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 Abstract—By weakening the bigger and strengthening the 
smaller, gaussianization can enhance the gaussianity of samples 
and improve performance of subsequent correlation test. 
Firstly, an explicit definition on gaussianizing filter and a 
practical method to evaluate the filtering performance are 
given. Secondly, two typical gaussianizing filters are proposed 
and studied. One is so-called U-filter, based on the probability 
density function and its derivate. The other is so-called G-filter, 
based on the cumulative distribution function and its inverse. 
Instances with lake trial data are illustrated. Finally, two 
applications, one in spectrum estimation and the other in Rao 
test, are discussed. 
 

Index Terms—Gaussianization; Gaussian mixture; Non- 
Gaussian detection 
 

I. INTRODUCTION 
In the classic detection theory, interference back- ground 

is often assumed as Gaussian. All the conventional active 
detections, such as match filter, correlation test and 
likelihood ratio test, just adopt this Gaussian assumption [1]. 
As widely known, statistical characteristics of the “true” 
Gaussian process can be described fully just with the first 
moment (i.e. the mean μ ) and the second moment (i.e. the 
variance 2σ ) [2]. So the test problem could be simplified the 
furthest – the match filter and the general match filter (a 
match filter succeeding to a prewhitener) are the optimal 
detectors of deterministic signals in either white or colored 
Gaussian background respectively [3]. Unfortunately, not all 
the cases in practice can adopt this simple assumption. The 
probability distribution of some interference backgrounds, 
such as reverberation in sonar [4] and clutter in radar [5], has a 
heavy tail because of its strong correlation with the 
transmitting pulse. This kind of background is no-Gaussian. 
If it is still modeled as Gaussian stochastic process in test 
problem, the detecting performance would be poor. This is 
to say, the conventional match filter and general match filter 
are no more optimal detector in non-Gaussian background. 
In recent years, with developments of high-power 
transmitting technology, the Gaussian assumption for 
background is more and more impertinent. It is very 
pressing to build a new high-performance detector to test 
signal in non- Gaussian background. 

A typical idea with three procedures is as followed. 
Firstly, a non-Gaussian model, such as Gaussian mixture [6], 
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Class-A [7], KA-distribution [8], K-distribu- tion [9] and so on, 
is adopted to fit the probability density function (PDF) of 
interference background. Secondly, a gaussianizing filter is 
set up based on PDF parameters estimation and used to 
gaussianize the background. This seems very similar to the 
prewhitening module which converting the colored 
background to the white. In fact, these two modules, 
gaussianization and prewhitening, are often going along 
mutually. When the background was filtered to be Gaussian 
and white, the subsequent match filter would be the optimal 
detector of signal. Therefore, the final step just is, to bring 
these filtering results into the frame of classic match filter or 
correlation detection. For written convenience, we called 
this type of detection “gaussianizing test” which maybe has 
both gaussianizing and prewhitening modules. The Rao 
efficient score test (viz. REST) [6] of weak signal in colored 
non-Gaussian background is such a gaussianizing test. 

In brief, on the one hand, the gaussianizing test can get 
high performance because of its full utilization of 
non-Gaussian statistical information of background. On the 
other hand, it can be easily set up because of its frame 
-consistency with classic test. Obviously, gaussianization is 
one of the key techniques in gaussianizing test. So it is the 
most important and urgent task to build a high-performance 
gaussianizing filter based on accurate non-Gaussian 
modeling of interference background. In this paper, we 
would like to set up two typical kinds of gaussianizing 
filters, viz. U-filter and G-filter so-called. This paper is 
organized as followed: Section II gives an explicit definition 
on gaussianizing filter and a practical criterion on filter 
performance evaluation. Section III and IV study U-filter 
and G-filter in detail, respectively. Section V shows two 
applications of gaussianization, one in spectrum estimation, 
the other in REST. Section VI gives a conclusion on 
gaussianization. 

