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Abstract—A high order feed forward neural network 
architecture with optimum number of nodes is used for 
adaptive channel equalization in this paper.The replacement of 
summation at each node by multiplication results in more 
powerful mapping because of its capability of processing 
higher-order information from training data. The equalizer is 
tested on Rayleigh fading channel with BPSK signals. 
Performance comparison with recurrent radial basis function 
(RRBF) neural network show that the proposed equalizer 
provides compact architecture and satisfactory results in terms 
of bit error rate performance at various levels of signal to noise 
ratios for a Rayleigh fading channel. 

  
Index Terms—channel equalization, BPSK signal, 

multiplicative neuron, Rayleigh channel. 

I. INTRODUCTION 
As higher-level modulation becomes more desirable to 

cope with the need for high-speed data transmission, 
nonlinear distortion becomes a major factor, which limits the 
data carrying capacity of digital communication sytems. 
Thermal noise, impulse noise, cross talk and the nature of the 
channel itself distort the transmitted data in amplitude and 
phase due to which temporal spreading and consequent 
overlap of individual pulses occurs. The presence of inter 
symbol interference (ISI) in the system introduces errors in 
the decision device at the receiver output. Therefore, in the 
design of the transmitting and receiving filters, the objective 
is to minimize the effects of ISI, and thereby deliver the 
digital data to its destination with the smallest error possible. 
Equalizers modelled as adaptive digital filters which shape 
the receiver’s transfer function are ubiquitous in todays 
signal processing applications to combat ISI in dispersive 
channels. Adaptive filters achieve desired spectral 
characteristics of a signal by altering the filter coefficients 
and thereby the filter response according to a recursive 
optimization algorithm. Adaptive coefficients are required 
since some parameters of the desired processing operation 
(for instance, the properties of some noise signal) are not 
known in advance [1]. 

When significant noise is added to the transmitted signal 
linear boundaries are not optimal. The received signal at each 

 
Manuscript received may 15, 2009. 
Kavita burse is a research scholar in department of electronics and 

communication at maulana azad national institute of technology, bhopal, 
india. (phone: +919893141968; fax: +91-755-2734694).  

Dr. R.n. Yadav and dr. S.c. Shrivastava are with the department of 
electronics and communication, maulana azad national institute of 
technology, bhopal, india 

 

sample instant may be considered as a nonlinear function of 
the past values of the transmitted symbols. Further, since the 
nonlinear distortion varies with time and from place to place, 
effectively the overall channel response becomes a nonlinear 
dynamic mapping and the problem is tackled using 
classification techniques. As shown in a wide range of 
engineering applications, neural network (NN) has been 
successfully used for modeling complex nonlinear systems 
and forecasting signal with relatively simple architecture 
[2]-[4]. A wide range of neural architectures are available for 
modeling the nonlinear phenomenon of channel equalization. 
Feed forward networks like multilayer perceptron (MLP) 
which contain an input layer, an output layer and one or more 
hidden layers possess nonlinear processing capabilities and 
universal approximation characteristic and have been 
successfully implemented as channel equalizers [5]-[7]. The 
back propagation which is a supervised learning algorithm is 
used as a training algorithm [8]. These neuron models process 
the neural inputs using the summing operation.  

Recently, higher-order networks have drawn great 
attention from researchers due to their superior performance 
in nonlinear input-output mapping, function approximation, 
and memory storage capacity. Some examples are Product 
unit neural network (PUNN), Sigma-Pi network (SPN), 
Pi-Sigma network (PSN) etc. They allow neural networks to 
learn multiplicative interactions of arbitrary degree. 
Multiplication plays an important role in neural modeling of 
biological behavior and in computing and learning with 
artificial neural networks. The multiplicative neuron contains 
units which multiply their inputs instead of summing them 
and thus allow inputs to interact nonlinearly. Multiplicative 
node functions allow direct computing of polynomials inputs 
and approximate higher order functions with fewer nodes. 
Thus they may present better approximation capability and 
faster learning times than the classical MLP (which 
incorporate additive neurons only) because of their capability 
of processing higher-order information from training data 
[9]-[11]. The remaining of the paper is organized as follows: 
section II describes the basic adaptive channel equalizer 
scheme. In section III learning rule for multiplicative neuron 
is derived, section IV provides the simulation and results and 
section V concludes the paper. 

