
International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 85 -

Abstract—In this paper, in order to best meet real-time

applications of 2-dimensional discrete wavelet transform (2-D
DWT) with demanding requirements in terms of speed and
throughput, 2-parallel and 4-parallel pipelined lifting-based
VLSI architectures for lossless 5/3 and lossy 9/7 algorithms are
proposed. The two proposed parallel architectures achieve
speedup factors of 2 and 4 as compared with single pipelined
architecture based on the first scan method proposed by
Ibrahim et al. The advantage of the proposed parallel
architectures is that the total temporary line buffer (TLB) does
not increase from that of the single pipelined architecture
proposed by Ibrahim et al. when degree of parallelism is
increased.

Index Terms—VLSI architecture, parallel, discrete wavelets
transform (DWT), JPEG2000, and lifting scheme.

I. INTRODUCTION
2-D DWT has evolved as an essential part of a modern

compression system such as JPEG2000. It offers high
compression ratio with good image quality and overcomes
disadvantage of the DCT based compression system, which
suffers from blocks artifacts that decrease the quality of the
displayed image. In addition, wavelet based compression
system, not only presents superior compression performance
over DCT, but provides four dimension of scalabilities ―
resolution, distortion, spatial, and color, which are very
difficult to achieve in DCT-based compression system. These
superior features make JPEG2000 ideal for use in power and
bandwidth limited applications [1].

 In a compression system, the function of DWT is to
decorrelate the original image pixels prior to compression
step such that they can be amenable to compression.

 In this paper, to further enhance the performance in terms
of speed and throughput in order to best meet real-time
applications of 2-D DWT with demanding requirements,
2-parallel and 4-parallel pipelined architectures for 5/3 and
9/7 algorithms are proposed. The 2-parallel and the 4-parallel
architectures achieve speedup factors of 2 and 4, respectively,
as compared with the single pipelined architecture present in
[2]. The two proposed architectures are based on lifting
scheme, which facilitates high speed and efficient
implementation of wavelet transforms [3].

The authors are with the Electrical and Electronic Engineering
Department, Universiti Teknologi PETRONAS, Perak, Tronoh, Malaysia

 This paper is organized as follows. In section II, 5/3 and
9/7 algorithms are stated and the data dependency graphs
(DDGs) for both algorithms are given. In section III, The
proposed architectures are presented. The performance
evaluations are given in section IV. Results comparison and
conclusions are given in sections V and VI, respectively.

II. LIFTING-BASED 5/3 AND 9/7 ALGORITHMS

 The lossless 5/3 and lossy 9/7 wavelet transforms
algorithms are defined by the JPEG2000 image compression
standard as follow [4]:
5/3 analysis algorithm

 +++−

+=

 ++

−+=+

4
2)12()12()2()2(:2

2
)22()2()12()12(:1

jYjYjXjYstep

jXjXjXjYstep (1)

9/7 analysis algorithm
() () () ()()
() () () ()()
() () () ()()
() () () ()()

()
)2()2(:6

121)12(:5
121222:4

2221212:3
121222:2

2221212:1

nYknYstep
nYknYstep

nYnYnYnYstep
nYnYnYnYstep

nYnYnXnYstep
nXnXnXnYstep

′=
+′=+

+′+−′+′′=′
+′′+′′++′′=+′

+′′+−′′+=′′
++++=+′′

δ
γ

β
α

 (2)

 The data dependency graphs (DDGs) for 5/3 and 9/7
derived from the algorithms are shown in figures 1 and 2,
respectively. The DDGs are very useful tools in architecture
development and they provide the information necessary for
the designer to develop more accurate architectures. The
symmetric extension algorithm is incorporated in the DDGs
to handle the boundaries problems. The boundary treatment
is necessary to keep number of wavelet coefficients the same
as that of the original [4], and is applied at the beginning and
ending of each row or column in an NxM image.

III. PROPOSED PARALLEL ARCHITECTURES

 To ease the architecture development, the strategy
adopted in [2, 5] was to divide the details of the development
into two steps each having less information to handle. In the
first step, the DDGs were looked at from outside, as indicated
by the dotted boxes in Figs. 1 and 2, in terms of inputs and
outputs requirements. It was observed that the DDGs for 5/3
and 9/7 are identical when they are looked at from external,
taking into consideration only the inputs and outputs
requirements but they differ in the internal details. Based on

Parallel form of the Pipelined Lifting-based
VLSI Architectures for Two-dimensional

Discrete Wavelet Transform
Ibrahim Saeed Koko, Member, IAENG and Herman Agustiawan

DOI: 10.7763/IJCTE.2009.V1.14

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 86 -

this observation, the first level of the architecture, called, the
external architecture was developed. In the second step, the
internal details of the DDGs were considered for the

development of the processor’s datapath architectures, since
DDGs internally define and specify the structure of the
processors.

In this paper, the first level, the external architectures for

2-parallel and 4-parallel are developed for both 5/3 and 9/7
algorithms. Then, processors datapath architectures for 5/3
and 9/7 developed in [2] are modified to fit into RPs and CPs
of the parallel architectures.

 In general, the scan frequency fl and hence the period

ll f1=τ of the parallel architectures can be determined by
the following algorithm when the required pixels I of an
operation are scanned simultaneously in parallel. Suppose tp
and tm are the processor and the external memory critical path
delays, respectively.

ml

pl

mp

telse
klt

thentkltIf

=

⋅=

≥⋅

τ

τ (3)

Where l = 2, 3, 4 ... denote 2, 3, and 4-parallel and kt p is

the stage critical path delay of a k-stage pipelined processor.

