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Abstract—Learning vector quantization (LVQ) is an effective 

network model to solve classification tasks in a wide variety of 

real world applications. The usage of LVQ has been extended to 

hybrid data type. In this paper, we propose a weighted version 

of BNCLVQ, which incorporates the cost matrix into prototype 

learning and labeling by means of instance weighting. 

Empirical results show the superiority of proposed algorithm 

over original NBCLVQ and some variants on both binary-class 

data and multi-class data. 

 
Index Terms—Classification, Cost-sensitive learning, 

Learning vector quantization, Hybrid data type.  

 

I. INTRODUCTION 

The misclassification cost plays an important role in 

decision making due to the fact that the costs of different 

errors are usually unequal. For example, in medical diagnosis 

misclassifying a life-threatening disease as healthy is much 

more serious than false alarm. In bankruptcy prediction, the 

missing prediction of a bankruptcy company will result in a 

higher loss than the opposite type of error. In software detect 

process, the misclassification of defect-prone modules 

usually incurs higher cost than that of not-detect-prone ones. 

This makes the classification cost occupy a unique position in 

the research of cost-sensitive learning. 

Many classification methods are able to handle certain 

type of data. For data with hybrid numeric and nominal 

features, a transformation procedure is the commonly used 

approach, but usually damages the nature of data [1]. As an 

extension of standard LVQ, BNCLVQ (Batch Numeric and 

Categorical Learning Vector Quantization) is able to classify 

hybrid numeric and categorical data [2]. In this paper we 

advance the usage of BNCLVQ to cost-sensitive learning. 

We present a weighted BNCLVQ algorithm (wBNCLVQ), 

integrating the instance weights which convey the cost of 

errors into the network learning and labeling. A number of 

data sets with both binary-class and multi-class are used in 

the experiments. The proposed algorithm is compared with 
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original BNCLVQ and some cost-sensitive implementations 

in terms of classification error and expected misclassification 

cost. Experimental results demonstrate that the proposed 

algorithm outperforms the competing algorithms on lowering 

misclassification cost and improving the robustness in 

different situations. The paper is organized as follows. In 

section II, an introduction study of LVQ and cost-sensitive 

learning is presented. In section III, the methodology of 

weighted BNCLVQ algorithm is explained. In section IV, the 

empirical study is reported. The contributions and future 

remarks are addressed in section V. 

 

II. RELATED WORK 

Classification is a supervised machine leaning method to 

separate the instances into predefined classes. It is usually 

performed in the manner that derives the inherent models 

from a training data set of previously labeled samples and 

predicts the class of new samples based on the learned model. 

In the literature, a large number of algorithms have been 

proposed to solve the classification tasks, such as decision 

tree, neural network, support vector machine, case-based 

reasoning, fuzzy logic, rough set, discriminant analysis, 

bayesian networks, hidden markov model, hybrid and 

ensemble approach. Meantime, the application of 

classification has covered almost all domains in the real 

world including image analysis, drug discovery, medical 

diagnosis, computer vision, speech and handwriting 

recognition, biometric identification, credit scoring, fraud 

detection etc. 

Learning vector quantization (LVQ) was invented by 

Kohonen as an improvement over labeled vector quantization. 

The main objective is to approximate the data distribution 

with a number of prototypes. Since its origination from 

LVQ1 to LVQ2, LVQ2.1, and LVQ3 [3], a lot of variants 

have been implemented to improve the convergence, 

diminish the errors, simplify the network processing and 

advance the usage. Some representative studies are as 

follows. Generalized LVQ (GLVQ) uses a stochastic 

gradient descent to minimize an explicit error function [4]. 

