threshold-moving is a simple way to make a minimum

error tree cost-sensitive. A new instance is assigned to a class

with the minimal expected misclassification cost instead of

the majority class in the leaf node [25]. It is noted that

threshold-moving can be applied to classifiers with

real-valued output, such as neural network and boosting

method. The cost-relevant threshold moves the classification

output of an Adaboost algorithm towards the costly class [26].

In [27], the cost matrix is integrated with basic LVQ

algorithm using sampling and threshold-moving. The matter

at issue is how to select a desired threshold. For this purpose,

the knowledge to the specific classifier and application

domain is required. A bisection method is developed to detect

the optimal threshold that minimizes the overall

misclassification cost of neural networks [28].

III. WEIGHTED BNCLVQ ALGORITHM

Weighting is applicable to learning methods which can

accept weights of samples. If there are two classes and the

cost of a false positive is  times larger than the cost of a false

negative, a widely accepted assignment is to put a weight of 

on each negative training example. Afterwards, the learning

algorithm is applied as usual. Although LVQ does not accept

weighted input directly, it can be implemented by a simple

way. In this section, we adapt the BNCLVQ algorithm to

embedding the instance weights into the learning and

labeling of the network.

A. Weight Assignment

Normally, the cost of misclassification error can be

represented by a matrix, in which the value C(i, j), i, j=1,..., k

indicates the cost of error that classifying an instance to class

j, while it belongs to class i in fact. In this study, we simplify

the cost matrix to a cost vector: {Si | i=1,..., k}, where Si

means the cost of misclassifying a class i instance to others.

The conversion is intuitional by summing the values of the

cost matrix by rows followed by normalization so that the

minimal cost is one. An example of cost matrix with 4 classes

is shown in Table I, in which the last column gives the cost

vector.

jj

i
iji

S

S
SjiCS

min
),,(

(1)

 Let N be the total number of instances in the training data,

Nj the number of class j instances. The weight of an instance

x belonging to class i can be calculated from the cost vector,

so that the costly class instances have high weights and the

sum of all instance weights is N [19]. Through this

transformation, the weights are distributed to all instances

proportional to the corresponding class cost.




j jj

ii
NS

N
SCx)(

 (2)

TABLE I AN EXAMPLE OF COST MATRIX AND COST VECTOR.

Actual

class

Predicted class

Si C1 C2 C3 C4

C1 0 9 4 10 2.56

C2 3 0 2 4 1

C3 8 3 0 8 2.11

C4 1 8 4 0 1.44

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

353

B. Cost-based Labeling Principle

The traditional majority voting labeling principle aims to

minimize the classification errors. Differently, the cost-based

labeling principle tries to minimize the expected cost of

prediction with the consideration of cost matrix. Let P(i|x)

(i=1,..., k) denote the probability of an instance x in class i,

thereby the conditional risk R(i|x) implies the expected cost

due to the prediction of x as i. As described in [29], it can be

calculated as:

 


ji
ijCxjPxi),()|()|(R (3)

Thus, the optimal label for x is the one with the minimal

expected cost:

)|(min i xiR (4)

The cost-sensitive labeling principle has been applied in

various classification methods. Regarding LVQ, P(i|mp)

denotes the probability of neuron mp in class i, and can be

estimated as the percent of the class i instances belonging to

Vp (the Voronoi set of the neuron mp), then the expected cost

of each class is calculated, and mp is labeled by the class with

the minimal expected cost. The cost-based labeling is

described as follows.

1) Calculate the probability for each class i:

||/|)(|)|(P ppp VixClassVxmi 

2) Calculate the expected cost of each class:

 


ji pp ijCmjPmi),()|()|(R

3) Label the neuron as the class with minimal expected

cost:

)|(min)Class(m ip pmiR

C. Weighted-instance LVQ Training

As a prototype representation based on nearest neighbor

approach, the distance metric plays an important role to LVQ.