 

II. DEFINITION AND PERFORMANCE EVALUATION 
“Gaussianizing filter” – this name comes from not 

structures but functions. Strictly speaking, the structure of a 
gaussianization module is not always consonant with that of 
a true filter. However, for convenience, we still call it 
“filter”. A processing module which has the function – no 
matter what distribution the input submits to, the output’s 
distribution must be (or very close to) Gaussian – is 
generally called gaussianizing filter. Obviously, 
gaussianizing filter is not Gaussian filter which is just a 
digital frequency filter with a Gaussian pre-window [10]. 
Gaussianizing filtering is also different to the Gaussian 
sampling of Monte-Carlo methods [11], even though the 
former may utilize some knowledge of the latter. Gaussian 
sampling is just concern about how to generate a Gaussian 
process from some non- Gaussian sources whereas 
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gaussianizing filter is interested in how to turn non-Gaussian 
process into Gaussian process with useful information 
lossless in so far as possible. 

No matter how to realize in details, gaussianizing filter 
should depend on the non-Gaussian PDF parameters. Its 
typical practical block diagram is as shown in Fig.1 where 
ĝ  denotes the estimation of PDF parameters.  

 

Parameters Estimation 
for PDF Model 

Gaussianizing Filter Input x 

O
utput y 

ĝ

 
Figure 1. Block diagram of gaussianizing filter 

According to actual demands, the non-Gaussian PDF 
model in Fig.1 can be chosen from Gaussian mixture, Class 
A, KA-distribution, K-distribution and so on. The exact 
components of ĝ  might vary with the PDF model chosen.  
There may be different estimating approaches for different 
ĝ . However, intuitively for engineering applications, the 
maximum likelihood estimation (MLE) may be the first 
choose in general. Unfortunately, since being more 
complicated than the Gaussian, MLE of non-Gaussian PDF 
is often hard to solve. Some alternatives are widely studied, 
such as penalized maximum likelihood estimation (PMLE) 
[12], expectation-maximization iteration (EM) [13], indirect 
least squares estimation for cumulant generating function 
(CGF) [14] and so on. In this paper, we’d like to use EM 
because of its good versatility and high efficiency. 

Compared to the Gaussian, non-Gaussian process has 
wide dynamic range. Therefore, gaussianizing filter must 
have the function of weakening the big and strengthening 
the small (For convenience, this function is abbreviated to 
WBSS) in order to enhance the gaussianity of samples. 
Typical responding curves of gaussianizing filter are as 
shown in Fig.2. It can be seen that if only inflection points 
and curvatures are set accurately, WBSS would be reached. 

 
U-filter 
G-filter 

 
Figure 2. Typical responding curves of gaussianizing filter 

How is gaussianization performance evaluated? It is can 
be imagined intuitively that, no matter what gaussianity the 
input process has, gaussianity of the output process could 
not be strong enough. So the performance evaluation of 
gaussianizing filter becomes the gaussianity test of the 
output process – high gaussianity indicates high filtering 
performance. Modern signal processing has told us that the 
obvious differences between Gaussian and non-Gaussian 
processes focus on moments and cumulants beyond 3rd order 
[2]. Based on this knowledge, some well-rounded parametric 
approaches to test gaussianity have been set up, such as 
Jarque-Bera test, Lilliefors test, Shapiro-Wilk test, 

Anderson-Darling test, Kolmogorov-Smirnov test and so on. 
All these approaches reach a statistic value finally and then 
compare it with a preset threshold under a preset confidence 
coefficient to make a decision of being Gaussian against 
being non- Gaussian. If the confidence coefficient and 
threshold aren’t set correctly, misjudgments would be 
reached. Moreover, their results are either “yes” or “no”, 
which is not in favor of evaluating in quantity measurement. 
Therefore, these approaches are neither convenient nor 
intuitionistic for gaussianizing filter performance evaluation. 
A graphical approach named quartile- quartile plot (Q-Q 
plot, viz. normal probability plot) [15] can avoid these 
disadvantages. In the following text, we’ll show how to use 
Q-Q plot to test gaussianity with an instance. 