A. 2-parallel pipelined external architecture
 Based on the scan method shown in Fig. 3 [5] and DDGs

for 5/3 and 9/7 shown in Figs. 1 and 2, respectively, the
2-parallel architecture shown in Fig. 4 is proposed. The
dataflow of the architecture is given in Table 1. The
architecture is valid for both 5/3 and 9/7 algorithms, since it
is developed based on the observation that the DDGs for 5/3
and 9/7 are identical when they are looked at from outside,
taking into consideration only inputs and outputs
requirements.

 Fig. 3 First overlapped scan method

1 2 5

3 1 1 3 5 7 5

2 0 4 6 62

1 1 3 5 7

0 2 4 6

1Y0Y 2Y 3Y 4Y 5Y 6Y 7Y

k k k k1−k 1−k 1−k 1−k

0 11 2 323 44 5 6 7 46 5

3 1 1 3 5 7 7 5

2 0 4 6 82 6

1 1 3 5 7 7

0 2 4 6 8

1Y0Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y

k k k k k1−k 1−k 1−k 1−k

)(nX

()12 +′′ nY

()nY 2′′

()12 +′ nY

()nY 2′

()12,)2(+nYnY

0 11 2 323 44 5 6 7 8 47 6 5

)(a)(b

Fig. 1 5/3 algorithm’s DDGs for (a) odd and (b) even length signals

Fig. 2 9/7 algorithm’s DDG for odd (a) and even (b) length signals

0Y 1Y 2Y 3Y 4Y 5Y 6Y 7Y

11 3 5 7

7

0

02

2

11 2

4

43 5 6

6

6

0Y 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y

11 3 5 7 7

77

0

0

2

1

4

43 6

6

8 6

8

)12(+jY

)2(jY
nscomputatio

redundant

)(jX

nscomputatio
redundant

)(a)(b

2

N

0
0

1 2

1

2

3

3

4

4

65
1run 2runM

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 87 -

Fig. 4 2-parallel pipelined external architecture

The architecture consists of 2 k-stage pipelined row-
processors labeled RP1 and RP2 and 2 k-stage pipelined
column-processors labeled CP1 and CP2. In this architecture,
if the external memory is scanned with frequency f2, then the
architecture must operate with frequency 22f . The buses
labeled bus0, bus1, and bus2 are used for transferring in
every clock cycle 3 pixels from external memory to one of
the RP latches Rt0, Rt1, and Rt2 to initiate an operation. The
RP1’s
latches load data every time clock 22f makes a positive
transition, whereas RP2’s latches load data every time a
negative transition occurs as indicated in Fig. 4, assuming the
first half pulse of the clocks f2 and 22f are low. On the
other hand, the column-processors CP1 and CP2 load new
data every time clock 22f makes a positive transition.

 In this architecture, the two RPs decompose an NxM
image into high (H) and low (L) decompositions, whereas
CP1 decomposes H into subbands HH and HL and CP2
decomposes L into subbands LH and LL. CP1 executes high
coefficients stored in registers Rth1 and Rth2, while CP2
executes low coefficients stored in registers Rtl1 and Rtl2.
That is, in the first run, the first column of H and that of L
decomposition will be scheduled for execution by CP1 and
CP2, respectively, as shown in Table 1, whereas, in the
second run, the second column of both H and L will be
executed by CP1 and CP2, respectively and so on.

 According to the first overlapped scan method shown in
Fig. 3, in any particular time, 3 columns are considered for

scanning and in every clock cycle 3 pixels are scanned, one
from each column, until end of the columns are reached, say,
to complete a run. Then a transition is made to the beginning
of the next 3 columns to initiate another run. In the clock
cycle where a transition occurs, especially when column
length of an image is odd, the external memory should not be
scanned, since during that cycle the two CPs each will
compute the last low coefficient as required by the DDGs for
odd length signals. That is, during that cycle no pixels are
loaded into RP2 latches while the control is allowed to return
to RP1 by the pulse ending the cycle. This also implies that
each run will begin at RP1and the high coefficients generated
during a run, which are required in the next run computations,
will be stored in the TLB of the RP that generates them. In
addition, this scan method requires that each CP to scan(read)
coefficients generated by the two RPs column-by-column,
which implies that no modifications are needed to the 5/3 and
9/7 datapath architectures developed in [2].

 Fig. 5 shows how stage 2 of the pipelined 5/3 and stages 2,
3, and 5 of the pipelined 9/7 developed in [2] should be
modified when they are incorporated into the 2-parallel
architecture’s RPs. The modifications require addition of a
TLB of size N/2 in each stage 2 of the two 5/3 RPs and in
each of stages 2, 3, and 5 of the two 9/7 RPs, as shown in Fig.
5. TLBs are necessary, according to the DDGs, to keep N
high coefficients calculated in step 1 of the 5/3 algorithm and
in each of steps 1 and 3 of the 9/7 algorithm including low
coefficients calculated in step 2 of the 9/7 algorithm, which
are required in the next run computations. In addition,
starting