Some non-Euclidean distance metrics to classification

methods are discussed in [30]. In BNCLVQ [2], the distance

is based on squared Euclidean distance on numeric features

and mismatch measurement on nominal features (0 for match

and 1 for no match). The distance is able to enhance the

accuracy of standard LVQ, especially on data sets with the

mixture of data types.

We propose a weighted learning vector quantization

approaches for hybrid data types (wBNCLVQ). The instance

weights are incorporated into the updating of prototypes so

that instances with higher weights have more influence on

neurons.

In one batch round, the Voronoi set of each map neuron is

computed by projecting the input data to its best matching

unit (BMU), then the prototype is updated according to

learning laws depending on class label and feature type. For

numeric attribute j, the new value can be calculated in the

following.

ipiVx

ijipiVx

sx

xsx

pi

pi

)(

)(
mpj














 (5)

The function sip denotes the class agreement between mp

and xi, having the value 1 if they are in the same class, and -1,

otherwise.










otherwise

xClassmClassif ip

1

)()(1
sip

 (6)

For a nominal attribute j with the values {
jn

jj  ,...,1
}, a

set of counters keeps the frequencies of variant values, taking

the instance weights into account.

  


pi Vx ijipipj xsxvm)|)((),F(r

j

r

j 

 (7)

Function v(y| COND) is y when COND holds and zero

otherwise. This way,
jpj nrm ,...,1),,F(r

j  represents a

weighted vote regarding each value
r

j . For nominal

features, the best category),F(max c r

j1 pj

n

r mj  is the new

value for the next iteration. The learning rule on nominal

variables is formulated as follows.



 


otherwisem

mcFifc

pj

pj 0),(
mpj

 (8)

The description of wBNCLVQ algorithm is shown as

follows. The difference from BNCLVQ is that the instance

weights are incorporated into the updating of prototypes.

Moreover, the cost-based labeling is used to minimize the

expected cost rather than classification error.

N: number of instances; m: number of map neurons; k:

number of attributes; mp: the prototype of neuron p;

Class(mp): class label of neuron p; : maximal number of

iteration; (x): weight of instance x

1) For p = 1,…, m Initialize mp and Class(mp)

2) t = 0

3) For p = 1,…, m Vp = 

4) For i = 1,…, N

a) Input xi to the map

b) For j = 1,…, m Calculate d(xi, mj)

c)),(minargm jp ji mxd // Project xi to mp

d) }{Vp ip xV  // Add xi to the Voronoi set of mp

e)










otherwise

xClassmClassif ip

1

)()(1
sip

5) For p = 1,…, m

a) For j = 1,…, k

 If Fj is numeric then

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

354

ipiVx

ijipiVx

sx

xsx

pi

pi

)(

)(
mpj














// Update numeric attribute

 If Fj is nominal then

For r = 1,…, nj

 


pi Vx ijipipj xsxvm)|)((),F(r

j

r

j 

),F(max c r

j1 pj

n

r mj 



 


otherwisem

mcFifc

pj

pj 0),(
mpj

// Update nominal attribute

b) For each Class i in Vp

 ||/|)(|)|(P ppp VixClassVxmi 

  


ji pp ijCmjPmi),()|()|(R

c))|(min)Class(m ip pmiR

d)

6) t = t + 1

7) Goto (3) until t = 

IV. EMPIRICAL ANALYSIS

TABLE II DATA SET DESCRIPTION (NO: NOMINAL FEATURES, NU: NUMERIC

FEATURES).

