

Abstract—It is inevitable that the response time of a message

is delayed in a CAN network where multiple ECUs share a

single bus. However, delays of response time should be

minimized for messages related to the safety of a driver or a

vehicle. If the response time exceeds the deadline, the safety of

the driver and the whole of the vehicle system may be impaired.

Therefore, it is essential to verify the CAN database in advance

so that the response time of a message does not exceed the

deadline. In this paper, we propose a framework composed of

UPPAAL and a DBC2XML component, which automatically

generates a UPPAAL model from a CAN database and show

how to verify the CAN database using this framework.

Index Terms—Controller area network, DBC, formal

verification, UPPAAL.

I. INTRODUCTION

CAN (Controller Area Network) is a serial communication

protocol that supports distributed real-time control and

multiplexing, and is widely used as an automotive

communication protocol globally [1]. There are several ECUs

(Electronic Control Units) connected to one CAN bus, and

each ECU periodically or aperiodically transmits various

messages to the CAN bus. If multiple ECUs try to transmit a

message at the same time, only one message with the highest

priority is successfully transmitted through the arbitration

process, and the others that fail to be transmitted are

retransmitted. Due to this nature of CAN protocol, the

response time of low priority messages is delayed. By setting

an offset for each message, the CAN bus bandwidth can be

utilized to the maximum, reducing the response time delay.

However, using a large number of messages or allocating

offsets inefficiently still results in a delay of response time.

In the case of messages containing information related to

airbags or brakes, delay of response time can have a serious

impact on the safety of the driver and the vehicle. That is, the

delay of response time can damage the safety of the driver and

the whole of the vehicle system. When designing a CAN

network, these messages are given relatively higher priority

than other messages, but there may be other messages in the

same CAN network that should not be delayed. Therefore, the

Manuscript received July 10, 2017; revised October 23, 2017. This

research was supported by the MSIP (Ministry of Science, ICT and Future

Planning), Korea, under the ITRC (Information Technology Research Center)

support program (IITP-2017-2015-0-00445) supervised by the IITP (Institute

for Information & communications Technology Promotion.

Beomyeon Cho and Taewook Kim are with the Department of Automotive

Convergence, Korea University, Seoul, Korea (e-mail: bycho@

formal.korea.ac.kr, twkim@formal.korea.ac.kr).

Jin-Young Choi is with Graduate School of Information Security, Korea

University, Seoul, Korea (e-mail: choi@formal.korea.ac.kr).

messages of the CAN network used in the vehicle, which is a

safety-critical system, must be verified to ensure that the

response time meets the given deadline.

There are studies on the delay of message response time

[2]-[6]. Ken Tindell et al. use equations of the scheduling

theory [2]. On the other hand, [3] and [4] are studies that verify

various properties of a CAN network based on model checking

using timed automata and temporal logic [7]-[9].

In [3], Jan Krakora et al. model the CAN network using

UPPAAL, a formal specification and verification tool, and

verify logical and timing properties for the model. However,

because of the complicated model with low abstraction level,

it takes a long time to verify one property, and verification is

performed with only four messages in the paper. That is, there

is a limit to verifying a real CAN database using many

messages.

In [4], Can Pan et al. model the CAN network using

UPPAAL and verify 11 given properties. In order to satisfy

more properties, they propose a way to dynamically change the

message IDs to raise the priority. However, in order to change

the priority dynamically, the application layer's algorithm

must be involved in MAC (Media Access Control), which is

the role of the data link layer. Also, dynamically changing

message IDs make other ECUs difficult to interpret the

messages and require additional mechanisms to solve it.

In this paper, we propose a framework to automatically

generate UPPAAL model from real CAN database which

contains a large number of messages, and to verify logical

properties and timing properties using the generated UPPAAL

model. By using this framework, it is possible to verify the

safety of the CAN database at the vehicle design stage, and to

find counter examples which violate the properties in advance.

We can design a safer vehicle by redesigning the CAN

network to reflect these cases.