Concerning the limitation of Euclidian metric, the 

importance of input dimensions is adapted in distinction 

sensitive LVQ (DLVQ), or determined based on Hebbian 

learning in common with standard LVQ (RLVQ) [5] and 

generalized LVQ (GRLVQ) [6]. In an initialization 

insensitive LVQ [7], the commonly used nearest neighbor 

distance is substituted with harmonic average distance. In [8], 

a subset of points located in risk zones contributes to the 

learning of prototypes and consequently decreases the 

misclassification errors. In [2], a batch type LVQ algorithm 
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(BNCLVQ) is proposed for classifying data with hybrid 

numeric and nominal values. Nowadays, LVQ is widely 

applied in many domains, such as bankruptcy prediction [9], 

gene expression analysis [10], creditworthiness evaluation 

[11] and image segmentation [12]. It is reported to achieve 

comparable performance with other neural networks, support 

vector machines and multivariate statistical methods [13]. 

Cost-sensitive learning becomes a hot research topic in the 

recent study of classification. Many evidences have 

demonstrated the necessity of incorporating different types of 

cost into classification. Among them, the cost of 

misclassification error is the mostly concerned one. As 

indicated in [14], there are different categories of 

misclassification cost, e.g., constant error cost, conditional 

error cost on individual case, time, other instances or feature. 

The present-day research concentrates on the former, in 

which the instances belonging to a class have the same cost. 

The proposed algorithms in this paper are related to the 

class-dependent cost formalization. 

The so far studies on cost-sensitive learning mainly follow 

such methodologies as sampling, weighting and 

threshold-moving. The misclassification cost can be 

conveyed in the distribution of training data by means of the 

often-used sampling techniques, such as over-sampling and 

under-sampling. For example, over-sampling is applied to 

obtain sensitive and accurate support vector machine 

classifier on drug data [15]. Over-sampling duplicates the 

expensive examples artificially, but simultaneously increases 

the training time and leads to overfitting.  On the contrary, 

under-sampling discards inexpensive examples, which 

usually results in a general loss of information and potentially 

general rules [16]. These limitations can be ameliorated using 

intelligent sampling, which attempts to remove redundant 

inexpensive examples or generate new expensive examples 

by interpolation [17]. 

A widely applied method is introducing some weights into 

the underlying learning algorithms. The main issue is how to 

set appropriate value of the weights and adapt the learning 

methodology to specified weights. Regarding decision tree, 

the pioneer method may be the cost-sensitive tree induction 

employing the greedy divide-conquer algorithm [18]. The 

instance-weighting C4.5 decision tree assigns the samples of 

different classes with different weights proportional to the 

corresponding costs [19]. The cost matrix is incorporated into 

back-propagation neural network [20]. A cost-sensitive 

regularized least square algorithm uses weights to penalize 

different fractions of classes in medical diagnosis [21]. 

Weighting strategies are employed to introduce cost into the 

weight-updating of a boosting algorithm [17]. The 

weighted-instance approaches of online LVQ and batch LVQ 

are described in [22] and achieve comparable performance. 

Besides, some researchers pointed out that the cost-sensitive 

classification can be solved by an optimization procedure 

with well-defined objective functions for particular 

classifiers [23]. By modifying the objective functions, the 

cost is integrated into mathematical programming and 

genetic algorithm based neural network [24]. 

Threshold-moving is a simple way to make a minimum 

error tree cost-sensitive. A new instance is assigned to a class 

with the minimal expected misclassification cost instead of 

the majority class in the leaf node [25]. It is noted that 

threshold-moving can be applied to classifiers with 

real-valued output, such as neural network and boosting 

method. The cost-relevant threshold moves the classification 

output of an Adaboost algorithm towards the costly class [26]. 

In [27], the cost matrix is integrated with basic LVQ 

algorithm using sampling and threshold-moving. The matter 

at issue is how to select a desired threshold. For this purpose, 

the knowledge to the specific classifier and application 

domain is required. A bisection method is developed to detect 

the optimal threshold that minimizes the overall 

misclassification cost of neural networks [28]. 

 

III. WEIGHTED BNCLVQ ALGORITHM 

Weighting is applicable to learning methods which can 

accept weights of samples. If there are two classes and the 

cost of a false positive is  times larger than the cost of a false 

negative, a widely accepted assignment is to put a weight of  

on each negative training example. Afterwards, the learning 

algorithm is applied as usual. Although LVQ does not accept 

weighted input directly, it can be implemented by a simple 

way. In this section, we adapt the BNCLVQ algorithm to 

embedding the instance weights into the learning and 

labeling of the network. 