2/2f

1Rt

2Rt

0Rt

1RP2Rt

1Rth

1Rtl

2Rtl

2Rth

1CP

1Rt

2Rt

0Rt

2CP

1Rt

 m
ux

ce
o 1

0

 m
ux

ce
o 1

0

0sce

 m
ux

re
o

1

0

0Rt

0Rt

1Rt

1Rt

H

H

H

H

L

L

L

L
LL

LH

HL

HH
0sre

RAM

22
MN

⋅

 m
ux

c 1

0

 m
ux

c 1

0

 m
ux

c 1

0

1bus

2bus

0bus

s
0Rt

2Rt

1Rt

0Rt

2RP

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 88 -

TABLE 1: DATAFLOW FOR THE 2-PARALLEL ARCHITECTURE

CK RP RP1 & RP2
Rt0 Rt2 Rt1

 Rth Rtl CP1
Rt0 Rt2 Rt1

 CP2
Rt0 Rt2 Rt1

CP1 & CP2 OUTPUTS
Rt0 Rt1 Rt0 Rt1

1 1 x0, 0 x0, 2 x0, 1

2 2 x1, 0 x1, 2 x1, 1

3 1 x2, 0 x2, 2 x2, 1

4 2 x3, 0 x3, 2 x3, 1

5 1 x4, 0 x4, 2 x4, 1

6 2 x5, 0 x5, 2 x5, 1

7 1 x6, 0 x6, 2 x6, 1 H0, 0 L0, 0

8 2 x7, 0 x7, 2 x7, 1 H1, 0 L1, 0

9 1 x8, 0 x8, 2 x8, 1 H2, 0 L2, 0 H0, 0 H2, 0 H1, 0 L0, 0 L2, 0 L1, 0

10 2 x9, 0 x9, 2 x9, 1 H3, 0 L3, 0 ---------------------- ------------------------

11 1 x10, 0 x10, 2 x10, 1 H4, 0 L4, 0 H2, 0 H4, 0 H3, 0 L2, 0 L4, 0 L3, 0

12 2 x11, 0 x11, 2 x11, 1 H5, 0 L5, 0 --------------------- ------------------------

13 1 x12, 0 x12, 2 x12, 1 H6, 0 L6, 0 H4, 0 H6, 0 H5, 0 L4, 0 L6, 0 L5, 0

14 2 x13, 0 x13, 2 x13, 1 H7, 0 L7, 0 --------------------- ------------------------

15 1 x14, 0 x14, 2 x14, 1 H8, 0 L8, 0 H6, 0 H8, 0 H7, 0 L6, 0 L8, 0 L7, 0 HH0, 0 HL0, 0 LH0, 0 LL0, 0

16 2 x15, 0 x15, 2 x15, 1 H9, 0 L9, 0 ---------------------- ---------------------- -----------------------------------

17 1 x16, 0 x16, 2 x16, 1 H10, 0 L10,
0

H8, 0 H10, 0 H9, 0 L8, 0 L10, 0 L9, 0 HH1, 0 HL1, 0 LH1, 0 LL1, 0

18 2 x17, 0 x17, 2 x17, 1 H11, 0 L11,
0

---------------------- ---------------------- ------------------------------------

19 1 x18, 0 x18, 2 x18, 1 H12, 0 L12,
0

H10, 0 H12, 0 H11, 0 L10, 0 L12, 0 L11, 0 HH2, 0 HL2, 0 LH2, 0 LL2, 0

from the second run, it is required that the TLB must be read
and written in the same clock cycle. Therefore, signal WR
(read/write) is connected to the clock 22f in Fig. 5 so that
the TLB can be read in the first half cycle and written in the
second half. The data read in the first half cycle, for example,
from TLB1, is stored in register Rd1 by the negative
transition of the clock 22f . Then the positive transition of
the clock loads it into the latch of the next stage.

 The register labeled TLBAR (TLB address register)
generates addresses for the TLB. Initially, register TLBAR is
cleared to zero by asserting signal INCAR low to point at the
first location in the TLB. Then to address the next location
after each read and write, register TLBAR is incremented by
one by asserting INCAR high.

 The DDGs for even length signals show that in the last
high and low coefficients calculations, only the last two
pixels in a row, r, at locations X(r, M-2) and X(r, M-1) are
read from external memory. In addition, the extension part of
the DDGs for even length requires the pixel located at X(r,
M-2) to be considered as the first and the third inputs. This
pixel must be passed to the RP2 with the second input pixel
from location X(r, M-1), to compute the last high and low
coefficients in row r. Thus, the multiplexer labeled muxre0,
which is an extension multiplexer, passes in all cases data
coming through bus2, except when the row length (M) of an
image is even and only in the calculations of the last high and
low coefficients in a row r, the pixel of location X (r, M-2),
which will be read into bus0, must be allowed to pass through
muxre0 and then loaded into Rt2 as well as Rt0. The two
multiplexers labeled muxce0, attached to CPs, are also
extension multiplexers and operate similar to muxre0 when

DWT is applied column-wise by CPs. The three multiplexers,
labeled muxc allow either the

external memory or the LL-RAM data to be passed to the RPs
latches Rt0, Rt1, and Rt2.

 On the other hand, when the row length of an image is odd,
according to the DDGs for odd length signals, to calculate the
last low coefficient, only one pixel, the last one at location
X(r, M-1), should be passed to the RP1.

 The dataflow of the architecture shown in Table 1 is for
5/3. This dataflow table is identical to 9/7 dataflow except in
the first run where 9/7 RPs, according to the 9/7 DDGs, will
not yield any output coefficients by processing the first 3
pixels of each row. The 9/7 RPs, in the first run, will be able
to compute only two coefficients labeled)1(Y ′′ and)0(Y ′′ in
the DDGs for each row and these coefficients can be stored in
temporary line buffers (TLBs) so that they can be used in the
next run computations.

