



Abstract—An asynchronous circuit design methodology has

been introduced as a novelty approach to future digital system

design. Nevertheless, in order to implement the asynchronous

circuit, there are various limitations. Especially, for the

implementation on a commercialized field programmable gate

array (FPGA), the vendors and design tools mainly support

only synchronous circuit design. In this paper, we propose

design techniques for implementing the asynchronous circuit on

the commercial FPGA using the provided design tool. Then,

with the proposed design techniques, we designed an

asynchronous micro-controller based onaTIMSP430

instruction set architecture (ISA).We observe that the

asynchronous core consumes lower power than the synchronous

one. In addition, the asynchronous core also shows much more

durability under conditions of unstable power supplies

compared to the synchronous counterpart.

Index Terms—Asynchronous circuit, AFSM, bounded delay,

FPGA.

I. INTRODUCTION

The technology of an internet of things which is called

“IoT” is prevalent in these days [1], [2]. Using the IoT

devices, mostly they can be placed in an unstable

circumstance that is easily influenced by external factors

such as shortage of power and variation of temperature. Thus,

operational stability and low-power consumption have been

recognized as critical features in the sphere of the processor

for the end-nodes in the IoT environments. The processor for

the IoT applications are mainly composed of a small

processor such as 8-bitor16-bit micro-controllers with open

hardware platform [3]-[5]. By virtue of the target applications

are not required high-performance computation [6]. For these

introduced processors, there were largely designed by

traditional circuit design methodologies, which are a

synchronous circuit design.

Whereasprevailing synchronous design methodologies

have limitations on a large amount of clock network power

consumption, unreliable performance from clock skew, and

meta-stability problem from the multiple clock domains
owing to a single global clock signal [7]. Those can contrast

Manuscript received May 10, 2017; revised October 23, 2017. This work

was supported by the ICT R&D program of MSIP/IITP. [2014-0-00050,

Low-power and High-density Micro Server System Development for Cloud

Infrastructure].

Ziho Shin, Myeong-Hoon Oh, and Dongjae Kang are with Cloud

Computing Research Group, Electronics and Telecommunication Research

Institute (ETRI), Daejeon, Republic of Korea and Dept. of Computer S/W,

University of Science and Technology (UST), Daejeon, Republic of Korea

(e-mail: zshin@ ust.ac.kr , mhoonoh@etri.re.kr, djkang@etri.re.kr).

Hyukje Kwon and Hag Young Kim are with Cloud Computing Research

Group, Electronics and Telecommunication Research Institute (ETRI),

Daejeon, Republic of Korea (e-mail: heavenwing@etri.re.kr,

h0kim@etri.re.kr).

with significant characteristics for the field of IoT devices.

Asynchronous circuit design methodologies can change

the design paradigm from the synchronous one. Since an

asynchronous circuit does not have any globalized control

signal inherently, this design methodology can be

fundamentally free from the above-mentioned drawbacks.

Instead of a global clock, the asynchronous circuit can

guarantee its stability and robustness of functionality by

performing handshake protocol for the localized

synchronization. Therefore, the power consumption of the

processor is reduced due to the elimination of the clock

network, which accounts for 70% of the entire power source

[8], in modern processors. And, thus, the asynchronous

circuit can have low-power characteristics inherently [9].

Additionally, the asynchronous circuit has less emission of

electro-magnetic noise (EMI) [9] feature because the

asynchronous design methodologies do not employee

globalized common and periodic control signal. These are

reasons why [10]-[12] were introduced.

Yet, on the implementation point of view, designers could

face diverse problems, when they try to implement the

asynchronous circuit. Because commercial vendors and

design methodologies are largely focused on synchronous

circuit design. So as to the asynchronous circuit still has

fascinating benefits, researches on design methodologies and

implementation techniques are highly needed.

Thus, in this paper, we propose design techniques for the

asynchronous circuit implementation on the commercial field

programmable gate array (FPGA) and we designed an

MSP430 core for the IoT applications. Then, the performance

comparison with a synchronous type will address.

This paper is organized as follows: The next section talks

about asynchronous circuit design and design issues on the

commercial FPGA. Subsequently, feasible solutions for

according to that of limitations will be introduced. And the

following section introduces an architecture for the designed

core. And Section V describes experimental results of the

asynchronous circuit and its competitive design. Lastly, in

the Section VI conclusion and future works will present.