A. Weight Assignment 

Normally, the cost of misclassification error can be 

represented by a matrix, in which the value C(i, j), i, j=1,..., k 

indicates the cost of error that classifying an instance to class 

j, while it belongs to class i in fact. In this study, we simplify 

the cost matrix to a cost vector: {Si | i=1,..., k}, where Si 

means the cost of misclassifying a class i instance to others. 

The conversion is intuitional by summing the values of the 

cost matrix by rows followed by normalization so that the 

minimal cost is one. An example of cost matrix with 4 classes 

is shown in Table I, in which the last column gives the cost 

vector. 
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 Let N be the total number of instances in the training data, 

Nj the number of class j instances. The weight of an instance 

x belonging to class i can be calculated from the cost vector, 

so that the costly class instances have high weights and the 

sum of all instance weights is N [19]. Through this 

transformation, the weights are distributed to all instances 

proportional to the corresponding class cost. 


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TABLE I AN EXAMPLE OF COST MATRIX AND COST VECTOR.  

 

Actual 

class 

Predicted class  

Si C1 C2 C3 C4 

C1 0 9 4 10 2.56 

C2 3 0 2 4 1 

C3 8 3 0 8 2.11 

C4 1 8 4 0 1.44 
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B. Cost-based Labeling Principle 

The traditional majority voting labeling principle aims to 

minimize the classification errors. Differently, the cost-based 

labeling principle tries to minimize the expected cost of 

prediction with the consideration of cost matrix. Let P(i|x) 

(i=1,..., k) denote the probability of an instance x in class i, 

thereby the conditional risk R(i|x) implies the expected cost 

due to the prediction of x as i. As described in [29], it can be 

calculated as:  

 


ji
ijCxjPxi ),()|()|(R                    (3) 

Thus, the optimal label for x is the one with the minimal 

expected cost:  

)|(min i xiR                                       (4) 

The cost-sensitive labeling principle has been applied in 

various classification methods. Regarding LVQ, P(i|mp) 

denotes the probability of neuron mp in class i, and can be 

estimated as the percent of the class i instances belonging to 

Vp (the Voronoi set of the neuron mp), then the expected cost 

of each class is calculated, and mp is labeled by the class with 

the minimal expected cost. The cost-based labeling is 

described as follows. 

1) Calculate the probability for each class i: 

 

||/|)(|)|(P ppp VixClassVxmi   

 

2) Calculate the expected cost of each class: 

 

 


ji pp ijCmjPmi ),()|()|(R  

 

3) Label the neuron as the class with minimal expected 

cost: 

 

)|(min)Class(m ip pmiR  

 

C. Weighted-instance LVQ Training 

As a prototype representation based on nearest neighbor 

approach, the distance metric plays an important role to LVQ. 

Some non-Euclidean distance metrics to classification 

methods are discussed in [30]. In BNCLVQ [2], the distance 

is based on squared Euclidean distance on numeric features 

and mismatch measurement on nominal features (0 for match 

and 1 for no match). The distance is able to enhance the 

accuracy of standard LVQ, especially on data sets with the 

mixture of data types. 

We propose a weighted learning vector quantization 

approaches for hybrid data types (wBNCLVQ). The instance 

weights are incorporated into the updating of prototypes so 

that instances with higher weights have more influence on 

neurons. 

In one batch round, the Voronoi set of each map neuron is 

computed by projecting the input data to its best matching 

unit (BMU), then the prototype is updated according to 

learning laws depending on class label and feature type. For 

numeric attribute j, the new value can be calculated in the 

following. 
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The function sip denotes the class agreement between mp 

and xi, having the value 1 if they are in the same class, and -1, 

otherwise. 
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For a nominal attribute j with the values {
jn

jj  ,...,1
}, a 

set of counters keeps the frequencies of variant values, taking 

the instance weights into account. 
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Function v(y| COND) is y when COND holds and zero 

otherwise. This way, 
jpj nrm ,...,1),,F( r

j  represents a 

weighted vote regarding each value 
r

j . For nominal 

features, the best category ),F(max c r

j1 pj

n

r mj  is the new 

value for the next iteration. The learning rule on nominal 

variables is formulated as follows. 
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The description of wBNCLVQ algorithm is shown as 

follows. The difference from BNCLVQ is that the instance 

weights are incorporated into the updating of prototypes. 