 In the following, the dataflow of the architecture
accompanied by Table 1 will be described. For convenience,
assume the processors are pipelined to (k = 3)-stages. In the
first clock cycle, reference to clock f2, 3 pixels are scanned
from the external memory and are loaded into the RP1’s
latches by the positive transition of clock 22f to initiate the
first operation. The second cycle scans another 3 pixels from
external memory and loads them into the RP2’s latches by the
negative transition of clock 22f to initiate the second
operation. This process is repeated until the whole image
pixels are scanned as shown in Table 1.

 In cycle 7, the first outputs of the RP1, labeled H0, 0 and
L0, 0 in the table, are loaded into the latches labeled Rth1 and

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 89 -

Rtl1, respectively, by the positive transition of 22f . In
cycle 8, the RP2 produces its first outputs H1, 0 and L1, 0
which are loaded into its output latches Rth2 and Rtl2,

respectively, by the negative transition of 22f . In cycle 9,
the RP1 produces

Fig. 5.Modified stage 2 of the RP of the 2-parallel

its second outputs H2, 0 and L2, 0. Then by the positive
transition of clock 22f , the high coefficients H0, 0, H2, 0,
and H1, 0, and the low coefficients L0, 0, L2, 0, and L1, 0 are
loaded into the latches of the CP1 and CP2 labeled Rt0, Rt2,
and Rt1, respectively. The same positive transition also stores
H2, 0 and L2, 0 coefficients in the output latches of the RP1
labeled Rth1 and Rtl1, respectively, since they are also
required in the next high and low coefficients calculations.
Note that according to the DDGs, each operation initiated by
either RP or CP requires 3 inputs.

 In cycle 15, the RP1 yields its fifth outputs H8, 0 and L8, 0,
while CP1 and CP2 both yield their first outputs HH0, 0, HL0,
0, LH0, 0 and LL0, 0. Then by the positive transition of 22f ,
the first outputs of CP1 HH0, 0 and HL0, 0 and the first
outputs of CP2 LH0, 0 and LL0, 0 are loaded into the output
latches Rt1 and Rt0 of the CP1 and the CP2, respectively.
According to Table 1, every other clock cycle or every clock

cycle with respect to clock 22f two pairs of output
coefficients will be generated by both CP1 and CP2.

A. 4-parallel pipelined external architecture
 The 4-parallel architecture is shown in Fig. 6 and its dataflow
is given in Table 2. This architecture closely resembles the
2-parallel architecture. The main difference is that the
2-parallel architecture consists of two pipelined processors,
whereas the 4-parallel consist of 4 pipelined processors. Each
pipelined processor contains one RP and one CP. The
architecture scans the external memory with frequency f4 and
operates with frequency 24f . The clock frequency f4 can
be obtained from Eq (3) as.

 ptkf 44 = (4)

 Two waveforms of the frequency 44f labeled f4a and f4b
which can be generated from f4 are shown in Fig. 7. Note that

