
International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

Abstract—Release planning involves decision making on

assigning features to sequence releases in incremental software
development. Having a good plan for new release can improve
the future of software. There are several release planning
methods and approaches for release planning and some of them
are based on modification and changing the delivered releases
or re-planning of the product.

It means based on old releases and features utilized in them,
new releases are generated and companies start to re-plan for
improving their old product.

In this paper, we are going to investigate release planning
methods that are based on re-planning for a new release. We
evaluated and investigated two release planning methods,
PARSEQ and Lightweight, and compared the processing
models that are based on re-planning.

Index Terms—Re-planning; requirement engineering;
software release

I. INTRODUCTION
Planning and re-planning software projects involves

selecting activities according to organisational policies,
project goals and contexts, deciding how to affect the
activities, and dealing with uncertainty in activity
outputs[1].Release planning for incremental software
development assigns features to releases in a way that most
important technical, resource, risk and budget constraints are
met[2].

Therefore, having a good plan for seeing all of the aspects
is one of the most important worries in software companies
and in software development process. Since environments
are different the software conditions and the problems are
different too. There are several approaches in solving the
problem of release planning. We can improve our release by
focusing on different aspects.

Penny [3] proposes is a high level approach to RP in which
the estimation of effort required for developing a project
features needs a certain confidence level. The planning game
in extreme programming is about the same problem in [4].
Ruhe in [5] proposed a model called EVOLVE* in which a
synergy between the computational intelligence and human
decision maker is combined .

Anton in [6] emphasized that without a plan it is more
likely that complex software projects fail.Although there are
many methods and approaches in release planning but still
there are complexities with the decision making process of
selecting features in delivering new release. Therefore having
a suitable plan and proper decision for software development

Manuscript received August 30, 2010

is one of the challenges.
Re-planning involves generating a new plan to fix

execution failures[7]. Past works are not always complete
and sometimes there are some problems and new demands
and they need improvement. Sometimes we see from
re-investigation of the current plan that some changes are
needed because of the new demands and we have to make a
new plan.

Software development in large projects needs a series of
different releases based on stakeholder’s demands and it can
be based on re-planning for releases.

So, understanding the concept of re-planning in release is
one of the topics that can be discussed further.

Based on [8] two key ideas are of interest in the
re-planning effort. The first idea points out that all process
activities aim at achieving some desired goals in the project.
The second idea is that of prediction uncertainty. One of the
most problematic activities within the software engineering
area is project planning and it always includes some
uncertainty[9]. It means that undoubtedly after developing a
new product we need to modify and change to improve it.

In this paper we are going to investigate and analyse the
planning methods PARSEQ and Lightweight, for new
release in software development and these are based on older
release or re-planning how new release can be generated by
these two methods.

II. NEED FOR CHANGES IN SOFTWARE DEVELOPMENT
In reactive handling of change requests, the simplest

strategy is to freeze change requests [10]. In this approach
companies do not accept new requirements until they start
new implementation of a release. In fact they keep all of the
requirements and once they want to have a new release they
implement them. This approach is not acceptable in today’s
market because some of the demands are urgent and without
these changes the product of the system may fail.

Software change is very important because with changes
companies can meet many new requirements and this way
satisfaction can be targeted. Also systems need to change in
response to the new requirements in the market both to
survive and be able to compete. A new requirement may
include a modification in the system errors with an
improvement in its performance or adding new features to the
system. It is impossible to produce systems of any size which
do not need to be changed. Once software is put into use, new
requirements emerge and existing requirements change as the
business running that software changes [11].

Therefore, it can be said changes are the main vital parts of

Comparison and Investigation of Re-planning
Methods for Software Releases

Amir Seyed Danesh

328

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

software and having a software without changes is
impossible. Many studies have been done on the importance
of categorizing changes to define processes for each
category.

Harker and Eason [12] proposed a classification to
distinguish between stable and volatile features (emergent,
consequential, mutable, adaptive and migration).