Moreover, the cost-based labeling is used to minimize the 

expected cost rather than classification error.  

N: number of instances; m: number of map neurons; k: 

number of attributes; mp: the prototype of neuron p; 

Class(mp): class label of neuron p; : maximal number of 

iteration; (x): weight of instance x 

1) For p = 1,…, m Initialize mp and Class(mp) 

2) t = 0 

3) For p = 1,…, m Vp =  

4) For i = 1,…, N 

a) Input xi to the map 

b) For j = 1,…, m Calculate d(xi, mj) 

c) ),(minargm jp ji mxd // Project xi to mp 

d) }{Vp ip xV  // Add xi to the Voronoi set of mp 

 

e) 










otherwise

xClassmClassif ip

1

)()(1
sip

 

5) For p = 1,…, m 

a) For j = 1,…, k 

 If Fj is numeric then 
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// Update numeric attribute 

   If Fj is nominal then 

For r = 1,…, nj 
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// Update nominal attribute 

b) For each Class  i in Vp 

 

 ||/|)(|)|(P ppp VixClassVxmi   
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c) )|(min)Class(m ip pmiR  

d)  

6) t = t + 1 

7) Goto (3) until t =  

 

IV. EMPIRICAL ANALYSIS 

 
TABLE II DATA SET DESCRIPTION (NO: NOMINAL FEATURES, NU: NUMERIC 

FEATURES).  

Data set #instan

ce 

 # 

No  

 # 

Nu  

# 

class  

distribution 

diane  1200   0  30   2  600/600 

transfusion  748  0  4   2  570/178 

wpbc  198   0 33   2  157/47 

hepatitis  155  19   6  2  85/70 

haberman  336  0  3   2  255/81 

ionosphere  351 0   34   2  126/225 

diabetes  768 0  8   2  500/268 

horse  368  7 15  2  232/136 

german  1000  21   3  2  700/300 

echocardiogram  131  1   6   2 88 /43 

hypothyroid  3163 18   7   2  151/3012 

lungcancer  32  56   0  2  9/23 

credit  690  8   5   2  307/383 

abalone  4177  1   7   3  147/1323/1447 

iris  150  0   4   3  50/50/50 

wine  178  0  13  3 59/71/48 

soybean  47  35  0 4 10/10/10/17 

xaa  94  0   18   4  28/20/26/20 

glass  241  0   9   6  70/76/17/13/9/29 

segmentation  210  0   19   7  30/30/30/30/30/30/30 

zoo  101  15   1 7  41/20/5/13/4/8/10 

ecoli  336  0   7    8  143/77/2/35/20/5/52/2 

yeast  1484  0   8   10  244/429/463/163/51/44/35

/30/20/5 

A. Data Sets 

In the empirical study, we select 22 data sets from UCI 

Machine Learning Repository [31], in which 12 data sets 

have binary-class, and the rest have multi-class. The 

properties of the data sets are characterized in Table II. These 

data sets are chosen from different domains varying in 

number of classes, features, and instances. Additionally, a 

real-world data set diane is used, containing information on a 

wide set of financial ratios shown in Table III. The data used 

in this study is a balanced sample composed of 600 distressed 

companies and 600 healthy ones. 

B. Performance Evaluation 

The performance of classification is usually evaluated by 

contingency matrix, in which each row represents the real 

class and each column represents the predicted class. The 

overall error rate (Err) is the most commonly used criterion 

for performance evaluation. As the cost should be taken into 

consideration in the evaluation, we also use the error rate of 

the highest costly class (ErrHC) and the expected 

misclassification cost (EMC) on all instances. Let M(i,j) be 

the value of the row i and column j in the contingency matrix. 

The aforementioned criteria are defined as follows. 