2/N

2TLB

 M
ux

re
1

 M
ux

re
1

1sre

2sre

+

RtRt

WR

2Rd

2/N

1TLB

1TLBAR

INCAR

 M
ux

re
1

 M
ux

re
1

1sre

2sre

+

Rt Rt

Rt1Rd

2stage

RtRt

2/2f2/2f

2/2f

2DIVclock
2f

2/2f

2/2f2/2f

2/2f2/2f

2/2f

2TLBAR

INCAR

2/2f

Rt Rt

2/2f2/2f

RP1

WR

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 90 -

Fig. 6 4-parallel pipelined external architecture

TABLE II: DATAFLOW FOR 4-PARALLEL ARCHITECTURE

ck RP RP’s input latches
 Rt0 Rt2 Rt1

RP’s output latches
 Rth Rtl

 CP1 & CP3 input latches
Rt0 Rt2 Rt1 Rt0 Rt2 Rt1

1 1 x 0, 0 x 0, 2 x 0, 1
2 2 x 1, 0 x1, 2 x 1, 1
3 3 x 2, 0 x 2, 2 x 2, 1

1 2 3 4 5 6 7 8
4f

444 ff a =

444 ff b =

Fig. 7 Waveforms of the 3 clocks used in 4-parallel

1RPload 2RPload 3RPload 4RPload

3
1

CP
CP

4
2

CP
CP

1bus

1Rtl

1Rth

3Rth

4Rth

4Rtl

3Rtl

2Rtl

2Rth 01sce

01sce

02sce

02sce

2Rt

0Rt

H

L

1CP

af 4

2Rt

0Rt

H

L

3CP

af 4

2CP

H

L

2Rt

0Rt

af 4

1Rtl

1Rth

2Rtl

2Rth

3Rth

3Rtl

4CP

H

L

2Rt

0Rt

af 4

4Rtl

4Rth1Rt

1Rt

1Rt

1Rt

LH

LL

LH

LL

HH

HH

HL

HL

0

1

0

1

0

1

0

1

0bus

1Rt

2Rt

0Rt

H

L

1RP

af 4

3RP

H

L

1Rt

2Rt

0Rt

af 4

1Rt

2Rt

0Rt

H

L

2RP

bf 4

4RP

H

L

1Rt

2Rt

0Rt

bf 4

0sre

2bus 0

1

bf 4

af 4

af 4

af 4

af 4

bf 4

bf 4

bf 4

3l 4l

1h 2h

Pa

Pb

mux

0

1)4(CPLL

)3(CPLLRAM

af 4

3BIR 0muxce

0muxce

0muxce

0muxce

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 91 -

4 4 x 3, 0 x 3, 2 x 3, 1

5 1 x 4, 0 x 4, 2 x 4, 1
6 2 x 5, 0 x 5, 2 x 5, 1
7 3 x 6, 0 x 6, 2 x 6, 1
8 4 x 7, 0 x 7, 2 x 7, 1
9 1 x 8, 0 x 8, 2 x 8, 1
10 2 x 9, 0 x 9, 2 x 9, 1
11 3 x 10, 0 x 10, 2 x 10, 1
12 4 x 11, 0 x 11, 2 x 11, 1
13 1 x 12, 0 x 12, 2 x 12, 1 H0, 0 L0, 0
14 2 x 13, 0 x 13, 2 x 13, 1 H1, 0 L1, 0
15 3 x 14, 0 x 14, 2 x 14, 1 H2, 0 L2, 0 H0, 0 H2, 0 H1, 0 L0, 0 L2, 0 L1, 0
16 4 x 15, 0 x 15, 2 x 15, 1 H3, 0 L3, 0 ---
17 1 x 16, 0 x 16, 2 x 16, 1 H4, 0 L4, 0 ---
18 2 x 17, 0 x 17, 2 x 17, 1 H5, 0 L5, 0 ---
19 3 x 18, 0 x 18, 2 x 18, 1 H6, 0 L6, 0 H4, 0 H60 H5, 0 L4, 0 L6, 0 L5, 0
20 4 x 19, 0 x 19, 2 x 19, 1 H7, 0 L7, 0 ---
21 1 x 20, 0 x 20, 2 x 20, 1 H8, 0 L8, 0 ---
22 2 x 21, 0 x 21, 2 x 21, 1 H9, 0 L9, 0 ---
23 3 x 22, 0 x 22, 2 x 22, 1 H10, 0 L10, 0 H8, 0 H10, 0 H9, 0 L8, 0 L10, 0 L9, 0
24 4 x 23, 0 x 23, 2 x 23, 1 H11, 0 L11, 0 ---
25 1 x 24, 0 x 24, 2 x 24, 1 H12, 0 L12, 0 ---
26 2 x 25, 0 x 25, 2 x 25, 1 H13, 0 L13, 0 ---
27 3 x 26, 0 x 26, 2 x 26, 1 H14, 0 L14, 0 H12, 0 H14, 0 H13, 0 L12, 0 L14, 0 L13, 0
28 4 x 27, 0 x 27, 2 x 27, 1 H15, 0 L15, 0 ---
29 1 x 28, 0 x 28, 2 x 28, 1 H16, 0 L16, 0 ---

CK

 CP2 &CP4 input latches
Rt0 Rt2 Rt1 Rt0 Rt2 Rt1

 CP1 & CP3 output latches
 Rth1 Rtl1 Rth3 Rtl3

 CP2 & CP4 output latches Rth2
Rtl2 Rth4 Rtl4

17 H2, 0 H4, 0 H3, 0 L2, 0 L4, 0 L3, 0

18 --
19 --

20 --
21 H6, 0 H8, 0 H7, 0 L6, 0 L8, 0 L7, 0

22 --
23 --

24 --
25 H10, 0 H12, 0 H11, 0 L10, 0 L12, 0 L11, 0

26 --
27 -- HH0, 0 HL0, 0 LH0, 0 LL0, 0 -----------------------------------

28 -- ----------------------------------- -----------------------------------
29 H14, 0 H16, 0 H15, 0 L14, 0 L16, 0 L15, 0 ----------------------------------- HH1, 0 HL1, 0 LH1, 0 LL1, 0

when degree of parallelism increases from 2 to 4 e.g., the

scanning frequency lf also increases, while the architecture
frequency of operation lf l , which is the reciprocal of the
stage critical path delay)(kt p of the pipelined processors,

remains the same.
 In the architecture, RP1 and RP3, and their associate

latches employ the clock f4a, whereas RP2 and RP4 and their
associate latches employ the clock f4b as shown in Fig. 6

 In every clock cycle, reference to clock 4f , three pixels
are scanned from external memory and are loaded into the
latches of one of the RPs. First, RP1 latches are loaded
followed by RP2 latches then RP3 latches followed by RP4

latches. This process then repeats. When the scanning
process return to RP1 to initiate another operation, the RP1
should have completed its current operation in the time
specified by kt p , and should be ready to accept pixels of the

next operation. As indicated in the architecture, RP1 latches
will be loaded with new data every time clock f4a makes a
negative transition, while RP3 latches will be loaded at the
positive transition. On the other hand, RP2 and RP4 latches
will be loaded at the negative and positive transition of the
clock bf 4 respectively.

 In the 2-parallel architecture, each new run begins at
RP1and high coefficients generated during a run, which are

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 92 -

require in the next run, are stored in the TLB of the RP that
generated them. In the 4-parallel, the strategy adopted allows
each new run to start its computations in the RP that
immediately comes after the RP where the previous run ends.
Which implies a run can begin at any RP and that makes the
decision where to store the high coefficients needed in the
next run somewhat difficult. Thus, for this strategy to be
effective, we have come up with a simple scheme that allows
such decision to be made.