II. RELATED WORKS

A. Delay Model and Signaling in Asynchronous Circuit

The asynchronous circuit design methodologies were

introduced as an alternative approach for the synchronous

one in the field of the digital system design.

Unlikely to the synchronous one, the asynchronous circuit

does not utilize globalized control signal but it employee

handshake protocol for the localized synchronization and

on-demand processing [13]. The handshake protocol uses a

request (Req) signal, which indicates data validity, and an

Implementation of an Asynchronous Micro-controller on

the Commercial FPGA

Ziho Shin, Myeong-Hoon Oh, Hyukje Kwon, Hagyoung Kim, and Dongjae Kang

466

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

DOI: 10.7763/IJCTE.2017.V9.1188

mailto:h0kim@etri.re.kr

acknowledgment (Ack) signal, which represents the

completion of data delivery. Pursuant to the handshake

protocol, the asynchronous circuit can be divided into two

categories which are shown in Fig. 1: 4-phase signaling (a)

and 2-phase signaling (b).For the 4-phase signaling, it only

uses rising edges of Req and Ack signals. So that 4-phase

signaling needs return to zero phase. On the other hand,

2-phase signaling utilizes both rising and falling edges.

(a) 4-Phase Signaling

(b) 2-Phase Signaling

Fig. 1.The handshake protocol.

From the delay model perspective, the asynchronous

circuit can also be divided into a bounded delays model, a

delay insensitive model, and a speed independent model. For

each delay model has its own distinctive modeling strategy

for the delay of gates and wires. Which are represented in

Table I [14].

TABLE I: DELAY MODELING

Delay Model Wire Gates

Bounded Delay Bounded Bounded

Delay Insensitive Un-Bounded Un-Bounded

Speed Independent Zero-Delay Un-Bounded

B. Implementation Methodologies in Asynchronous

Circuit

Due to the relatively simple design methodology, which is

the nature of synchronous circuit design, the commercialized

computer aided design (CAD) tools mainly focused on

synchronous circuit design scheme. Since then, the design

archetype has not ever been shifted.

However, the user experience request novelty technology,

which can provide multitudinous functions with the

low-powered and high-reliable process, specifically in the

sphere of the IoT. In order to meet these demands, design

methodologies need to be changed which can solve

botheration of traditional design methodologies.

The design process of the asynchronous circuit has

thoroughly differed from the synchronous circuit design.

Because the asynchronous circuit does not have any

globalized control signal inherently, optimization and control

path design strategy could not be same with synchronous

circuit one [15]-[18].

A Petri-Net based signal transition graph (STG)

representation [19] supports speed-independence model and

for the synthesis of an STG-based controller, Petrify [20] has

been widely used. Due to the STG is controlled by the

transition of the input signal, the arbiter cells are required on

the implementation stage, to select the appropriate control

signal. This feature can increase the design complexity.

To design the delay insensitive model, the designers

should use multi-bit data encoding scheme. By reason of, the

Req signal from the handshake protocol is embedded into the

multi-bit encoded data line. Thus, dual-rail or quad-rail

encoding strategy could be utilized. A null convention logic

(NCL) was introduced [21] as an implementation technique

for the delay insensitive model. To get the delay insensitive

characteristic from the NCL design, the designers have to use

special cells, which are called NCL gates (Threshold gates

(TH cells)).

The bounded delay model can be implemented by the

asynchronous finite state machine (AFSM) [22] which is

similar to Mealy machine styled FSM. To support the

synthesis of the AFSM design, 3D [23] has been introduced.

To implement the AFSM controller, matched delay cells

should be inserted to the control signal. While the delay of

wires and gates could not be modeled as zero/infinite value in

this model.

In this paper, we target the bounded delay model with

4-phase handshake protocol. Since targeted delay model and

handshake protocol analogous with synchronous one. This

characteristic can reduce design complexity of the

asynchronous circuit on the FPGA implementation.

Subsequently, in order to optimize control logic, we utilize

the 3D tool which can support directed ‘don’t care’ states and

conditional branches [23].

Additionally, to verify our design techniques, we designed

the MSP430 core [24], which is 16-bit processor known as

low-powered, simple instruction set architecture (ISA) and

open-compiling environments in the field of IoT.