 

 
TABLE III FINANCIAL RATIOS OF DIANE COMPANIES. 

Variable  Description  

x1   Number of Employees Last available year 

x2   Capital Employed / Fixed Assets 

x3   Financial Debt / Capital Employed  

x4   Depreciation of Tangible Assets  

x5   Working Capital / Current Assets 

x6   Current ratio  

x7   Liquidity Ratio  

x8   Stock Turnover days  

x9   Collection Period days  

x10   Credit Period days 

x11   Turnover per Employee in EUR  

x12   Interest / Turnover  

x13   Debt Period days   

x14   Financial Debt / Equity  

x15   Financial Debt / Cashflow  

x16   Cashflow / Turnover  

x17   Working Capital / Turnover days  

x18   Net Current Assets/Turnover days  

x19   Working Capital Needs / Turnover  

X20 Export 

x21   Added Value per Employee in EUR  

x22   Total Assets Turnover 

x23   Operating Profit Margin    

x24   Net Profit Margin   

x25   Added Value Margin   

x26   Part of Employees  

x27   Return on Capital Employed  

x28   Return on Total Assets   

x29   EBIT Margin   

x30   EBITDA Margin 
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The robustness property denotes the performance of an 

algorithm on different data sets [16]. In this study, we 

investigate the robustness of LVQ algorithms in terms of the 

error of highest costly class and expected misclassification 

cost. Let D1,..., Dn be the data sets used in experiments, A1,..., 

Am the compared algorithms, vi,j denote the performance of 

algorithm Ai on data Dj. For a particular data set, the maximal 

value among all algorithms represents the worst performance, 

then the relative performance bi,j is the absolute value divided 

by the maximum. The robustness of the algorithm is 

represented by summing up the relative performance over all 

data sets. A smaller value of indicates the more robust of a 

particular algorithm. 
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TABLE IV BINARY CLASS DATA SETS: PERFORMANCE COMPARISON AND SIGNIFICANCE TEST AT 5% LEVEL (*: VS BNCLVQ, +: VS CL-BNCLVQ). 

 

Data set BNCLVQ cl-BNCLVQ w BNCLVQ MetaCost-LVQ 

ErrHC 

diane          0.110 (0.046)  0.099 (0.043)  0.078 (0.046)*+  0.108 (0.091) 

transfusion    0.236 (0.235)  0.144 (0.165)*  0.144 (0.184)*  0.151 (0.296) 

wpbc           0.499 (0.247)  0.380 (0.244)  0.405 (0.244)*  0.576 (0.386) 

hepatitis      0.301 (0.176)  0.211 (0.186)  0.197 (0.169)*  0.274 (0.177) 

haberman      0.466 (0.335)  0.362 (0.317)*  0.409 (0.389)  0.434 (0.433) 

ionosphere     0.133 (0.136)  0.110 (0.119)*  0.114 (0.129)*  0.153 (0.161) 

diabetes       0.303 (0.152)  0.198 (0.159)*  0.193 (0.143)*  0.284 (0.260) 

horse          0.272 (0.112)  0.217 (0.097)*  0.186 (0.088)*+  0.266 (0.139) 

german         0.374 (0.377)  0.312 (0.306)*  0.252 (0.252)*+  0.259 (0.251) 

echocardiogram 0.294 (0.135)  0.234 (0.157)*  0.200 (0.158)*  0.183 (0.232) 

hypothyoid     0.353 (0.303)  0.344 (0.296)  0.297 (0.264)+  0.597 (0.514) 

lungcancer     0.396 (0.300)  0.369 (0.323)  0.298 (0.322)  0.231 (0.107) 

credit         0.148 (0.010)  0.100 (0.023)*  0.114 (0.024) *  0.196 (0.048) 

mean  0.2989  0.2369    0.2223   0.2857 

Err 

diane          0.120 (0.003)  0.134 (0.036)  0.122 (0.010)  0.151 (0.010) 

transfusion    0.258 (0.011)  0.257 (0.038)  0.248 (0.024)  0.232 (0.007) 