 The scheme, which can be figured out by scheduling
several short runs, is summarized as follows. Taking into
consideration the fact that in the clock cycle where a
transition from a run to the next is made, the external memory
is not scanned and thus, no pixels are loaded into RP latches,
when column length of an image is odd, then the decision,
where to store each high coefficient calculated in the
previous run that is needed in the calculation of a low
coefficient in the
next run, can be made by examining the two least significant
bits of N. case one; if the two least significant bits of N are 00
or 11 then the high coefficients should be stored in the TLBs
of the RPs that generate them. Case two: if the two least
significant bits of N are 01 or 10, then the high coefficients of
RP1 should be stored in the TLB of RP3 and vice versa, and
the high coefficients of RP2 should be stored in the TLB of
RP4 and vice versa. Symbolically, case two can be written as

 42

31

RPRP

RPRP
Pb

Pa

→←

→← (5)

Therefore, the paths labeled Pa and Pb are added in Fig. 6.
 The above scheme only affects stage 2 of the four 5/3 RPs

and stages 2, 3, and 5 of the four 9/7 RPs developed in [3] and
it can be implemented as shown in Fig. 8. The strategy is very
simple to control, since it only adds one control signal (zs)
that is used to control the operation of the four multiplexers
labeled mux1, mux2, mux3, and mux4. Signal zs can be
generated by use of a simple 2-input XNOR gate with its two
inputs connected to the two least significant bits of N. Thus, if
the input to the XNOR are either 00 or 11 (case one), zs is
asserted high to pass the high coefficient stored in each Rt of
stage 2 which is generated in stage 1 of the same RP.
Otherwise (case two) it is asserted low to pass the high
coefficient stored in each register BIR that have been
generated by one of the RP. Note that signal zs will only have
one value during each level of decomposition. For example,
during the whole period of the first level decomposition, zs
may be equal to 1 or 0, but not both. The advantage of this
arrangement is that all operations, in stage 2 of the four RPs
in Fig. 8, such as read and write into TLBs are controlled
internally by the two clock signals f4a and f4b with no control
unit engagement once the 3 clocks are synchronized. Only
the control signal values for signal INCAR will be generated
by a control unit.

 Now, let’s move to the CPs side to see how this part of the

architecture works. The 4 CPs run by the clock labeled f4a.
Both CP1 and CP3 load new data every time clock f4a makes
a positive transition, whereas, both CP2 and CP4 load new
data every time clock f4a makes a negative transition.
However, both CP1 and CP2 execute high coefficients stored
in Rth1, Rth2, Rth3, and Rth4, whereas CP3 and CP4 execute
low coefficients stored in Rtl1, Rtl2, Rtl3, and Rtl4.

 Suppose, in clock cycle n (cycle 13 in Table 2), the first
two output coefficients H0, 0 and L0, 0 generated by RP1 are
loaded into its output latches labeled Rth1and Rtl1,
respectively. In cycle n+1, RP2 loads coefficients H1, 0 and
L1, 0 into Rth2 and Rtl2, respectively. In cycle n+2, the high
coefficients in Rth1 and Rth2 along with coefficient H2, 0
generated by RP3 during the cycle and the low coefficients in
Rtl1 and Rtl2 along with coefficient L2, 0 are loaded into CP1
and CP3 input latches, respectively, while coefficients H2, 0
and L2, 0 generated by RP3 during the cycle are loaded as
well into Rth3 and Rtl3, respectively. Cycle n +3, loads
coefficients H3, 0 and L3, 0 generated by RP4 into Rth4 and
Rtl4, respectively. In cycle n+4, the high coefficients in Rth3
and Rth4 along with coefficient H4, 0 generated by RP1
during the cycle and the low coefficients in Rtl3 and Rtl4
along with coefficient L4, 0 are loaded into CP2 and CP4
input latches, respectively, while coefficients H4, 0 and L4, 0
generated by RP1 during the cycle are loaded into Rth1and
Rtl1, respectively, as well. Thi process is repeated until the
level decomposition completes.

 In cycle n+14, CP1 and CP3 yield their first 4 output
coefficients HH0, 0, HL0, 0 and LH0, 0, LL0, 0, respectively.
No output is generated in cycle n+15. In cycle n+16, CP2
and CP4 yield their first 4 outputs HH1, 0, HL1, 0 and LH1, 0,
LL1, 0, respectively. Thus, every other clock, reference to
clock f4, two pairs of output coefficients will be generated as
shown in Table 2.

 According to Table 2, in each run, CP1 and CP2 together
and similarly CP3 and CP4 are required to execute one
column of H and one column L decomposition, respectively,
which would require interactions between two CPs. That is,
according to the DDGs for 5/3 and 9/7, a coefficient
calculated in the first stage of a CP is also required in the
calculation of the coefficient that takes place in the second
stage of the other CP and vise versa. However, this would
required CP1 and CP2 similarly CP3 and CP4 datapaths to be
modified as shown in Fig. 9 for CP1 and CP2, which is
identical to CP and CP4. Fig. 9 shows that passing
coefficients occur between stages 2 of the two CPs, in the
case of the 5/3 and between stages 2, between stages 3, and
between stages 5 of the two CPs, in the case of the 9/7. Note
that the modified stages 5 of the two 9/7 CPs are identical to
stages 2 of CP1 and CP2 shown in Fig. 9.

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 93 -

Fig. 8 Modified stage 2 of the RPs datapath architecture

 In a control design it would be necessary to determine the
clock cycle (C1) where the first input data are loaded into the
CPs latches and the clock cycle (C2) where the first output
coefficients are loaded into the CPs output latches. The
following two equations can be used to determine C1 and C2.

 121 ++⋅= rklC (6)
 cklCC ⋅+= 12 (7)

Where l = 2, 3, 4… denote 2-, 3-, 4-parallel (degree of
parallelism) and so on. Kr and kc are the number of pipeline
stages in a RP and a CP, respectively.