Then, different scenarios were identified, and for each
scenario the authors defined: a goal to be achieved, strategy
to be adopted, metric to be used and failure mode to be
avoided [13].there are a number of different strategies for
software change that can be include Software maintenance,
Architectural improvements .Changes for a software system
not only are important but also essential to be able to
compensate for the shortcomings in the older products.

All of this means that, after delivery, software systems
always evolve in response to demands for change, and
without investigation of new changes the system cannot be
complete and to create optimal release the question is what
should be changed and when ?

III. METHODS FOR RE-PLANNING SOFTWARE RELEASES
Although there are several methods for release planning

but here we are going to investigate and understand release
methods that are based on re-planning, PARSEQ and
Lightweight. This paper is an investigation of the process
model of these two methods that are very useful

A. Parseq Method
The idea behind PRSEQ method was first introduced by

Karlsson in [14]based on retrospective analysis.A
retrospective analysis is a way to look back at events that
have occurred and project managers use that to increase the
efficiency of projects. The retrospective analysis is
acknowledged as an important means for software process
improvement [15]. In this method, requirements are analyzed
again to select the best solutions for creating more efficient
releases in future. This means the aim of the method is to find
improvements for the release planning. This method is done
by a systematic analysis of requirements in previous releases;
that is why the investigation of the older releases is
important.

The method uses the requirements database as input and
assumes that all the requirements either implemented or not
are available in the database. Each step in PARSEQ is
divided into four steps [14] as shown in Fig 1.

Figure 1: PARSEQ method Activities[14]

Step 1: Requirements sampling

Some requirements are selected from the database to be
studied. Some of them are selected in the coming release, and

the rest will be postponed to the following releases. The
purpose of the sampling is to compose a reasonably small but
representative sub-set of requirements, since the complete
database may be too large to be investigated in the
post-release analysis [15].

The requirements sampling can be performed in a number
of ways, such as concentrating on a special market segment
or on a different part of the product or on particularly difficult
decisions [14].

The output of the requirements sampling is the number of
requirements that need to be reinvestigated.
Step2: Re-estimation of cost and value

In this step, sample requirements taken from the first step
are used as the input to estimate their cost and value or the
other aspects. By using, for example, a cost-value
prioritisation approach, it is possible to see the trade-off of
the value to the users and the cost of development in a so
called cost-value diagram [16]. To do so, as it was visible in
the tool itself, prioritization is redone.

In this stage, there are three techniques used for
prioritization (figure 1), AHP, planning game and 100
techniques. For example The planning game is a technique
that used to prioritize the work based on three requirements
categories (high, medium, and low).
Step3: Root cause analysis

The purpose of the root cause analyses is to
understand on what grounds release-planning decisions
were made [14].In this step, discussing the previous releases
and decisions can show which decisions have been right or
wrong. Actually, in this step the diagram that is made of
selected aspects is analyzed. By discussing different areas of
the diagram, we can decide which requirements can be
implemented in the first release, which ones should be
considered in the next releases, and which ones do not need
to be implemented at all. Two questions that can be asked in
this step are why these requirements are implemented too
early or why they are not implemented yet.
Step4: Elicitation of improvements

The output of the root cause analysis step is used in this
step for elicitation of improvement proposal. This step is
more on understanding the strengths and weaknesses of a
selection of requirements for each release.

A number of questions can assist to keep focus on
improvement possibilities [14]. First, how we can improve
our decision-making. Next question is what is needed to
make a better decision. Changes which can be made to the
current practices to improve requirements selection in the
future is another question to be discussed.

B. Lightweight Method
Lightweight re-planning was first introduced by AlBourae

in [17] and emphasized on re-planning by adding new
features. In this method they assume they have implemented
features and need to add new features to improve their
software or product.

In fact, in the process model old features are compared
with newly added ones by using Analytical hierarchy
process.

In Incremental software development changes are very
important and new change requests arrive during the process.

329

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

These changes imply the modification of some features or the
addition of new ones.