Data set #instan

ce

 #

No

 #

Nu

class

distribution

diane 1200 0 30 2 600/600

transfusion 748 0 4 2 570/178

wpbc 198 0 33 2 157/47

hepatitis 155 19 6 2 85/70

haberman 336 0 3 2 255/81

ionosphere 351 0 34 2 126/225

diabetes 768 0 8 2 500/268

horse 368 7 15 2 232/136

german 1000 21 3 2 700/300

echocardiogram 131 1 6 2 88 /43

hypothyroid 3163 18 7 2 151/3012

lungcancer 32 56 0 2 9/23

credit 690 8 5 2 307/383

abalone 4177 1 7 3 147/1323/1447

iris 150 0 4 3 50/50/50

wine 178 0 13 3 59/71/48

soybean 47 35 0 4 10/10/10/17

xaa 94 0 18 4 28/20/26/20

glass 241 0 9 6 70/76/17/13/9/29

segmentation 210 0 19 7 30/30/30/30/30/30/30

zoo 101 15 1 7 41/20/5/13/4/8/10

ecoli 336 0 7 8 143/77/2/35/20/5/52/2

yeast 1484 0 8 10 244/429/463/163/51/44/35

/30/20/5

A. Data Sets

In the empirical study, we select 22 data sets from UCI

Machine Learning Repository [31], in which 12 data sets

have binary-class, and the rest have multi-class. The

properties of the data sets are characterized in Table II. These

data sets are chosen from different domains varying in

number of classes, features, and instances. Additionally, a

real-world data set diane is used, containing information on a

wide set of financial ratios shown in Table III. The data used

in this study is a balanced sample composed of 600 distressed

companies and 600 healthy ones.

B. Performance Evaluation

The performance of classification is usually evaluated by

contingency matrix, in which each row represents the real

class and each column represents the predicted class. The

overall error rate (Err) is the most commonly used criterion

for performance evaluation. As the cost should be taken into

consideration in the evaluation, we also use the error rate of

the highest costly class (ErrHC) and the expected

misclassification cost (EMC) on all instances. Let M(i,j) be

the value of the row i and column j in the contingency matrix.

The aforementioned criteria are defined as follows.

TABLE III FINANCIAL RATIOS OF DIANE COMPANIES.

Variable Description

x1 Number of Employees Last available year

x2 Capital Employed / Fixed Assets

x3 Financial Debt / Capital Employed

x4 Depreciation of Tangible Assets

x5 Working Capital / Current Assets

x6 Current ratio

x7 Liquidity Ratio

x8 Stock Turnover days

x9 Collection Period days

x10 Credit Period days

x11 Turnover per Employee in EUR

x12 Interest / Turnover

x13 Debt Period days

x14 Financial Debt / Equity

x15 Financial Debt / Cashflow

x16 Cashflow / Turnover

x17 Working Capital / Turnover days

x18 Net Current Assets/Turnover days

x19 Working Capital Needs / Turnover

X20 Export

x21 Added Value per Employee in EUR

x22 Total Assets Turnover

x23 Operating Profit Margin

x24 Net Profit Margin

x25 Added Value Margin

x26 Part of Employees

x27 Return on Capital Employed

x28 Return on Total Assets

x29 EBIT Margin

x30 EBITDA Margin

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

355

jj

j

jij
Siwhere

jiM

jiM
maxarg,

),(

),(
Err

,

HC 


 

 (9)

N

jiM
Err

jiji 


,,
),(

 (10)

 NjiCjiMEMC
jiji

/),(),(
,, 



 (11)

The robustness property denotes the performance of an

algorithm on different data sets [16]. In this study, we

investigate the robustness of LVQ algorithms in terms of the

error of highest costly class and expected misclassification

cost. Let D1,..., Dn be the data sets used in experiments, A1,...,

Am the compared algorithms, vi,j denote the performance of

algorithm Ai on data Dj. For a particular data set, the maximal

value among all algorithms represents the worst performance,

then the relative performance bi,j is the absolute value divided

by the maximum. The robustness of the algorithm is

represented by summing up the relative performance over all

data sets. A smaller value of indicates the more robust of a

particular algorithm.

  



n

j jii

ji

m

i

ji

ij br
v

v
b

1 ,

,1

,
,

max

 (12)

TABLE IV BINARY CLASS DATA SETS: PERFORMANCE COMPARISON AND SIGNIFICANCE TEST AT 5% LEVEL (*: VS BNCLVQ, +: VS CL-BNCLVQ).