 

II. ADAPTIVE CHANNEL EQUALIZATION  
The block diagram of adaptive equalization in Fig. 1 is 

described as follows. The external time dependant inputs 
consist of the sum of the desired signal d(k), the channel 
nonlinearity NL and the interfering noise v(k). The adaptive 
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filter has a finite impulse response (FIR) structure. The 
impulse response is equal to the filter coefficients.The 
coefficients for a filter of order p are defined as 

 
 T

kkkk pwwww )](),.....,1(),0([=             (1) 
 

 
Fig. 1 Block diagram of an adaptive channel equalizer 

A predefined delayed version of the original signal forms 
the training sequence to provide reference points for the 
adaptation process. The criterion for optimization is a cost 
function or the error signal which is the difference between 
the desired and the estimated signal given by 

)()()( kykdke −=                (2) 
The desired signal is estimated by convolving the input signal 
with the impulse response expressed as 

)()( kxkd wT
k=                     (3) 

where, Tpkxkxkxkx )](),.....,1(),([)( −−= is the 
input signal vector. The filter coefficients are updated at 
every time instant as 

www kkk ∆+=
+1                    (4) 

wk∆ is a correction factor for the filter coefficients. 
The optimization algorithm can be linear or nonlinear. The 
adaptive neural network equalizer is implemented using a 
feed forward multiplicative neural network (MNN). Fig. 2 
shows the general architecture of the MNN. 

 
Fig. 2 Multiplicative neural network 

 
The transmitter sends a known training sequence to the 
receiver. The discrete-time BPSK signal sampled at a rate of 

f s
is generated by the following equation: 
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In order to obtain integral number of samples in each bit 

interval, the sampling frequency f s
 is equal to 

b
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where 

ms is an integer denoting number of samples per bit 

duration. If mk is defined as the discrete time sampled 

version of the binary sequence )(tm , equation 5 becomes 
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A sequence of 6000, equiprobable, BPSK complex valued 
symbol set, in which the input signal takes one of the values 
{-1, 1} is generated. In the absence of the noise the output 
signal occupies well-defined states of the BPSK signal 
constellation. 

 
Fig. 3 BPSK signal in complex plane 

When the signal is passed through the nonlinear channel, 
it becomes a stochastic random process. Decision boundaries 
can be formed in the observed pattern space to classify the 
observed vectors. For equalization, the adaptive filter is used 
in series with the unknown system on the test signal )(kd  by 
minimizing the squared difference between the adaptive 
equalizer output and the delayed test signal. The task of the 
equalizer is to set its coefficients in such a way that the output 

)(ky is a close estimate of the desired output )(kd . 
Depending on the value of the channel output vector, the 
equalizer tries to estimate an output, which is close to one of 
the transmitted values. The neural equalizer separately 
processes the real and imaginary part using the multiplicative, 
split complex, neural network model [12]-[13]. The block 
diagram of a channel equalizer using MNN is shown in Fig. 
4. 
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Fig. 4 Multiplicative neural network based channel equalizer 

The real R and imaginary I parts of the input signal are split 
as 

))(),(())(),(())(( 2121 txtxiftxtxftxF IIRR +=         

(7) 

Where, the input  )()()( 111 tixtxtx IR +=  

and  )()()( 222 tixtxtx IR +=                     (8) 

III. LEARNING RULE FOR MULTIPLICATIVE NEURON 

A bipolar sigmoidal activation function is used at each 
node. This kind of neuron itself looks complex in the first 
instance but when used to solve a complicated problem needs 
less number of parameters as compared to the existing 
conventional models. An error back propagation (BP) based 
learning using a norm-squared error function is described as 
follows [14]-[15].The symbols used are: 
N o

is the number of inputs in the input layer. 

n is the number of hidden layers in the FF network. 

N n
is the number of neurons in the nth hidden layer. 

K is the number of outputs in the output layer. 

j n
is the jth neuron of the nth hidden layer. 

yn

jn
is the output of the jth neuron of the nth hidden layer. 

ydk
is the desired output of the kth neuron in the output 

layer. 

y k
 is the actual output of the kth neuron in the output layer. 

w jnjn 1−
is the weight of the connection between jth  neuron 

of the (n-1)th layer and the jth  neuron of the nth layer. 