wpbc           0.267 (0.026)  0.328 (0.088)  0.275 (0.060)  0.250 (0.010) 

hepatitis      0.321 (0.028)  0.345 (0.070)  0.345 (0.039)  0.314 (0.021) 

haberman       0.310 (0.015)  0.316 (0.037)  0.289 (0.025)  0.263 (0.006) 

ionosphere     0.121 (0.017)  0.145 (0.026)  0.125 (0.021)  0.144 (0.007) 

diabetes       0.265 (0.008)  0.314 (0.077)  0.297 (0.046)  0.274 (0.013) 

horse          0.196 (0.008)  0.214 (0.043)  0.231 (0.030)  0.215 (0.016) 

german         0.300 (0.011)  0.298 (0.008)  0.303 (0.018)  0.264 (0.007) 

echocardiogram 0.354 (0.037)  0.368 (0.025)  0.348 (0.028)  0.315 (0.012) 

hypothyoid     0.030 (0.001)  0.031 (0.002)  0.034 (0.007)  0.048 (0.000) 

lungcancer     0.263 (0.060)  0.273 (0.072)  0.287 (0.076)  0.244 (0.051) 

credit 0.147 (0.005)  0.162 (0.016)  0.162 (0.014)  0.260 (0.023) 

mean  0.2272 0.2450   0.2359  0.2289 

EMC 

diane          0.679 (0.216)  0.669 (0.206)  0.617(0.216)*+  0.808 (0.271) 

transfusion    1.353 (0.432)  1.139 (0.420)*  1.096 (0.396)*  1.044(0.415) 

wpbc           1.533 (0.417)  1.527 (0.617)  1.361 (0.451)+  1.517 (0.606) 

hepatitis      1.573 (0.480)  1.386 (0.493)  1.407 (0.503)  1.619 (0.661) 

haberman       1.704 (0.639)  1.562 (0.841)  1.447 (0.777)*+ 1.350 (0.779) 

ionosphere     0.634 (0.288)  0.646 (0.275)  0.599 (0.251)  0.754 (0.330) 

diabetes       1.402 (0.520)  1.178 (0.604)*  1.152 (0.563)*  1.334 (0.671) 

horse          1.032 (0.312)  0.935 (0.265)*  0.926 (0.284)*  1.060 (0.346) 

german         1.782 (0.652)  1.662 (0.731)*  1.626 (0.735)* 1.478 (0.596) 

echocardiogram 1.804 (0.693)  1.626 (0.849)  1.525 (0.640)*  1.279 (0.732) 

hypothyoid     0.165 (0.082)  0.165 (0.079)  0.154 (0.069)  0.266 (0.146) 

lungcancer     1.288 (0.414)  1.203 (0.422)  1.072 (0.484)  1.135 (0.171) 

credit         0.746 (0.248)  0.680 (0.238)*  0.707 (0.255)  1.176 (0.414) 

mean   1.2073 1.1059 1.0530 1.14 

 

C. Experimental Strategy 

In the comparable study, we use the BNCLVQ as the 

baseline. One competing algorithm is cl-BNCLVQ 

(BNCLVQ in common with cost-based labeling) is used to 

detect the effectiveness of weighted prototype learning. 

Another is MetaCost [29], a well-known cost-sensitive 

method which provides a general framework to any classifier 
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learning method by changing the label of each training 

example to its optimal label and then learning a classifier that 

predicts these new labels. We use the Weka implementation 

of MetaCost combined with LVQ (MetaCost-LVQ) [32] or 

the purpose of comparison. The experiments are performed 

in the following strategy: 

1) The cost matrix is generated so that the diagonal values 

are 0 and others are random number taken from [1, 10], 

then the weight of instances is calculated. 

2) The data set is divided randomly into ten folds for 

cross-validation. In each trial one fold is used as test data, 

and the remaining is used for training. 

3) For each generated training data set, the LVQ 

approaches are applied resulting a learned, labeled map. 

4) The test data is input to the resultant map, and the class is 

predicted via the nearest principle. 