Data set BNCLVQ cl-BNCLVQ w BNCLVQ MetaCost-LVQ

ErrHC

diane 0.110 (0.046) 0.099 (0.043) 0.078 (0.046)*+ 0.108 (0.091)

transfusion 0.236 (0.235) 0.144 (0.165)* 0.144 (0.184)* 0.151 (0.296)

wpbc 0.499 (0.247) 0.380 (0.244) 0.405 (0.244)* 0.576 (0.386)

hepatitis 0.301 (0.176) 0.211 (0.186) 0.197 (0.169)* 0.274 (0.177)

haberman 0.466 (0.335) 0.362 (0.317)* 0.409 (0.389) 0.434 (0.433)

ionosphere 0.133 (0.136) 0.110 (0.119)* 0.114 (0.129)* 0.153 (0.161)

diabetes 0.303 (0.152) 0.198 (0.159)* 0.193 (0.143)* 0.284 (0.260)

horse 0.272 (0.112) 0.217 (0.097)* 0.186 (0.088)*+ 0.266 (0.139)

german 0.374 (0.377) 0.312 (0.306)* 0.252 (0.252)*+ 0.259 (0.251)

echocardiogram 0.294 (0.135) 0.234 (0.157)* 0.200 (0.158)* 0.183 (0.232)

hypothyoid 0.353 (0.303) 0.344 (0.296) 0.297 (0.264)+ 0.597 (0.514)

lungcancer 0.396 (0.300) 0.369 (0.323) 0.298 (0.322) 0.231 (0.107)

credit 0.148 (0.010) 0.100 (0.023)* 0.114 (0.024) * 0.196 (0.048)

mean 0.2989 0.2369 0.2223 0.2857

Err

diane 0.120 (0.003) 0.134 (0.036) 0.122 (0.010) 0.151 (0.010)

transfusion 0.258 (0.011) 0.257 (0.038) 0.248 (0.024) 0.232 (0.007)

wpbc 0.267 (0.026) 0.328 (0.088) 0.275 (0.060) 0.250 (0.010)

hepatitis 0.321 (0.028) 0.345 (0.070) 0.345 (0.039) 0.314 (0.021)

haberman 0.310 (0.015) 0.316 (0.037) 0.289 (0.025) 0.263 (0.006)

ionosphere 0.121 (0.017) 0.145 (0.026) 0.125 (0.021) 0.144 (0.007)

diabetes 0.265 (0.008) 0.314 (0.077) 0.297 (0.046) 0.274 (0.013)

horse 0.196 (0.008) 0.214 (0.043) 0.231 (0.030) 0.215 (0.016)

german 0.300 (0.011) 0.298 (0.008) 0.303 (0.018) 0.264 (0.007)

echocardiogram 0.354 (0.037) 0.368 (0.025) 0.348 (0.028) 0.315 (0.012)

hypothyoid 0.030 (0.001) 0.031 (0.002) 0.034 (0.007) 0.048 (0.000)

lungcancer 0.263 (0.060) 0.273 (0.072) 0.287 (0.076) 0.244 (0.051)

credit 0.147 (0.005) 0.162 (0.016) 0.162 (0.014) 0.260 (0.023)

mean 0.2272 0.2450 0.2359 0.2289

EMC

diane 0.679 (0.216) 0.669 (0.206) 0.617(0.216)*+ 0.808 (0.271)

transfusion 1.353 (0.432) 1.139 (0.420)* 1.096 (0.396)* 1.044(0.415)

wpbc 1.533 (0.417) 1.527 (0.617) 1.361 (0.451)+ 1.517 (0.606)

hepatitis 1.573 (0.480) 1.386 (0.493) 1.407 (0.503) 1.619 (0.661)

haberman 1.704 (0.639) 1.562 (0.841) 1.447 (0.777)*+ 1.350 (0.779)

ionosphere 0.634 (0.288) 0.646 (0.275) 0.599 (0.251) 0.754 (0.330)

diabetes 1.402 (0.520) 1.178 (0.604)* 1.152 (0.563)* 1.334 (0.671)

horse 1.032 (0.312) 0.935 (0.265)* 0.926 (0.284)* 1.060 (0.346)

german 1.782 (0.652) 1.662 (0.731)* 1.626 (0.735)* 1.478 (0.596)