b jnjn 1−
is the bias of the connection between jth  neuron of the 

(n-1)th layer and the jth  neuron of the nth layer. 
The output of the jth neuron in the first hidden layer is given 
as 
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for  j1=1,2,….,N1 and x j0
represents jth input in the input 

layer and f(.) is the activation function defined by  
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The output of the jth neuron in the second hidden layer is 
given as 
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The output of the jth neuron in the nth hidden layer is given as: 
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The output of the kth neuron in the output layer is given as 
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A simple gradient descent rule, using a mean square error 
function is used for computation of weight update. 
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Where y p

k
and y p

dk
are the actual and desired values, 

respectively, of the output of the kth neuron for the pth pattern 
in the output layer. P is the number of training patterns in the 
input space. The weights are updated as below. Weights 
between output layer and the nth hidden layer are given by: 
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Weights between nth and (n-1) th  hidden layer 
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Similarly, we can write equations for weight change between 
the hidden layer 1 and the input layer. 
The weights and biases are updated as 
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IV. SIMULATION AND RESULTS  
To study the BER performances the equalizer structure 

was trained with 3000 iterations and tested over 10000 
samples. A fading channel is a communication channel that 
experiences fading due to multipath propagation. In wireless 
communications, the presence of reflectors in the 
environment surrounding the transmitter and receiver create 
multiple paths that the transmitted signal can traverse. At the 
receiver there is a superposition of these multipath signals 
which experience different attenuation, delay and phase shift. 
This can result in either constructive or destructive 
interference, amplifying or attenuating the signal power seen 
at the receiver. Strong destructive interference is known as 
deep fade. The fading process is characterised by a Rayleigh 
distribution for a non-line-of-sight path. The coherence time 
of the channel is related to a quantity known as Doppler 
spread of the channel. When the user or the reflectors in the 
environment are mobile, the user’s velocity causes a shift in 
the frequency of the signal transmitted along each signal path. 
The difference in Doppler shifts between different signal 
components contributing to a single fading channel tap is 
known as Doppler spread. The coherence time is inversely 
proportional to the Doppler spread and is given by: 

s
c D

T k=                     (22) 

where cT is the coherence time, sD is the Doppler spread and 
k   is constant taking on values between 0.25 to 0.5. In flat 
fading, the coherence bandwidth of the channel is larger than 
the bandwidth of the signal. Therefore, all frequency 
components of the signal will experience the same magnitude 
of fading. In our experiments we have simulated a 
frequency-flat ("single path") Rayleigh fading channel object 
as a linear FIR filter, with tap weights given by: 

hg k
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n
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The summation has one term for each major path. kτ is the 

set of path delays and T is the input sample period. 1N and 

2N are chosen so that )n(g is small. 1N determines the 

channel filter delay. kh is the set of complex path gains 
which are not correlated to each other. 
The received signal in Rayleigh fading channel is of the form: 

nhxy +=                     
(24) 

y is the received symbol, h is the complex scaling factor 
corresponding to Rayleigh multipath channel, x  is the BPSK 
transmitted symbol and n is the AWGN noise. The envelope 
power of Rayleigh channel model at a Doppler frequency of 
75Hz is shown in Fig. 5. 

 
Fig. 5 Rayleigh channel model at Doppler frequency of 75Hz 

The received noisy constellation at 15 dB SNR is plotted in 
Fig. 6.The signal after equalization is reclassified into values 
of 1 and -1 as shown in Fig. 7. 

  
Fig. 6 Received noisy constellation at 15dB SNR  

 
The BER for various SNR is plotted in Fig. 8 and compared 
with RRBF equalizer. The MNN equalizer gives better 
performance with optimum number of nodes with 6 neurons 
in the input layer, 6 neurons in the hidden layer and 2 neurons 
in the output layer as compared to RRBF network 
architecture which requires 500 neurons in the input layer, 
375 neurons in the hidden layer and 1 neuron in the output 
layer. We have used the tanh bipolar sigmoidal activation 
function as compared to the sigmoidal activation function at 
the nodes [16]. 



International Journal of Computer Theory and Engineering, Vol. 1, No. 4, October, 2009 
1793-8201   

 

 - 402 - 

 Fig. 7 Equalized signal samples at 15 dB SNR 

 
Fig. 8 BER vs. SNR for Rayleigh channel 

V. CONCLUSIONS 
A high order feed forward neural network equalizer with 

multiplicative neuron is proposed in this paper. Use of 
multiplication allows direct computing of polynomial inputs 
and approximation with fewer nodes. Performance 
comparison in terms of network architecture and BER 
performance suggest the better classification capability of the 
proposed MNN equalizer over RRBF. 
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