I. EVALUATION OF ARCHITECTURES
 To evaluate the performances of the two proposed parallel

architectures, in terms of speedup, efficiency, and power
consumption consider the following. In the single pipelined
processor architecture based on the first overlapped scan
method [2], the total time T1 required to yield n pairs of
output for j-level decomposition of an NxM image is given by

()[] 11311 τρ −+= nT
 ()[] ktnT p 31311 −+= ρ

(8)

4TLBAR

1
0

4/N

1BOR
1BIR

zs

1

0

Rt

Rt

Rt

1sre

1
0

2sre

1TLB
WR

af 4

af 4

af 4

af 4

1
0

4/N

2BOR
2BIR

zs

1

0

Rt

Rt

Rt

1sre

1
0

2sre

2TLB

bf 4

bf 4

bf 4

bf 4

1
0

4/N

3BOR

zs

1

0

Rt

Rt

Rt

1sre

1
0

2sre

3TLB

af 4

af 4

af 4

af 4

1
0

4/N

4BOR

zs

1

0

Rt

Rt

Rt

1sre

1
0

2sre

WR

bf 4

bf 4

bf 4

bf 4

4mux

Rt

af 4

Rt

af 4

bf 4

Rt

Rt

bf 4

Rt

af 4

Rt

af 4

Rt

bf 4

Rt

bf 4

1RP

2RP

3RP

4RP

2stage

WR

WR

1INCAR

2mux

3mux

2INCAR

3INCAR

4INCAR

4BIR

4TLB

1muxre

1muxre

1muxre

1muxre

2muxre

2muxre

2muxre

2muxre

1mux

2TLBAR

3BIR

3TLBAR

4TLBAR

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 94 -

Fig. 9 Modified CP1 and CP2 datapaths for 4-parallel architecture

Where 1ρ is number of clock cycles needed to yield the

first pair of output coefficients by CP.
 On the other hand, the total time, T2, required to yield n

pairs of output coefficients for j-level decomposition of an
NxM image on the 2-parallel pipelined architecture shown in
Fig. 4, can be estimated using Table 1 as

()[]
2

122
2 2τρ −+

=
nT

From (3), kt p 22 =τ

Therefore,
()[]

2
2122

2
ktn

T p−+
=

ρ
 (9)

The speedup factor (S2) is then given by
()[]
()[] ktn

ktn
T
TS

p

p

4122
3131

2
12

−+

−+
==

ρ

ρ

For large n, the above equation reduces to

()
() 2

412
313

2 =
−

−
=

ktn
ktn

S
p

p

 (10)

The efficiency 1222 == SE (11)
Eqs (10) and (11) indicate that the 2-parallel architecture is

2 times faster than the single pipelined architecture and
efficiency 1, respectively.

 Similarly, the total time (T4) require to yield n pairs of
output for j-level decomposition of an NxM image on the
4-parallel pipelined architecture can be written as

()[]
2

124
4 4τρ −+

=
nT

From (3) kt p 44 =τ

Thus,
()[]

2
4124

4
ktn

T p−+
=

ρ
 (12)

The speedup factor (S4) is then given by
()[]
()[] ktn

ktn
T
TS

p

p

8124
3131

4
14

−+

−+
==

ρ

ρ

For large n, the above equation reduces to
()

() 4
16
1244 =

−
−

=
n
nS (13)

The efficiency 1444 == SE (14)
Equations (13) and (14) imply that the 4-parallel

architecture is 4 times faster than the single pipelined
architecture and the efficiency is 1, respectively.

 On the other hand, the power consumption of l-parallel
pipelined architecture as compared with the single pipelined
architecture can be obtained as follows. Let P1 and Pl denote
the power consumption of the single and l-parallel
architectures without the external memory, and Pm1 and Pml
denote the power consumption of the external memory for the
single and l-parallel architectures, respectively. If the power
consumption of VLSI architecture can be estimated as

fVCP total ⋅⋅= 2
0

where Ctotal denotes the total capacitance of the
architecture, V0 is the supply voltage, and f is the clock
frequency, then,

lfVClPfVCP ltotalltotal ⋅⋅⋅=⋅⋅= 2
01

2
01 ,3

 and

)2(nX

1Rd

Rt

af 4

Rt

af 4

Rt

af 4

af 4

Rt

af 4

)22(+nX

)12(+nX
1stage 2stage

Rt

1
0

1muxre

1
0

2muxre 1CP
0

1

0muxre

af 4

)2(nX

2Rd

Rt

af 4

Rt

af 4

Rt

af 4

af 4

Rt

af 4

)22(+nX

)12(+nX

Rt

1
0

1muxre

1
0

2muxre 2CP
0

1

0muxre

af 4

1sre

1sre

2sre

2sre

Rt

af 4

Rt

af 4

Rt

af 4

Rt

af 4

Rt

af 4

Rt

af 4

Rt

af 4

Rt

af 4

Rt

af 4

Rt

af 4

3stage

0sre

0sre

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 95 -

ltk
t

kl

f
f

fVC
lfVCl

P
P

p
p

l

total

ltotall

=

 ⋅
=

=
⋅⋅

⋅⋅⋅
=

33

3
3 11

2
0

2
0

1

 (15)

Whereas, Pm1 and Pml can be estimated as

l
m
totalml

m
totalm fVCPfVCP ⋅⋅⋅=⋅⋅= 2

01
2

01 3, , and

l
tk

tkl
f

f
P
P

p

pl

m

ml =
⋅⋅

=
⋅

=
3

33

11
 (16)

Where m
totalC is the total capacitance of the external

memory.
 From the above evaluations, it can be concluded that as

degree of parallelism increases the speedup and the power
consumption of the architecture, without external memory,
and the power consumption of the external memory increase
by a factor of l, as compared with single pipelined
architecture.