echocardiogram 1.804 (0.693) 1.626 (0.849) 1.525 (0.640)* 1.279 (0.732)

hypothyoid 0.165 (0.082) 0.165 (0.079) 0.154 (0.069) 0.266 (0.146)

lungcancer 1.288 (0.414) 1.203 (0.422) 1.072 (0.484) 1.135 (0.171)

credit 0.746 (0.248) 0.680 (0.238)* 0.707 (0.255) 1.176 (0.414)

mean 1.2073 1.1059 1.0530 1.14

C. Experimental Strategy

In the comparable study, we use the BNCLVQ as the

baseline. One competing algorithm is cl-BNCLVQ

(BNCLVQ in common with cost-based labeling) is used to

detect the effectiveness of weighted prototype learning.

Another is MetaCost [29], a well-known cost-sensitive

method which provides a general framework to any classifier

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

356

learning method by changing the label of each training

example to its optimal label and then learning a classifier that

predicts these new labels. We use the Weka implementation

of MetaCost combined with LVQ (MetaCost-LVQ) [32] or

the purpose of comparison. The experiments are performed

in the following strategy:

1) The cost matrix is generated so that the diagonal values

are 0 and others are random number taken from [1, 10],

then the weight of instances is calculated.

2) The data set is divided randomly into ten folds for

cross-validation. In each trial one fold is used as test data,

and the remaining is used for training.

3) For each generated training data set, the LVQ

approaches are applied resulting a learned, labeled map.

4) The test data is input to the resultant map, and the class is

predicted via the nearest principle.

5) After the cross-validation is finished, the contingency

matrix is obtained by summarizing the real class and

predicted class for the entire data. Then the highest

costly class error, overall error and expected

misclassification cost are calculated from the

contingency matrix and cost matrix.

6) The process is repeated 10 times with randomly

generated cost matrix, and the average results are

calculated.

7) The results are summarized over all data sets and

different algorithms.

D. Experimental Results

The performance of aforementioned four algorithms,

namely BNCLVQ, cl-BNCLVQ, wBNCLVQ and

MetaCost-LVQ is shown. For each data set, the average

results and standard deviation over different cost matrix

configurations are given. The significance test is performed

on 5% level between cl-BNCLVQ and BNCLVQ,

wBNCLVQ and BNCLVQ, wBNCLVQ and cl-BNCLVQ

respectively.

Table IV summarizes the results on binary class data sets.

As expected, the three cost-related variants are indeed

capable to lower the highest costly class error rate with a

slight degradation on the overall error rate, and decrease the

expected cost. Concerning the average performance,

cl-BNCLVQ achieves a 20% reduction on ErrHC and a 8%

reduction on EMC, wBNCLVQ achieves a 26% and 13%

reduction on ErrHC and EMC respectively. The

CostMeta-LVQ results in a small improvement with 4% and

6%

TABLE V MULTI-CLASS DATA SETS: PERFORMANCE COMPARISON AND SIGNIFICANCE TEST AT 5% LEVEL (*: VS BNCLVQ, +: VS CL-BNCLVQ)

.

Data set BNCLVQ cl-BNCLVQ w BNCLVQ MetaCost-LVQ

ErrHC

abalone 0.376 (0.113) 0.357 (0.194) 0.343 (0.209) 0.338 (0.196)

glass 0.589 (0.329) 0.509 (0.234) 0.532 (0.334) 0.727 (0.380)

segmentation 0.077 (0.088) 0.053 (0.053) 0.063 (0.064) 0.254 (0.216)

iris 0.066 (0.041) 0.072 (0.044) 0.064 (0.039)+ 0.050 (0.044)

xaa 0.661 (0.140) 0.621 (0.147) 0.641 (0.206) 0.526 (0.308)

wine 0.066 (0.052) 0.056 (0.052) 0.063 (0.056) 0.043 (0.042)

zoo 0.092 (0.129) 0.082 (0.124) 0.092 (0.129) 0.178 (0.188)

soybean 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.040 (0.052)

ecoli 0.401 (0.425) 0.402 (0.424) 0.406 (0.422) 0.406 (0.381)