5) After the cross-validation is finished, the contingency 

matrix is obtained by summarizing the real class and 

predicted class for the entire data. Then the highest 

costly class error, overall error and expected 

misclassification cost are calculated from the 

contingency matrix and cost matrix. 

6) The process is repeated 10 times with randomly 

generated cost matrix, and the average results are 

calculated. 

7) The results are summarized over all data sets and 

different algorithms. 

D. Experimental Results 

The performance of aforementioned four algorithms, 

namely BNCLVQ, cl-BNCLVQ, wBNCLVQ and 

MetaCost-LVQ is shown. For each data set, the average 

results and standard deviation over different cost matrix 

configurations are given. The significance test is performed 

on 5% level between cl-BNCLVQ and BNCLVQ, 

wBNCLVQ and BNCLVQ, wBNCLVQ and cl-BNCLVQ 

respectively. 

Table IV summarizes the results on binary class data sets. 

As expected, the three cost-related variants are indeed 

capable to lower the highest costly class error rate with a 

slight degradation on the overall error rate, and decrease the 

expected cost. Concerning the average performance, 

cl-BNCLVQ achieves a 20% reduction on ErrHC and a 8% 

reduction on EMC, wBNCLVQ achieves a 26% and 13% 

reduction on ErrHC and EMC respectively. The 

CostMeta-LVQ results in a small improvement with 4% and 

6%

 

TABLE V MULTI-CLASS DATA SETS: PERFORMANCE COMPARISON AND SIGNIFICANCE TEST AT 5% LEVEL (*: VS BNCLVQ, +: VS CL-BNCLVQ) 

.

Data set BNCLVQ cl-BNCLVQ w BNCLVQ MetaCost-LVQ 

ErrHC 

abalone      0.376 (0.113)  0.357 (0.194)  0.343 (0.209)  0.338 (0.196)  

glass        0.589 (0.329)  0.509 (0.234)  0.532 (0.334)  0.727 (0.380) 

segmentation 0.077 (0.088)  0.053 (0.053)  0.063 (0.064)  0.254 (0.216) 

iris         0.066 (0.041)  0.072 (0.044)  0.064 (0.039)+  0.050 (0.044) 

xaa          0.661 (0.140)  0.621 (0.147)  0.641 (0.206)  0.526 (0.308) 

wine         0.066 (0.052)  0.056 (0.052)  0.063 (0.056)  0.043 (0.042) 

zoo          0.092 (0.129)  0.082 (0.124)  0.092 (0.129)  0.178 (0.188) 

soybean      0.000 (0.000)  0.000 (0.000)  0.000 (0.000)  0.040 (0.052) 

ecoli        0.401 (0.425)  0.402 (0.424)  0.406 (0.422)  0.406 (0.381) 

yeast        0.523 (0.184)  0.542 (0.249)*  0.553 (0.236)  0.581 (0.324) 

mean   0.2850   0.2696   0.2757   0.3143 

Err 

abalone      0.390 (0.003)  0.429 (0.040)  0.429 (0.037)  0.440 (0.013) 

glass        0.332 (0.018)  0.367 (0.028)  0.377 (0.030)  0.427 (0.048) 

segmentation 0.152 (0.015)  0.154 (0.024)  0.151 (0.021)  0.261 (0.025) 

iris         0.053 (0.013)  0.059 (0.009)  0.054 (0.009)  0.042 (0.011) 

xaa          0.484 (0.047)  0.542 (0.057)  0.550 (0.049)  0.532 (0.036) 

wine         0.054 (0.013)  0.058 (0.019)  0.056 (0.011)  0.042 (0.006) 

zoo          0.049 (0.012)  0.048 (0.011)  0.056 (0.015)  0.121 (0.024) 

soybean      0.007 (0.024)  0.000 (0.000)  0.000 (0.000)  0.023 (0.007) 

ecoli        0.165 (0.018)  0.195 (0.025)  0.194 (0.031)  0.211 (0.015) 

yeast        0.459 (0.010)  0.523 (0.025)  0.521 (0.029)  0.527 (0.025) 