The main goal of the proposed Lightweight Re-plan model
is to develop a new product plan that achieves higher
stakeholder satisfaction given a limited capacity of time and
resources[17]. The Lightweight character reflects the fact
that re-planning consumes a considerable amount of the
Product Manager's time and effort [18].

Figure 2 shows a lightweight re-plan process model that is
describing main release re-planning activities and their input
and output.

In this model three main roles are considered, including:
Product manager, who is responsible for the whole
development process; Stakeholders, which include any team
member who are concerned with the product development;
and the supporting environment, which facilitates the
achievement of the processes goals.

Figure 2: lightweight method Activities[17]

This method includes five steps that are designed as

following[17]:
1) New features

When the developments are going to start, the new features
must be selected for impemlation. The change requests
received are added to the old sets of features and directed to
be categorized by the feature categorization process.

A set of features that were assigned F(i)= (f1, f2, .., fn)
New added features ∆F (i) = (fn+1, fn+2 …, fn+m)

We have to re-schedule the next release to be delivered.
2) Feature categorization:

When a new feature is going to be investigated for next
release based on Higgins's et al work [19], change requests
should be categorized to avoid duplicated features. So, the
needs for categorization of features in this step must be
performed.
3) Stakeholder’s voting

Stakeholders are people that are effective in development
process. They include different levels such as managers,
developers or end users. In the previous release planning
process, the relative weight of importance of the
stakeholders are considered in an objective function to
maximize their preferences. Available resource
constraints are also observed in this process. In [12]
you can learn more about the process and how it is
conducted.

4) Resource estimation:
The aim is to determine the likely usage of effort and Time

for each feature for the next release and the main goal is to
maintain the effort and time available as we re-plan so that
the new re-planned release does not exceed the capacity
available.
5) The Analytical Hierarchy Process (AHP)

Analytical Hierarchy Process (AHP) is a prioritization
method based on [20]. In this step, after elicitation of experts’
preferences in a formalized manner, we use a pair-wise
comparison technique.

IV. ANALYSING THE METHODS
From the studies done on these methods and the analysis of

the processing models, first we must know that changes are
needed as part of process improvement and when a new
release is created in order to consider the changes .

As you have seen before, the frist model of release planing
that is based on re-planing was PARSEQ that is based on
going back and re-invasgtaion and re-estimation of
requimensts. It means this kind of re-planing is based on
re-estimation of the database of requiements that are waiting
for implementation.

As you see in the figure 3 there are three prioritization
approaches was utilized in this method. After selecting the
target requirements it needs to be prioritized. For each
approach you can select your aspect and for sample value,
cost and risk is shown

Figure 3: requirements priotization in PARSEQ

After applying the appropriate prioritization approach, the

system should come out with a reasonable solution. For
example, it would be recommended to implement feasture2
within release 3 as it is not necessary (in that specific time).

In the Lightweight method, the main goal is to study all the
system’s new features and estimate all these features in order
to add them to the final product. However, in this method, we
need first to have software with fully implemented features,
and we improve our software by adding some new features
based on new received requirements. The improvement of
the release depends on the stakeholders’ satisfaction;
therefore we need to investigate all the new requirements
based on the stakeholders voting in order to re-estimate the
new features .AHP is the only prioritization technique that is
used in this method. In this method, time and effort
estimation is very important for the re-planning process. On
the other hand, the PARSEQ recommended list of solutions
that can help software developers to improve their
undertaken release. These solutions come by using three
different prioritization techniques as mentioned earlier.

330

International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011
ISSN: 1793-8201

V. COLCLUSTION
This paper intended to investigate the current re-planning

methods .There are several release planning methods that
have been defined to develop better software and improve the
quality of the new releases. Some of these methods are based
on older releases and decision making of previous releases.
The paper aims to compare all these different kinds of
methods. In this content, we have reviewed two re-planning
methods in details.

REFERENCES
[1] Diana Kirk and S. MacDonell, "A Simulation Framework to Support

Software Project (Re)Planning," presented at the 35th Euromicro
Conference on Software Engineering and Advanced Applications,
Patras 2009.