yeast 0.523 (0.184) 0.542 (0.249)* 0.553 (0.236) 0.581 (0.324)

mean 0.2850 0.2696 0.2757 0.3143

Err

abalone 0.390 (0.003) 0.429 (0.040) 0.429 (0.037) 0.440 (0.013)

glass 0.332 (0.018) 0.367 (0.028) 0.377 (0.030) 0.427 (0.048)

segmentation 0.152 (0.015) 0.154 (0.024) 0.151 (0.021) 0.261 (0.025)

iris 0.053 (0.013) 0.059 (0.009) 0.054 (0.009) 0.042 (0.011)

xaa 0.484 (0.047) 0.542 (0.057) 0.550 (0.049) 0.532 (0.036)

wine 0.054 (0.013) 0.058 (0.019) 0.056 (0.011) 0.042 (0.006)

zoo 0.049 (0.012) 0.048 (0.011) 0.056 (0.015) 0.121 (0.024)

soybean 0.007 (0.024) 0.000 (0.000) 0.000 (0.000) 0.023 (0.007)

ecoli 0.165 (0.018) 0.195 (0.025) 0.194 (0.031) 0.211 (0.015)

yeast 0.459 (0.010) 0.523 (0.025) 0.521 (0.029) 0.527 (0.025)

mean 0.2164 0.2377 0.2388 0.2628

EMC

abalone 2.074 (0.558) 1.797 (0.620)* 1.775 (0.673)* 2.017 (0.819)

glass 1.750 (0.316) 1.613 (0.335) 1.597 (0.289)*+ 1.820 (0.194)

segmentation 0.815 (0.127) 0.749 (0.173) 0.698 (0.156) 1.291 (0.237)

iris 0.284 (0.135) 0.292 (0.115) 0.263 (0.100) 0.188 (0.069)

xaa 2.593 (0.551) 2.529 (0.611) 2.464 (0.529) 2.598 (0.496)

wine 0.284 (0.105) 0.258 (0.106) 0.256 (0.091) 0.199 (0.061)

zoo 0.244 (0.095) 0.221 (0.082) 0.271 (0.114) 0.524 (0.102)

soybean 0.045 (0.141) 0.000 (0.000) 0.000 (0.000) 0.102 (0.063)

ecoli 0.795 (0.154) 0.805 (0.155) 0.787 (0.169) 0.893 (0.248)

yeast 2.449 (0.311) 2.227 (0.331) 2.200 (0.322)* 2.658 (0.477)

mean 1.1333 1.049 1.0312 1.2289

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

357

The superiority of wBNCLVQ is apparent compared to the

competing algorithms. It achieves the best results on 9 out of

13 data sets (10 are significantly better than BNCLVQ) in

terms of ErrHC, and on 7 data sets in terms of EMC (7 are

significantly better than BNCLVQ). Compared with

cl-NCLVQ, wBNCLVQ performs better on almost all binary

data sets except hepatitis and credit (Even on the two data

sets, the inferiority is not significant). The inferiority is

probably due to the inadequate iteration number or

inappropriate initial point of prototypes. Nevertheless, it

conforms that the weighted prototype learning methodology

is effective on improving the performance in the case of

non-uniform cost matrix. Although MetaCost-LVQ obtains

the best EMC on transfusion, german, and echocardiogram,

the average performance is the worst out of three cost-related

variants due to the high standard deviation.

Table V compares the results on multi-class data sets. The

wBNCLVQ algorithm is still the best one. It achieves the best

value of EMC on 7 out of 10 data sets. However, the

superiority is not so significant as that on binary-class data.

The mean reduction is only 3% in terms of ErrHC and 9% in

terms of EMC. The relative poor performance is probably

due to the information loss during the conversion from cost

matrix to class weights. This result is consistent with what

was reported in [19].

The robustness property of these LVQ variants is shown in

Fig. 1 and Fig. 2. The distribution of relative performance on

each data set is plotted in stack. Regarding binary class data

sets, wBNCLVQ has the best robustness on both ErrHC and

EMC. Regarding multi-class data, wBNCLVQ have

comparable robustness as cl-BNCLVQ.