Fig.3 is a Q-Q plot instance. Originally, the horizontal 
axis of Q-Q plot is normal order statistic medians while the 
vertical axis is ordered response values. Now, for 
observation convenience, they are mapped to sorted samples 
and probability values respectively. The thick line composed 
of “+” indicates current process whereas the thin straight 
line indicates the theoretical normal distribution. If they are 
coincident, the process is Gaussian. Otherwise, it is 
non-Gaussian. Departures of thick line from thin line 
indicate departures from normality. Obviously, process in 
Fig.3 is non-Gaussian strongly. In conclusion, using Q-Q 
plot to evaluate gaussianizing filter performance, we wish 
the two lines in Q-Q plot of output are coincident enough no 
matter how dispersed they are before gaussianized. 

 
Figure 3. Q-Q plot instance of process 

In the next sections, we’ll study two typical gaussianizing 
filters: U-filter and G-filter. For speaking convenience, a 
concrete non-Gaussian PDF model must be chosen. We 
choose the 2nd order zero-mean Gaussian mixture (ZMGM2) 
in (1) which is a pure mathematical model with concise 
structure and compact parameters.  

)()()1()( ufufuf IB ⋅+−= εε       (1) 

Here, 2 2 2( ) (1/ 2 )exp{ /(2 )}B B Bf u uπσ σ= −  can describe 

statistical property of noises in background, where 2
Bσ  is 

much smaller, while 2 2 2( ) (1/ 2 )exp{ /(2 )}I I If u uπσ σ= −  can 
describe statistical property of impulses in background (such 
as reverberation, clutter and so on), where 2

Iσ  is much 
bigger. Obviously, ( )Bf u  and ( )If u  are PDFs of two 

zero-mean normal distributions, (0, 2
Bσ ) and (0, 2

Iσ ), 
respectively. ε  is so- called mixture parameter. By a very 
few parameters, i.e. 2 2[ , , ]T

B Iε σ σ=g , being adjusted, a very 
large quantity of background PDFs can be fit perfectly. 
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III. APPROACH I: U-FILTER 
U in (2) is firstly introduced in [16] [17] as a weighted 

function for autoregressive (AR) parameter estimation. 
However, through deeply theoretical analysis and large 
quantities of simulational and experimental tests, we 
confirm that it has relative independence and integrality, and 
can be used as a gaussianizing filter individually. We call it 
U-filter. 

ˆ ˆ ˆ( | ) '( | ) ( | )U u g f u g f u g= −         (2) 
As we know, if ( )f u , the PDF of a process u, is a 

campanulate curve as the thin solid line in Fig.4, its derivate, 
'( ) /f u df du= , would like the thin dot line. So their minus 

ratio U would like the thick solid line. Obviously, if we use 
U as a filter responding function, it can realize WBSS, i.e. U 
is the system responding function of a gaussianizing filter. 
We call such gaussianizing filter with responding function U 
in (2) as U-filter. 

As shown in Fig.4, U has two couples of inflexions, the 
pair near to origin being called the first class inflexions 
(inflexion-I) and the others being called the second class 
inflexions (inflexion-II). Let’s make an agreement on 
naming samples between the origin and inflexion-I as “small 
samples”, samples between inflexion-I and inflexion-II as 
“big samples”, and samples beyond inflexion-II as “extra 
samples” (The term “extra” means they are extra to 
Gaussian process). This is to say, inflexion-I is separation 
between big and small samples while inflexion-II is 
separation between big and extra samples. In general, small 
samples will be strengthened at a positive slope, big samples 
will be weakened at a negative slope, and extra samples will 
be restrained at a low positive slope. 