C. Issues on FPGA Implementation in Asynchronous

Circuit

The FPGAs have been recognized as relatively

simple/easy and inexpensive implementation methodology

compared to a full-custom design. However, the legacy

FPGAs and their development tools are mainly focused on

synchronous circuit design. Hence, [25], [26] were studied as

the alternative techniques for implementing the asynchronous

circuit on the FPGA. Nonetheless, introduced techniques

were not targeted solutions for the bounded delay model

neither they were not designed micro-controller through

proposed techniques.

Thus, in this paper, we suggest useful techniques, which

can overcome encountered design issues, for the

implementation of bounded delay model on the

commercialized FPGA (focused on Xilinx FPGA [27] with

ISE).

Also, to verify proposed techniques, we designed and

implemented16-bit micro-controller on the Xilinx FPGA.

III. PROPOSED DESIGN TECHNIQUES

For the design of the bounded delay model, which is based

on the AFSM controller, the 3D tool can be used for the

purpose of logic level synthesis. Then, the designers need to

perform a mapping process of the given gate level net-list

from the 3D tool to the user specific technology library.

However, gate mapping on the FPGA level differs from

full-custom design. Because of the characteristic of the

467

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

FPGA, there are limitations on implementing gate level of

design and meeting the variation of timing condition

according to various FPGA types provided from the different

FPGA vendors.

Furthermore, the synthesized result from the 3D tool has

lots of feedback signals. Hence, if the hierarchy of gate

configuration does not match to the timing of the feedback

line, due to a race condition, the functionality of entire

control module cannot be guaranteed [28].

To avoid the race problems and matching the timing

conditions for each control module, the designers can utilize

look-up table (LUT)-based coding style, which supports

logical equation on the commercial FPGAs. Also, since

commercialized FPGA tools usually remove the feedback

lines on the step of the optimization process, the designers

should give “KEEP” option [29] to each wire. So that the

feedback lines are restricted not to be removed in the

optimization process. The Fig. 2 shows the pseudo code of

suggested LUT-based design technique for implementation

of the AFSM controller.

Fig. 2. Pseudo code of the AFSM controller.

The asynchronous circuit does not synchronize globally

but locally synchronize. So as to synchronize with its

neighbored modules, as shown in Fig. 3, the C-element is

required to operate localized synchronization. For the design

of C-element, there are two types: Based on RS-Latch style

and generalized C-element (latch free style) [13] (Described

in Fig. 4).

Fig. 3. The usage of the C-element.

(a) RS-latch-based C-element

(b) Generalized C-element

Fig. 4. Types of the C-elements.

Nevertheless, the commercial FPGA vendors do not

support generalized C-element neither RS-latch styled

C-element. In this paper, we utilize generalized C-element, in

order to reduce power consumption of control logic as well as

area occupation.

To implement the generalized C-element, the designers

can directly initiate the LUT. Following Table II represents a

truth table of the generalized C-element.

TABLE II: TRUTH TABLE OF THE GENERAL C-ELEMENT

A B  Out Out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Thus, for implementing the generalized C-element, which

has two input signal with low reset, the equation can be

expressed as in (1). Therefore, to initialize 4 input LUT, the

“INIT” code will be 16’h00E8.

𝑂𝑢𝑡 = {(𝐴 & 𝑂𝑢𝑡 & 𝑟𝑒𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅) + (𝐵 & 𝑂𝑢𝑡 & 𝑟𝑒𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅) +
 (𝐴 & 𝐵 & 𝑟𝑒𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅)}

 (1)

The Fig. 5 describes written code for both RS-latch styled

C-element and generalized C-element.

Moreover, to solve meta-stability conditions in the

asynchronous circuit system, the arbiter cell (MUTEX) is

required: When more than 2 control signals are asserted, the

arbiter should make a decision for the priority of each control

signal. To implement the MUTEX as the meta-stability filter,

simultaneously excited control signals pass through the

NAND gates with others feedback line. And the output of

NAND gates sent to the AND gates [13].

Fig. 6 describes possible implementation method for the

MUTEX cell. For all of the gates in the Fig. 6 configured by

LUT equations (Likewise in the Fig. 5 (b)) with “KEEP”

constraints to retain its functionality.