Fig. 1 Robustness comparison on ErrHC.

Fig. 2 Robustness comparison on EMC.

V. CONCLUSION

In this paper, we implement a weighted BNCLVQ

algorithm embedding instance weight to induce a

cost-sensitive LVQ classifier. With well-defined weight

assignment, the cost matrix can be incorporated in the

training and labeling of the LVQ model. The main

contribution of the proposed research is to extend the

algorithms of LVQ family to classify data with hybrid types

when the costs of errors are different. Results on a number of

real-world data confirm the presented weighted LVQ

algorithm is effective on both binary-class and multi-class

data. The weighted methodology is easily applied to other

LVQ variants, such as GLVQ and GRLVQ, which is one of

the research topic in future work. As disclosed in the

experiments, performance on multi-class data sets is inferior

to that on binary class data sets. Future work will be focused

on better incorporating the cost matrix in the representation

of instance weight. In the present work, only the constant

misclassification cost is considered, however, other more

complicated types of cost is of interest to classification.

Besides, the comparative study with other cost-sensitive

learning methods is needed to validate the effectiveness of

the proposed approaches.

REFERENCES

[1] H. Pao, S. Chang, and Y. Lee, “Model trees for classification of hybrid

data types,” Intelligent Data Engineering and Automated Learning

(IDEAL), LNCS, 2005, pp. 32–39.

[2] N. Chen, and N. C. Marques, “Extending learning vector quantization

for classifying data with categorical values,” In J. Filipe, A. Fred, and B.

Sharp Eds. Communications in Computer and Information Science

(CCIS), 67, Springer, 2010, pp. 124–136.

[3] T. Kohonen, Self-Organizing Maps. Springer Verlag, Third edition,

2001.

[4] A. Sato and K. Yamada, “Generalized learning vector quantization,” In

G. Tesauro, D. Touretzky, T. Leen Eds. Advances in Neural

Information Processing Systems, 7, MIT Press, 1995, pp. 423–429.

[5] T. Bojer, and B. Hammer, “Relevance determination in learning vector

quantization,” In European Symposium on Artificial Neural Networks,

2001, pp. 271–276.

[6] B. Hammer, and T. Villmann, “Generalized relevance learning vector

quantization, ” Neural Networks, 15, 2002, pp. 1059–1068.

[7] A. Qin, and P. Suganthan, “Initialization insensitive LVQ algorithm

based on cost-function adaptation, ” Pattern Recognition, 38(5), 2005,

pp. 773–776.

[8] C. E. Pedreira, “Learning vector quantization with training data

selection,” IEEE Transaction on Pattern Analysis and Machine

Intelligence, 28(1), 2006, pp. 157–162.

[9] J. C. Neves, and A. Vieira, “Improving bankruptcy prediction with

hidden layer learning vector quantization,” European Accounting

Review, 15(2), 2006, pp. 253–271.

[10] M. Strickert, U. Seiffert, N. Sreenivasulu, W. Weschke, T. Villmann,

and B. Hammer, “Generalized relevance LVQ (GRLVQ) with

correlation measures for gene expression analysis,” Neurocomputing,

69(7-9), 2006, pp. 651–659.

[11] P. Hajek, and V. Olej, “Municipal creditworthiness modelling by

Kohonen's self-organizing feature maps and LVQ neural networks,” In

L. Rutkowski, R. Tadeusiewicz, L. A. Zadeh, J. M. Zurada Eds.

Artificial Intelligence and Soft Computing (ICAISC), LNCS, 5097,

2008, pp. 52–61.

[12] E. Cuevas, D. Zaldivar, and M. Perez, “LVQ neural networks applied

to face segmentation,” Intelligent Automation and Soft Computing,

15(3), 2009, pp. 439–450.

[13] M. A. Boyacioglu, Y. Kara, and O. K. Baykan, “Predicting bank

financial failures using neural networks, support vector machines and

multivariate statistical methods: a comparative analysis in the sample

of savings deposit insurance fund (SDIF) transferred banks in Turkey,”

Expert Systems with Applications, 36, 2009, pp. 3355–3366.