 

Inflexion-I

Inflexion-II 

 
Figure 4. Form of U-filter 

From (2) we can see that, just as mentioned in section II, 
it does be based on PDF parameter estimation 

2 2 ˆˆ ˆ ˆ[ , , ]B Ig σ σ ε= , to set up U-filter. According to different ĝ , 
i.e. different non-gaussianity, the shape of U will change as 
shown in Fig.5, where 2

Bσ  and ε  are fixed to 1 and 0.3 

respectively while 2
Iσ  varied with different non-gaussianity. 

 

2 1
0.3

Bσ
ε

=
=

2
Iσ

⎧
⎪= ⎨
⎪
⎩

U 

u  
Figure 5. U at different non-gaussianity 

If 2
Iσ =1, the process is Gaussian, and U is a straight line, 

so U-filter can’t change gaussianity of process. If 2
Iσ = 2.5, 

impulse’s statistic characteristics are a little different with 
noise’s, and U-filter will let small samples pass while 
weaken big and extra samples little. With increment of 2

Iσ , 
non-gaussianity increases step by step, and U-filter will 
restrain big and extra (especially) samples more and more. 

From Fig.5 we can also know that if PDF parameter 
estimation wasn’t accurate enough, U would not meet the 
real requirement of gaussianizing and U-filter’s performance 
would decrease. Therefore, perfect gaussianizing 
performance must be based on accurate fit of non-Gaussian 
PDF. 

Fig.6 is an example of U-filter with a segment of 
experimental data which were gotten in the Songhua Lake. 
A sinusoidal pulse was transmit and the echo was received. 
Through conventional beam forming, 31 beam-outs were 
gotten from received signals of 17 transducers on a uniform 
line array. 18.963 ms data of 16th beam (on the abeam 
direction) are extracted and used to test U-filter performance. 
Suppose u and v denoting the samples sequences before and 
after U-filter, respectively. 

 

2

2

ˆ 9.4664e-007
ˆ 9.4177e-006
ˆ 2.0620e-001

B

I

σ
σ

ε

=
=
=

Fitting value
Statistical value

PDF Curves 

Responding of U-filter 

 
(a) PDF modeling and responding of U-filter 

 The input: u 

The output: v 

 
(b) Waveforms of input and output 
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 Q-Q plot of the input u 

Q-Q plot of the output v 

 
(c) Q-Q plots of input and output 

Figure 6. U-filter for lake trail data processing 

The input u is shown in the upper part of (b) which has 
passed through both band-pass filter and prewhitening filter. 
Its Q-Q plot is the upper part of (c). ZMGM2 in (1) is used 
to fit the PDF of u. And the parameter estimation ĝ  is 
gotten by EM iterative algorithm, which is labeled on the 
upper part of (a) where the solid curve is the fitting PDF 
based on ĝ  while the dot curve is the statistical value by 
histogram. As can be seen, these two curves are coincident 
highly. This is to say, parameter estimation is very accurate. 
From estimation values we can see, 2

Iσ  is only about 10 
times of 2

Bσ  and ε  is only about 2, which account for 
weak non-Gaussianity of u. And this is also can be read 
from the Q-Q plot of u. The responding curve of U-filter is 
shown in the lower part of (a). According to the weak 
non-Gaussianity of u, U-filter’s restraint function on extra 
samples is not strong. At the same time, U-filter enlarges the 
small samples at a high positive slope. Reviewing the output 
v in the lower parts of (b), we can see that, the big samples 
have been restrained down while the small samples have 
been amplified up. Therefore, gaussianity of the output 
would be enhanced. This is also can be read from v’s Q-Q 
plot as shown in the lower parts of (c) where most of thick 
and thin lines are overlap. All of these show that U-filter 
reaches good performance for gaussianization. 