The bounded delay model is comparable with the

synchronous circuit. However, in order to achieve

asynchrony of the bounded delay model, the handshake

signal from the asynchronous controller need to be matched

to the respective data path module. Therefore, worst-case

delay of data path requires to be calculated and the calculated

delay should be inserted as a “Matched delay cell”.

In the case of implementing the matched delay cell,

formally, the designers employee chains of “INVERTER” or

“AND” gates as shown in Fig. 7. However, on the

commercial FPGAs, the delay cells do not provide. Also, if

the designers make gate chain, the optimizer easily remove

that logic. Owing to accomplish matching the delays of the

respective data path, the designers need to make user specific

delay cells by invoking the LUT gates [30] with “KEEP”

constraints. After that, the designers require to measure the

delay of written LUT gates manually on the post-route

simulation level since, the timing of written LUT based delay

cell would vary, depending on which FPGA model was used.

468

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

(a) Generalized C-element

(b)RS-Latch styled C-element

Fig. 5. Implementation of C-elements.

Fig. 6. Concurrent control signal handler (MUTEX) [13].

Fig. 7. Matched delay cells: Typical method.

To make a processor, some peripherals such as block

memories and input/output ports are needed. Especially, the

block memories are highly required since our processor

architecture still uses traditional styled one (Harvard/Von

Neumann Architectures) [31]. This is attributed to the fact

that, the designers could write block memories, like ROM

and RAM, own their purpose. However, using the

user-defined memory is not an efficient way to implement

block memories, because vendors already provide block

devices as an IP or embedded one [27].

Consequently, to utilize embedded resources, the

interfacing technique for the synchronous block between

asynchronous one is decidedly demanded.

To interface among the asynchronous circuit and

synchronous block, the most important thing is signal

matching for each control signal. And, hence, handshake

protocol of the asynchronous circuit should be mapped to the

clock gating control signal for the synchronous block. Thus,

according to the rising edges of handshake protocol, the clock

signal can be gated. Further, for the 4-phase handshake

signaling, the Ack signal needs to be generated from the

interfacing module. Hence, when the interfacing unit detects

Req signal, the Req signal passes through the LUT based

matched delay element as described in Fig. 8.

The generated Ack signal must be matched to the

accordance of a response time of the synchronous block. To

be specific, if the delayed signal does not match to timing

constraints (Set-up/Hold time regulations of

latches/Flip-Flops) of the synchronous block, the

asynchronous circuit cannot be guaranteed the validity of

fetched data.

Fig. 8. Basic concept of interfacing module.

IV. DESIGN OF ASYNCHRONOUS MSP 430 ON FPGA

The MSP430 core executes 27 reduced instruction set

computer (RISC)-type instructions and it supports 7

addressing modes. Theoretically, every instruction can use all

the addressing modes without any restriction. Thus, instead

of RISC styled design, a complex instruction set computer

(CISC) styled design is more suitable for the MSP 430 core

[32] in order to support various addressing mode and various

opcode sizes for each instruction.

In this paper, we designed the MSP430 core in two

different types:
1) Asynchronous MSP430: The control path designed as

the bounded delay with 4-phase handshake

protocol-based AFSM controller (AMSP430).

2) Synchronous MSP430: The control path designed as an

FSM-based controller (SMSP430).

These cores are implemented on the commercial Xilinx

Spartan-3 FPGA (xc3s400-5tq144) [33]. The data path is

designed as Fig. 9 [32] and it is shared by each AMSP430 and

SMSP430.

The AFSM controller for the AMSP430 is synthesized

with the 3D tool for the elimination of excessive restrictions

469

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

on concurrent events. Afterward, the synthesized gate-level

logic equations mapped into the LUT gates through the

proposed design techniques.

Afterward, through reviewing the technology schematic,

which is provided by Xilinx ISE, we verified that our

proposed interfacing logic between the synchronous block

and the asynchronous block is well glued. The Fig. 10 shows

the technology schematic of designed system.

Fig. 9. Data path architecture [32].

Fig. 10. Technology schematic of designed system.