[14] P. D. Turney, “Types of cost in inductive concept leaning,” Workshop

on Cost-Sensitive Learning at 7th International Conference on

Machine Learning, California, 2000.

[15] T. Eitrich, A. Kless, C. Druska, W. Meyer, and J. Grotendorst,

“Classification of highly unbalanced CYP450 data of drugs using cost

sensitive machine learning techniques,” J. Chem. Inf. Model. 47, 2007,

pp. 92–103.

[16] Z. H. Zhou, and X.Y. Liu, “Training cost-sensitive neural networks

with methods addressing the class imbalance problem,” IEEE

Transactions on Knowledge and Data Engineering, 18(1), 2006, pp.

63–77.

[17] Y. M. Sun, M. S. Kamela, A. K. C. Wong, and Y. Wang,

“Cost-sensitive boosting for classification of imbalanced data,” Pattern

Recognition, 40, 2007, pp. 3358–3378.

[18] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J Stone,

Classification and regression trees, Belmont, CA: Wadsworth, 1984.

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

358

[19] K. M. Ting, “An instance-weighting method to induce cost-sensitive

trees,” IEEE Transactions on Knowledge and Data Engineering, 14(3),

2002, pp. 659–665.

[20] S. Nanda, and P. Pendharkar, “Linear models for minimizing

misclassification costs in bankruptcy prediction,” Int J Intell Syst

Account Finance Manage, 10, 2001, pp. 155–168.

[21] N. H. Vo, and Y. Won, “Classification of unbalanced medical data with

weighted regularized least squares,” Frontiers in the Convergence of

Bioscience and Information Technologies, 2007, pp. 347–352.

[22] N. Chen, A. Vieira, J. Duarte, B. Ribeiro, and J. C. Neves, “Weighted

learning vector quantization to cost-sensitive learning,” In K.

Diamantaras, W. Duch, and L. S. Iliadis Eds. ICANN, Part III, LNCS,

6354, 2010, pp. 277–281.

[23] T. Lee, and I. Chen, “A two-stage hybrid credit scoring model using

artificial neural networks and multivariate adaptive regression splines,”

Expert Systems with Applications, 28(4), 2005, pp. 743–752.

[24] P. Pendharkar, and S. Nanda, “A misclassification cost-minimizing

evolutionary–-neural classification approach,” Naval Research

Logistics, 53(5), 2006, pp. 432–447.

[25] B. Zadrozny, and C. Elkan, “Learning and making decisions when

costs and probabilities are both unknown,” In Proceedings of the

Seventh International Conference on Knowledge Discovery and Data

Mining, San Francisco, CA, 2001, pp. 204–213.

[26] J. Zheng, “Cost-sensitive boosting neural networks for software defect

prediction,” Expert Systems with Applications, 37(6), 2010, pp.

4537–4543.

[27]

N. Chen, A. Vieira, and J. Duarte, “Cost-sensitive LVQ for bankruptcy

prediction: an empirical study,” In W. Li, J. Zhou Eds. 2nd IEEE

International Conference on Computer Science and Information

Technology, Beijing, 2009, pp. 115–119.

[28]

P. C. Pendharkar, “A threshold varying bisection method for cost

sensitive learning in neural networks,” Expert Systems with

Applications 34, 2008, pp. 1456–1464.

[29]

P. Domingos, “MetaCost: a general method for making classifiers

cost-sensitive,” In Proceedings of 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, United States,

1999, pp. 155–164.

[30]

J. S. Hamaker, and L. Boggess, “Non-euclidean distance measures in

AIRS, an artificial immune classification system,” In Proceedings of

the 2004 Congress of Evolutionary Computation, 2004, pp.

1067–1073.

[31]

A. Asuncion, and D. J.

Newman.

UCI Machine Learning Repository.

Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[32]

WEKA Classification Algorithms. Available:

http://wekaclassalgos.sourceforge.net

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

359