mean   0.2164  0.2377  0.2388   0.2628 

EMC 

abalone      2.074 (0.558)  1.797 (0.620)*  1.775 (0.673)*  2.017 (0.819) 

glass        1.750 (0.316)  1.613 (0.335) 1.597 (0.289)*+  1.820 (0.194) 

segmentation 0.815 (0.127)  0.749 (0.173)  0.698 (0.156)  1.291 (0.237) 

iris         0.284 (0.135)  0.292 (0.115)  0.263 (0.100)  0.188 (0.069) 

xaa          2.593 (0.551)  2.529 (0.611)  2.464 (0.529)  2.598 (0.496) 

wine         0.284 (0.105)  0.258 (0.106)  0.256 (0.091)  0.199 (0.061) 

zoo          0.244 (0.095)  0.221 (0.082)  0.271 (0.114)  0.524 (0.102) 

soybean      0.045 (0.141)  0.000 (0.000)  0.000 (0.000)  0.102 (0.063) 

ecoli        0.795 (0.154)  0.805 (0.155)  0.787 (0.169)  0.893 (0.248) 

yeast        2.449 (0.311)  2.227 (0.331)  2.200 (0.322)*  2.658 (0.477) 

mean   1.1333   1.049   1.0312   1.2289 
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The superiority of wBNCLVQ is apparent compared to the 

competing algorithms. It achieves the best results on 9 out of 

13 data sets (10 are significantly better than BNCLVQ) in 

terms of ErrHC, and on 7 data sets in terms of EMC (7 are 

significantly better than BNCLVQ). Compared with 

cl-NCLVQ, wBNCLVQ performs better on almost all binary 

data sets except hepatitis and credit (Even on the two data 

sets, the inferiority is not significant). The inferiority is 

probably due to the inadequate iteration number or 

inappropriate initial point of prototypes. Nevertheless, it 

conforms that the weighted prototype learning methodology 

is effective on improving the performance in the case of 

non-uniform cost matrix. Although MetaCost-LVQ obtains 

the best EMC on transfusion, german, and echocardiogram, 

the average performance is the worst out of three cost-related 

variants due to the high standard deviation. 

Table V compares the results on multi-class data sets. The 

wBNCLVQ algorithm is still the best one. It achieves the best 

value of EMC on 7 out of 10 data sets. However, the 

superiority is not so significant as that on binary-class data. 

The mean reduction is only 3% in terms of ErrHC and 9% in 

terms of EMC. The relative poor performance is probably 

due to the information loss during the conversion from cost 

matrix to class weights. This result is consistent with what 

was reported in [19]. 

The robustness property of these LVQ variants is shown in 

Fig. 1 and Fig. 2. The distribution of relative performance on 

each data set is plotted in stack. Regarding binary class data 

sets, wBNCLVQ has the best robustness on both ErrHC and 

EMC. Regarding multi-class data, wBNCLVQ have 

comparable robustness as cl-BNCLVQ. 

 

 
Fig. 1 Robustness comparison on ErrHC. 

 

 
Fig. 2 Robustness comparison on EMC. 

 

V. CONCLUSION 

In this paper, we implement a weighted BNCLVQ 

algorithm embedding instance weight to induce a 

cost-sensitive LVQ classifier. With well-defined weight 

assignment, the cost matrix can be incorporated in the 

training and labeling of the LVQ model. The main 

contribution of the proposed research is to extend the 

algorithms of LVQ family to classify data with hybrid types 

when the costs of errors are different. Results on a number of 

real-world data confirm the presented weighted LVQ 

algorithm is effective on both binary-class and multi-class 

data. The weighted methodology is easily applied to other 

LVQ variants, such as GLVQ and GRLVQ, which is one of 

the research topic in future work. As disclosed in the 

experiments, performance on multi-class data sets is inferior 

to that on binary class data sets. Future work will be focused 

on better incorporating the cost matrix in the representation 

of instance weight. In the present work, only the constant 

misclassification cost is considered, however, other more 

complicated types of cost is of interest to classification. 

Besides, the comparative study with other cost-sensitive 

learning methods is needed to validate the effectiveness of 

the proposed approaches. 
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