V. EXPERIMENTAL RESULT

In this paper, we designed two different versions of the

MSP430 core and these are implemented on the

commercialized Xilinx Spartan-3 FPGA. For the description

language, we utilize Verilog HDL. As a designing and timing

simulation tools, Xilinx ISE and ISim were used. And, to

keep the architectural design of both cores, we did not

optimize the control path and data path on the synthesis level

of design [29]. Lastly, in order to verify its functionality, we

perform timing simulation for each control module on each

step of the design process through Xilinx ISim. Fig. 10 shows

the waveforms for partial parts of instruction fetch and

decode module and synchronous block ROM interfacing

module simulations.

As shown in Fig. 11 (a), when next IFID (Req) signal is

asserted, which indicates Req signal for fetching the next

instruction, to express Ack, the next IFIDOK signal is excited.

Subsequently, ReadInstruction (Req) is generated for

accessing the memory interface. Consequently, as an Ack

signal, MemoryReadAckis delivered. Afterward, for writing

the instruction to the instruction register, IRwrite (Req) signal

rises. And to deliver the Ack, the IRwirteDone is asserted. As

a consequence, in order to increase program counter (PC),

PCincrease (Req) and PCincreaseDone (Ack) is followed.

Likewise, other control signals are delivered.

Therefore, through the timing simulation, we confirmed

that the designed controller executes the 4-phase handshake

protocol and its output is verified with required AFSM

control signals.

The Fig. 11 (b), describes the simulation of interfacing

module for the synchronous block ROM. When the read

(Req) and 16-bit address are delivered to the interfacing

module, for the read signal, it passes through the matched

delay cells, which are configured as LUT-based one. Then

according to the delay time, the Ack signal is generated. In

this point, Ack signal should assert, when output data

becomes valid. And for the address, inputted address is

translated to memory address then, related to the Req and

Ack signals, the respected data is delivered.

(a) Waveform of the instruction fetch and decode module

(b) Waveform of the interface module with synchronous block rom

Fig. 11. Post-route level timing simulation.

470

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Fig. 12. Block diagram of experimentation environment.

To check its functionality in the real system, we implement

the entire system on to the Spartan-3 FPGA and it runs

benchmark programs [34], when every module is passed the

timing simulation.

As described in Fig. 12. The host PC was used for

downloading the bitstream file to target FPGA through the

JTAG interface as well as timing simulation for before

implementing the designed core. To check the functionality

of designed core, we run the emulator [35] as the reference

core on the host PC and it executes same benchmark program

[34]. The host PC monitors output signals of designed core.

(e.g., PC, address, control signals).

Additionally, to check the performance of the each

designed core, we measure the cycle of instruction fetch

signal through the oscilloscope. Additionally, to clarify its

durability under the unstable voltage circumstances, we

apply an unstable voltage to designed cores.

The performance in the typical condition has measured

both cores, around 18MHz. According to the supplied

voltage, the performance of each core is degraded at the

condition of low-voltage. In detail, for the synchronous core,

the instruction fetching cycle is dramatically dropped. On the

other hand, the asynchronous one keeps its performance until

3.2V and it degrades at the 3.0V.

This experimentation stands for the asynchronous core can

execute the application on the low-voltage condition and it

can guarantee its functionality until 3.0V. However, the

functionality of the synchronous core cannot be guaranteed

under unstable supply voltage condition. While the

instruction fetch signal from the synchronous controller

(FSM) is functioning, the data path is malfunctioned. The

reason is that the clock network becomes unreliable under the

unstable voltage circumstance.

Withal, to check the power consumptions of each core in

precisely, we perform power analysis through the Xilinx ISE

and ISim. The power simulation results show that the

SMSP430 consumes 84.2mW. To be specific, since

SMSP430 has clock network, the dynamic power shows

28.7 %from the entire power consumption. On the other hand,

in the case of AMSP430, owing to the nature of the

asynchronous circuit it can remove the globalized clock

network, which accounts for around 30% of the total power

consumption in our case, fundamentally. Therefore,

AMSP430 consumes lower power than SMSP430.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose the design techniques for the

bounded delay model with the 4-phase signaling-based

asynchronous circuit on the commercial FPGAs. Then, we

designed the 16-bit micro-controller, which targeted to the

IoT application, through the proposed techniques.

The experimentation and simulation results show that

designed asynchronous MSP430 consumes 41% lower power

than the synchronous MSP430.In addition, the asynchronous

core exhibits fault tolerance in the unstable power condition

comparing to the synchronous one.