It must be pointed out that, U-filter’s restraint on extra 
samples is at a low positive slope. This is to say, through 
U-filter’s restraint, the bigger of extra samples is still bigger 
and the smaller is still smaller. The only change is their 
dynamic range become thinner. Compared with processing 
of big samples, this kind of restraint is weaker. In some wise, 
this mapping of extra samples with positive slope seems not 
appropriate. However, as just shown in Fig.5, it is only 
happened when the non-gaussianity of input is not quite 
strong. With increasing of input non-gaussianity, it would 
disappear. By the way, the main cause for thick line being 
apart from thin line at ends of v’s Q-Q plot in Fig.5(c) is not 
the unapt mapping for extra samples but the high strengthen 
for samples around the first class inflexions which is due to 
the nature of U-filter. Fortunately, ratio of the apart to the 
whole is small enough for regarding process like v as 
Gaussian. 

IV. APPROACH II: G-FILTER 
Scott Chen etc. propose a technique called 

"gaussianization" for high dimensional density estimation in 
[18] in the view of image processing. It must be pointed out 
that their “gaussianization” conception is not mine. We term 
gaussianization (and gaussianizing filter) as an approach to 
turning the non-Gaussian background into the Gaussian in 
active detection whereas they term it as a technique for high 
dimensional data modeling. However, their means of 
beginning directly from the normal cumulative distribution’s 
conversion to reduce dimensionality enlightens us to form 
another gaussianizing filter, i.e. G-filter. 

G-filter is a gaussianization based directly on the inverse 
of normal cumulative distribution function. Supposed CDF 
of the standard normal distribution (0,1) is Φ  as (3) 
with the inverse function 1−Φ ,  

21( ) exp[ ]
22

u xp u dx
π −∞

= Φ = −∫       (3) 

the process submitting to ( 2,μ σ ) has CDF as (4) 
2

2

1 ( )( ) exp[ ]
22

u xp u dxμ
σπσ −∞

−= Ψ = −∫    (4) 

with the inverse function 
1 1( ) ( )u p pσ μ− −= Ψ = Φ +  

Now, if u submits to ZMGM2 as (1), its CDF will be 
( ) (1 ) ( ) ( )B Ip F u u uε ε= = − Ψ + Ψ      (5) 

where BΨ  and IΨ  are CDFs of (0, 2
Bσ ) and (0, 

2
Iσ ), respectively. 
In some sense, gaussianizing filter can be looked upon 

turning process with CDF (5) into process with CDF (3) or 
(4). Based on this idea, for ZMGM2 process u with PDF as 
(1), a gaussianizing filter, so-called G-filter, can be set up as 
(6) 

1
2 2

ˆ( | ) (1 ) ( ) ( )
ˆ ˆB I

u uG u g ε ε σ
σ σ

− ⎧ ⎫= Φ − Φ + Φ⎨ ⎬
⎩ ⎭

  (6) 

where σ  is the output’s standard variance, which can be 
fixed to 1 (this is equal to turning non-Gaussian process into 
standard normal process). 

 

2
Iσ

⎧
⎪= ⎨
⎪
⎩

2 1
0.3

Bσ
ε

=
=

Inflexion-I 

 
Figure 7. G at different non-gaussianity 

G-filter’s responding curves at different non- gaussianity 
are shown in Fig.7, where just like in Fig.5 σ =1, 2

Bσ =1, 
ε =0.3 while 2

Iσ  is changed with different non-gaussianity. 
As we can see, the most distinct difference to U-filter is that 
G-filter has only one class inflexions, viz. inflexion-I, while 
no inflexion-II. This is to say, in G-filter, input samples are 
only divided into two classes – one is small samples, the 
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other is big samples, no such extra samples. And the 
secondary distinction to U-filter is that G-filter would not 
take a negative slope to map big samples. All the restraints 
are “gentle” so that, we can hope, there would be no obvious 
departures at ends of output’s Q-Q plot, in fact, which can 
be proved true in Fig.8 (c). Let’s continue to study Fig.7. If 

2
Iσ =1, as the same as U-filter in Fig.5, the process is 

Gaussian, and G is a beeline, so G-filter can’t change input 
gaussianity. With increase of 2

Iσ  step by step, non- 
gaussianity is enhanced, and the G curve becomes more and 
more flexural, the effect of inflexions become more and 
more prominent, in other words, G-filter’s restraint function 
to big samples becomes stronger and stronger. 