I. COMPARISON RESULTS
 A comparison of the proposed architectures with most

recent architectures in the literature is illustrated in Table 3.
Flipping structure [6] introduces a new method to shorten the

critical path delay of the lifting-based architecture to one
multiplier delay but requires a total line buffer of size 11N [7],
[8], which is a very expensive memory component. In [7], a
more efficient structure than flipping is present which
reduces the total line buffer size to 6.5N.

 On the other hand, in [8], by reordering the lifting-based
DWT of the 9/7 filter; the critical path of the pipelined
architecture has been reduced to one multiplier delay. But,
this architecture also requires a total line buffer of size 5.5N.
The architecture proposed in [9], achieves critical path of one
multiplier delay using very large number of pipeline registers,
52. In addition, it requires a total line buffer of size 6N. The
architecture proposed in [10], like the proposed 2-parallel
architecture, achieves a speedup factor of 2 but, requires a
total line buffer of size 5.5 N, while the two proposed parallel
architectures each require only a total line buffer of size 3N.

TABLE III: COMPARISON OF SEVERAL 9/7 2-DWT ARCHITECTURES

Architecture Mult Adders Line

buffer

Computin
g

time

Critical

path

Flipping [6] 10 16 11N N/A Tm

PLSA [7] 12 16 6.5N N/A Tm

Bing [8] 6 8 5.5N 2(1-4-j)N2 Tm

Lan [9] 12 12 6N 2(1-4-j)N2 Tm

Overlapped [5] 10 16 3N 2(1-4-j)N2 Tm + 2Ta

Cheng [10] 18 32 5.5N (1-4-j)N2 N/A

Proposed 2-parallel 18 32 3N (1-4-j)N2 Tm + 2Ta

Proposed 4-parallel 36 64 3N 1/2 (1-4-j)N2 Tm + 2Ta
Tm: multiplier delay Ta: adder delay

I. CONCLUSIONS
 In this paper, 2-parallel and 4-parallel pipelined

architectures for 2-D DWT are proposed. The two proposed
architectures achieve speedup factors of 2 and 4, respectively,
as compared with single pipelined architecture. The scan
method adopted not only reduces the internal memory
between RPs and CPs to a few registers, but allows CPs to
work in parallel with RPs earlier during the computation. In
addition, the comparison results show that the proposed
parallel architectures only require a total temporary line
buffer (TLB) of size N and 3N in 5/3 and 9/7, respectively,
while other architectures require more line buffers, which are

very expensive memory components. That implies, the
proposed architectures would occupy less silicon areas and
would cost less. Therefore, the proposed architectures could
be very efficient alternative in 2-D DWT applications
requiring very high-speed and low power. Furthermore, the
proposed architectures are simple to control and their control
algorithms can be immediately developed.

REFERENCES
[1] David S. and Michael W. “JPEG 2000 image compression

fundamentals, standards and practice, ” Kluwer Academic pulishers,
2002.

[2] Ibrahim Saeed, H. Agustiawan., “Lifting-based VLSI architectures for
2-dimensional discrete wavelet transform for effective image
Compression, ” Proceedings of the International MultiConference of

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 96 -

Engineers and Computer Scientists 2008 Vol. 1 IMECS’08, Hong
Kong, PP. 339-347, Newswood Limited, 2008.

[3] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting schemes, ” J. Fourier Analysis and Application Vol. 4, No. 3,
1998, PP. 247-269.

[4] G. Dillin, B. Georis, J-D. Legant, O. Cantineau, “Combined
Line-based Architecture for the 5-3 and 9-7 Wavelet Transform of
JPEG2000, “IEEE Trans. on circuits and systems for video tech., Vol.
13, No. 9, Sep. 2003, PP. 944-950.

[5] I. Saeed and Herman Agustiawan, “high-speed and power Efficient
lifting-based VLSI architectures for two-dimensional discrete Wavelet
transform, ” proceedings of the IEEE Second Asia International
Conference on Modelling and Simulation, AMS 2008, PP. 998-1005.

[6] C.-T. Huang, P.-C. Tseng, L.-G. Chen, “Flipping structure: Anefficient
architectures for 1-D and 2-D lifting-Based wavelet transform, ” IEEE
Tran. Signal Proc., Vol. 52, No. 4, April 2004, PP. 1080 -1089.

[7] C. Yi, J. Wen, J. Liu, “A note on Flipping structure: an efficient VLSI
architecture for lifting-based discrete wavelet transform, ” IEEE
Transaction on signal proc. Vol. 54, No. 5, May 2006, PP. 1910 – 1916.

[8] B-F. Wu, C-F. Lin, “A high-Performance and Memory-Efficient
Pipeline Architecture for the 5/3 and 9/7 Discrete Wavelet Transform
of PEG2000 Codec, ” IEEE Trans. on Circuits & Sys. for Video
Technology, Vol. 15, No. 12, December 2005, PP. 1615 – 1628.

[9] X. Lan, N. Zheng, “ Low-Power and High-Speed VLSI Architecture
for Lifting-Based Forward and Inverse Wavelet Transform, ” IEEE
trans. on consumer electronics, Vol. 51, No. 2, May 2005, PP. 379 –
385.

[10] C-Y. Xiong, J-W. Tian, J. Liu, “Efficient high-speed/low-power line
based architecture for two-dimensional discrete wavelet transforms
using lifting scheme, ” IEEE Trans. on Circuits & sys. For Video Tech.
Vol.16, No. 2, February 2006, PP. 309-316.