Henceforth, we will optimize the asynchronous MSP430

core and attach peripherals for the real applications. Also, to

provide congeniality with MSP430-GCC compiler, we will

analyze the compiled binary program in the near future.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of

Things (IoT): A vision, architectural elements, and future directions,”

Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660,

Sep. 2013.

[2] Verizon, State of the Market: Internet of Things 2016 Report, Verizon,

2016.

[3] J. Uthus and O. Strom, MCU Architectures for Compute-Intensive

Embedded Applications, ATMEL White Paper, 2009.

[4] Arduino. (2017). [Online]. Available: https://www.arduino.cc/

[5] Raspberrypi. (2017). [Online]. Available:

https://www.raspberrypi.org/

[6] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen. “A survey on

internet of things from industrial market perspective,” IEEE Access,

vol. 2, pp. 1660-1679, 2014.

[7] Y. I. Ismail, “Interconnect design and limitations in nanoscale

technologies,” in Proc. 2008 IEEE International Symposium on

Circuits and Systems, 2008, pp. 780-783.

[8] C. J. Anderson, et al., “Physical Design of a Fourth-Generation

POWER GHz Microprocessor,” in Proc. ISSCC2001, 2001, pp.

232-233.

[9] J. McCardle and D. Chester, “Measuring an asynchronous processor’s

power and noise,” in Proc. Synopsys User Group Conf., 2001, pp.

66-70.

[10] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor,

and G. Stegmann, “An asynchronous low-power 80C51

microcontroller,” in Proc. 4th ASYNC, 1988, pp. 96-107.

[11] M. E.

dissertation, Stanford University, CA, 1992.

[12] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver,

“AMULET2e: An asynchronous embedded controller,” in Proc. IEEE,

Aug. 2002, pp. 243-256.

[13] J. Sparso and S. Furber, Principles of Asynchronous Circuit Design – A

Systems Perspective, New York, U.S,: Springer, 2001.

[14] A. Davis and S. M. Nowick, “An introduction to asynchronous circuit

design,” The Encyclopedia of Computer Science and Technology , vol.

38, pp. 1-58, Sep. 1997.

[15] C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous

circuitry by retiming,” in Proc. 3rd Caltech Conf. on VLSI, 1983, pp.

87-116.

[16]
cycle-time minimization,” IEEE Tr. On CAD, vol. 10, pp. 63-73, 1991.

[17] P. H. Ho. “Industrial Clock Synthesis,” ISPD, 2009.

[18] E. G. Friedman, “Clock distribution network in synchronous digital

integrated circuits,” in Proc. IEEE, May 2001, pp. 665-692.

[19] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli, “A unified

signal transition graph model for asynchronous control circuit

synthesis,” in Proc. ICCAD92, 1992, pp. 104-111.

[20] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavgno, and A.

Yakovelv, “PETRIFY: A tool for manipulating concurrent

specifications and synthesis of asynchronous controller,” IEICE Tr. on

Information and System, vol. E80-D, no. 3, pp. 315-325, Mar. 1997.

[21] K. M. Fant, Logically Determined Design Clockless System Design

with Null Convention Logic, New York, U.S: John Wiley & Sons, Inc.,

2005.

[22] C. J. Myers, Asynchronous Circuit Design, New York, U. S: John

Wiley & Sons, 2001.

[23] K. Y. Yun, “Synthesis of asynchronous controllers for heterogeneous

systems,” Ph.D dissertations, Stanford University, CA, 1994.

[24] MSP430x2xx Family User’s Guide, SLAU144J, Texas Instrument,

2013.

471

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Dean, “STRiP: Ph.D. A selfⴀtimed RISC processor,”

G. De Micheli, “Synchronous logic synthesis: Algorithms for

[25] Z. Xia, S. Ishihara, M. Hariyama, and M. Kameyama, “An

asynchronous FPGA based on dual/single-rail hybrid architecture,” in

Proc. ERSA’12, vol. 139, 2012.

[26] M. M. Kim and P. Beckett, “Design techniques for NCL-based

asynchronous circuits on commercial FPGA ,” in Proc. 2014 17th

Euromicro Conference on Digital System Design, 2014, pp. 451-481.