In the following texts, the lake trial data used in section 
III will be used to test the performance of G-filter. The 
results are shown in Fig.8. Just as be pointed out in section 
III, the gaussianity of this data segment is not quite high. 
Therefore, the responding curve of G-filter is not quite 
flexural, as shown in (a). Passing through this G-filter, small 
samples are amplified in more high degree than big samples 
being mapped. This leads to an equivalent gaussianizing 
result-WBSS. Actually, comparing the output v as shown in 
(b) with the input u as shown in Fig.6(b), we can see that 
small samples are strengthened more than big samples 
indeed. Seeing about Q-Q plot of v in (c), we can found, the 
thick line is highly coincident with the thin line. This is to 
say that the output has submitted to normal distribution and 
G-filter reaches perfect performance.  

 

 
(a) Responding curve of G-filter 

 

 
(b) Waveform of output v 

 

 
(c) Q-Q plot of output v 

Figure 8. G-filter for lake trail data processing 

V. APPLICATIONS OF GAUSSIANIZATION 
In this section, we’ll illustrate two typical applications of 

gaussianizing filter in active signal detection. One is in AR 
power spectrum estimation which is the key procedure in 
prewhitening colored background. The other is in the 
building of REST after prewhitenning. 

A. Gaussianization in AR parameter estimation 
As we know, for Gaussian process, the least squares 

estimation (LSE) of AR parameter is equal to its maximum 
likelihood estimation (MLE) which is a superior efficient 
estimation [19]. However, for non-Gaussian process, the 
efficiency of LSE might at a big discount because of the 
absence of statistical characteristics beyond the 2nd order. 
The MLE [20] based on non-Gaussian PDF is still the 
efficient estimation but it is non-linear seriously with very 
complicated structure and hard to be solved, so it is 
impracticable. If gaussianization is introduced into LSE, the 
efficiency of estimation would be enhanced higher than the 
conventional LSE while the complexity of solution would 
be decreased lower than the non-Gaussian MLE. The 
weighted least squares estimation (WLSE) [16] as (7) is such 
an excellent AR parameter estimation for colored 
non-Gaussian process, 

11 2 01 1 1 1

21 2 02 2 2 2

1 2 0

T T T T
P

T T T T
P

T T T T
PPP P P P

a
a

a

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=−
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

x Γx x Γx x Γx x Γx
x Γx x Γx x Γx x Γx

x Γx x Γx x Γx x Γx

   (7) 

where, 1 2[ , , , ]Tj P j P j N jx x x− + − + −=x  is the j-th segment of 

colored GM process 1 2[ , , , ]T
Nx x x=x  (N is the length of 

x, P is the order of AR model, every segment xj is a set of 
sequential N-P samples in x); 1 2[ , , , ]TPa a a=a  is AR 
parameter estimation; The weighted matrix inserted in two 
samples segments is Γ =diag{ 1ˆ( )Pu +Γ , 2ˆ( )Pu +Γ , , ˆ( )NuΓ } 
where every Γ  is a weight coefficient consisted of U-filter, 
just as shown in (8) 

ˆ ˆ ˆ( ) ( )n n nu U u uΓ =            (8) 
where ˆnu  is rough estimation of the driving gotten by 

the conventional LSE prewhitenning. 
Researches in [16] show that, because of introducing 

gaussianizing weight coefficients in, WLSE utilizes 
non-Gaussian information of the observed sequence. So its 
variance may be smaller than the conventional LSE ten 
times and very close to Crammer-Rao bound. This is to say, 
WLSE is an asymptotically efficient estimation for 
non-Gaussian AR parameter. 