[2] G. Ruhe, "Software Release Planning," in HANDBOOK OF
SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING.
vol. 3 ed: Chang, S. K. (Ed.): World Scientific publishing, 2005.

[3] D. A. Penny, "An estimation-based management framework for
enhanced maintenance in commercial software products," in In
Proceedings ICSM International Conference on Software Maintenance,
2002, pp. 122-130.

[4] B. A. Nejmeh and I. Thomas, "Business-driven product planning using
feature vectors and increments," Software, IEEE, vol. 19, pp. 34-42,
2002.

[5] Günther Ruhe and A. Ngo, "Hybrid Intelligence in Software Release
Planning," International Journal of Hybrid Intelligent Systems vol. 1,
pp. 99-110, 2004.

[6] A. I. Anton, "Successful software projects need requirements
planning," Software, IEEE, vol. 20, pp. 44, 46, 2003.

[7] William Cushing and S. Kambhampati, "Replanning: a New
Perspective," in In Proc. of ICAPS, 2005.

[8] D. Kirk and S. MacDonell, "A Simulation Framework to Support
Software Project (Re)Planning," in Software Engineering and
Advanced Applications, 2009. SEAA '09. 35th Euromicro Conference
on, 2009, pp. 285-292.

[9] M. C. Ohlsson and C. Wohlin, "An empirical study of effort estimation
during project execution," in Software Metrics Symposium, 1999.
Proceedings. Sixth International, 1999, pp. 91-98.

[10] K. E. Wiegers. (2nd ed. 2003). Software requirements : practical
techniques for gathering and managing requirements throughout the
product development cycle. Redmond, Wash.:Microsoft Press. xix,
516.

[11] I. Sommerville, "Software Change," in Software Engineering, ed:
http://www.comp.lancs.ac.uk/computing/resources/IanS/SE7/Electron
icSupplements/SWChange.pdf, 2000.

[12] S. D. P. Harker, et al., "The change and evolution of requirements as a
challenge to the practice of software engineering," in Requirements
Engineering, 1993., Proceedings of IEEE International Symposium on,
1993, pp. 266-272.

[13] W. Lam and V. Shankararaman, "Requirements change: a dissection of
management issues," in EUROMICRO Conference, 1999. Proceedings.
25th, 1999, pp. 244-251 vol.2.

[14] Lena Karlsson, et al., "Post-Release Analysis of Requirements
Selection Quality - An Industrial Case Study," in 9th Int. Workshop on
Requirements Engineering: Foundation for Software Quality,, Velden,
Austria, 2003.

[15] L. K. and and B. Regnell, "Introducing tool support for retrospective
analysis of release planning decisions," presented at the 7th
International Conference on Product Focused Software Process.
Improvement (PROFES'06), Netherlands, 2006.

[16] J. Karlsson and K. Ryan, "A cost-value approach for prioritizing
requirements," Software, IEEE, vol. 14, pp. 67-74, 1997.

[17] T. Albourae, et al., "Lightweight Replanning of Software Product
Releases," in Software Product Management, 2006. IWSPM '06.
International Workshop on, 2006, pp. 27-34.

[18] Joseph Momoh and G. Ruhe, "Release planning process improvement -
an industrial case study," SOFTWARE PROCESS IMPROVEMENT
AND PRACTICE, vol. 11, pp. 295-307, 2006.

[19] S. A. Higgins, et al., "Managing requirements for medical IT products,"
Software, IEEE, vol. 20, pp. 26-33, 2003.

[20] T. L. Saaty, The analytic hierarchy process. New York: McGraw-Hill,
1980.

Amir Seyed Danesh is a PhD student at
University of Malaya, Kuala Lumpur, Malaysia
since 2008 in the department of Software
Engineering. He worked as software engineer for
five years in Iran. He received the M.Sc degree
from Shahid Beheshti University, Tehran, Iran in
Software Engineering in 2006. He is interested in
Requirements Engineering, Software Release

Planning, methods and Requirements Prioritization. He also was part-time
lectured at University of Guilan in 2009, Rasht, Iran.

331