[27] Spartan-3 Generation FPGA User Guide, UG331 (v.1.8), Xilinx,

2011.

[28] M. H. Oh, Y. W. Kim, S. Kwak, C. H. Shin, and S. N. Kim,

“Architectural design issues in a clockless 32 bit processor using an

asynchronous HDL,” ETRI Journal, vol. 35, no. 3, pp. 480-490, Jan.

2013.

[29] Constraints Guide, UG625 (v. 14.5), Xilinx, 2013.

[30] J. G. Lee and M. H. Oh, “Asynchronous circuit designs on an FPGA for

targeting a power/energy efficient SoC,” IEICE Trans. Electron., vol.

E97-C, pp. 253-263, Apr. 2014.

[31] J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, 5th ed. San Francisco, C.A, U.S,: Morgan

Kaufmann Publishers Inc., 2011.

[32] M. H. Oh, C. Shin, and S. Kim, “Design of Low-Power Asynchronous

MSP430 Processor Core Using AFSM Based Controllers,” in Proc.

23rd ITC-CSCC, 2008, pp. 1109-1112.

[33] Spartan-3 FPGA Family Data Sheet, DS099, Xilinx, 2013.

[34] Z. Shin, M. H. Oh, J. G. Lee, H. Y. Kim, and Y. W. Kim. (Mar. 2017).

Design of a Clockless MSP430 Core Using Mixed Asynchronous

Design Flow. IEICE Electronics Express. [Online] 14(8). pp.

20170162. Available: http://doi.org/10.1587/elex.14.20170162

[35] Rudolf Geosits. MSP430-Emulator. GitHub. Available:

https://github.com/RudolfGeosits/MSP430-Emulator

Ziho Shin received B.E. in electrical and electronics

engineering from University of Ulsan in 2015 Ulsan,

Korea. He was worked as VRE operation intern

goodwill San Francisco|SanMateo|Marine Counties

HQ in 2014 at San Francisco, California, USA. And

he joined Automatic Control LAB in University of

Ulsan, Ulsan, South Korea as a research assistant

from 2012 to 2013. He is currently enrolled in master

course student in computer software, Department of

University of Science and Technology (UST) in Electronics and

Telecommunication Research Institute (ETRI) Campus, Daejeon, Korea. His

research interest focuses on computer architecture, asynchronous circuit

design and high-speed system fabric interconnection design.

Myeong-Hoon Oh received his Ph.D in information

and communications engineering from Gwangju

Institute of Science and Technology (GIST),

Gwangju, Korea in 2005. He has been with

Electronics and Telecommunications Research

Institute (ETRI), Daejeon, Korea since 2005 as a

senior and principal researcher. From 2006, he has

been an associate professor in University of Science

and Technology (UST), Daejoen, Korea. His current

research focuses on digital circuit design, embedded system, cloud

computing infrastructure, and cloud computing standardization. He also has

been an editor for cloud computing in ITU-T SG13 since 2012.

Hyukje Kwon received his MS degrees in electronics

engineering in Chonbuk National Univerisity, Korea

in 1997. And in 2008, he received PhD degrees in the

same university. In 2012, he joined the Electronics

and Telecommunications Research Institute (ETRI),

Daejeon, Korea. His current research interest focuses

on micro-server system and high-speed system fabric

interconnection design.

Hag Young Kim received B.S and M.S in electronics

engineering from Kyungpook National University,

Daegu, Korea, in 1983, and 1985, respectively, and

Ph.D in computer engineering from Chungnam

National University, Daejeon, Korea, in 2003. In

1988, he joined ETRI, Daejeon, Korea. His current

research interests are micro-server and high

performance computing system architecture.

Dongjae Kang received B.S and M.S in computer

science from Inha University, Incheon, Korea, in

1999 and 2001 respectively and Ph.D in computer and

information engineering from Inha University,

Incheon, Korea in 2010. He is a principal researcher at

cloud computing research group in ETRI since 2001

and is a professor at computer software department in

University of Science and Technology (UST) since

2009. His main research part is Cloud computing and

virtualization. Another interesting parts includes system software, open

source software (OSS) and system management software. Since 2008, his

research focused on multi-Cloud technologies including server

virtualization, Cloud management platform, Cloud service brokerage and

Cloud federation.

472

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