B. Gaussianization in the construction of REST 

 
Figure 9. Block diagram of REST 

As we know, the general likelihood ratio test (GLRT) is 
the asymptotically optimal detection of deterministic signal 
in non-Gaussian background [16] and REST is its efficient 
approximation at small signal-noise-ratio which can get 
more high performance than the conventional match filter [6]. 
Moreover, REST is also representative that applies 
prewhitenning and gaussianizing techniques successfully. 
Using these modules, REST in [6] can be re-organized as 
Fig.9 where yn is the received sequence, sn is the copy signal 
sequence，H0 against H1 are the null against alternative 
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hypotheses for existence of echo.  
Note that the gaussianizing filter which may be either 

U-filter or G-filter is placed after the prewhitening filter. 
Besides this explicit utilization, gaussianization technology 
is also implicitly applied into the coupling estimation of 
PSD-AR and PDF-GM parameters which is shown as 
double ends of  in the figure in order to increase 
accuracy of parameter estimation. For example, WLSE in 
section A which utilizes U-filter is just a part of such 
coupling estimation. 

From applying researches in underwater acoustic signal 
processing, we find that, such REST can get more gain of 
the output signal-reverberation-ratio over 3dB than the 
conventional match filter for detection of weak signal in 
reverberation-restricted area. 

VI. CONCLUSION 
It is meaningful to compare these two kinds of 

gaussianizing filters –U-filter and G-filter. Both of them use 
WBSS technique to increase the gaussianity of process. 
However, U-filter has two couples of inflexions (inflexion-I 
and inflexion-II) and classifies samples into three sets (the 
small, big and extra samples), while G-filter has only one 
couples of inflexions (inflexion-I) and classifies samples 
into two sets (the small and big samples). To small samples, 
both of them takes a higher positive slope mapping. To big 
samples, U-filter takes a negative slope mapping while 
G-filter takes a lower positive slope mapping. To extra 
samples, the particular classification of U-filter, U-filter 
takes a lower positive slope mapping. Because of change of 
slope sign beside inflexion-I, one couple of extreme points 
will come forth in the output of U-filter. Note that these two 
extreme points are not at minimum or maximum of the input, 
it is very clear for U-filter’s output that the effect like 
“amplitude limiting” would appear in the waveform and 
departures of the two lines at ends would appear in the Q-Q 
plot. We call this “extreme point phenomena” (viz. EPP) 
which is special for U-filter whereas not belongs to G-filter.  

On the face of EPP, G-filter looks like better than U-filter. 
In fact, it is not exactly so. Note that the ultimate object of 
gaussianizing filter that we have mentioned above is to 
restrain impulses such as reverberation and clutter. Most of 
them appear as sticks in the waveform. G-filter without EPP 
cannot often weaken these sticks enough whereas U-filter 
with EPP can. Now, what we are concerned about mostly is 
that whether EPP can make a negative effect on 
gaussianizing test or not. Considering samples around 
inflexion-I are very few in the total, values in the output 
which close to the amplitude bounds would be also very few. 
Therefore, the succeeding correlation would not be 
influenced, and even though it does, the negative effect 
would also be very limited. 

Consequently, we can conclude that, both U-filter and 
G-filter can be competent for the task of gaussianization 
although their concrete mechanisms and wises to realize 
WBSS may have some differences. We can choose one of 
them to realize gaussianizing filter as circumstances demand 
in practice. Large quantities of simulational and 
experimental verifications make it clear that, through these 
gaussianizing filters integrated some proper prewhitenning 
filters, interference background would become (or very 

closed to) white Gaussian. And then, the succeeding 
correlation detection (or match filter) would do its best.  

At last, it is must be pointed out that, despite being 
studied in the view of active signal detection in this paper, 
the gaussianization is widely applied in other domains such 
as communication, image manipulation, speech signal 
processing and so on. 
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