The paper is organized as follows: in Section II, we

introduce the components that make up the framework. In

Section III, by using the framework we demonstrate verifying a

given DBC file, which is a CAN database and show the

verification results. Section IV concludes the paper.

II. CAN DATABASE VERIFICATION FRAMEWORK

The proposed framework consists of DBC2XML

component and UPPAAL as shown in the Fig. 1. DBC2XML

accepts a CAN database file (.DBC) as input, and generates an

UPPAAL model (.XML). The DBC file contains various

information about the CAN network, and DBC2XML extracts

only information about the message. DBC2XML generates an

UPPAAL model based on the extracted information. UPPAAL

CAN Database Verification Framework Using UPPAAL

Beomyeon Cho, Taewook Kim, and Jin-Young Choi

438

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

DOI: 10.7763/IJCTE.2017.V9.1182

performs model checking by inputting the UPPAAL model

generated by DBC2XML and properties to be verified. The

logical properties and timing properties used in this paper are

included in the library, and can be added manually in

UPPAAL if users want to further verify other properties. If the

UPPAAL model satisfies the given property, it results in

'satisfied', and if not, it results in 'not satisfied' with a counter

example.

Fig. 1. Overview of proposed framework.

A. CAN Database

The CAN database is an ASCII file containing information

about the CAN network and can include information about the

ECUs, the messages, and signals used by each ECU. There are

many kinds of CAN database, and the DBC format designed

by Vector is the most widely used.

Among the information contained in the CAN database,

information on a message generally includes a message name,

an ID, a DLC (Data Length Code), and a cycle time, etc. If

necessary, users can define and use message attributes

additionally. The message information included in the DBC

file to be used in this paper is shown in Fig. 2, and it is

assumed that the deadline and the offset are not included in the

DBC file.

Fig. 2. Example of DBC file.

B. DBC2XML

DBC2XML is a component that automatically generates an

UPPAAL model (.XML) from a CAN database file (.DBC) to

verify logical properties and timing properties. DBC2XML is

executed in the following three steps, and they are repeatedly

executed for all DBCs in the specified folder:

1) In the parsing step, DBC2XML extracts information

about messages such as message name, ID, DLC, and

cycle time from the DBC file and stores it in memory in

the form of map data structure.

2) In the processing step, DBC2XML assigns deadlines and

offsets, which are not defined in the DBC file but are

necessary for verifying the properties, to each message

and stores them in the map data structure. In this paper,

we assume that the deadline of all messages is 1 ms, and

the offsets are arbitrarily assigned in units of 1 ms. The

message information after the processing step is shown in

Fig. 3.

Fig. 3. Message information after processing step.

3) In the making XML step, DBC2XML generates a

UPPAAL model using the information contained in the

map data structure and libraries located in the specified

folder. The libraries include common contents for

generating UPPAAL model independent of a given DBC

file. Fig. 4 is a part of the DBC2XML source code that

copies a library into an XML file and writes message ID

information to the XML file. Fig. 5 is a part of the

libraries necessary to generate Transceiver model.

Fig. 4. Part of DBC2XML source code.

439

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Fig. 5. Part of DBC2XML libraries.

If UPPAAL model is too complicated, a state explosion

problem may occur or a verification time may become

excessively long when performing model checking. To prevent

this situation, DBC2XML generates an abstract UPPAAL

model considering the following:

1) 25 μs is set to UPPAAL clock 1. It is preferable to set the

nominal bit-time 2 μs to UPPAAL clock 1 when the bit

rate of the CAN network is 500 kbps, but using a small

unit of UPPAAL clock can lead to impractically long

verification times.

2) A 3-bit IFS (Interframe space) field is included in the

message frame.

3) All messages are transmitted by different ECUs, and

aperiodic messages are not considered.

The UPPAAL model that DBC2XML automatically

generated from DBC file of Fig. 2 is shown in the Fig. 6, and

the comprehensive overview is shown in the Fig. 7. The

UPPAAL model consists of one Bus model and several ECUs,

and the ECU consists of one Application model and one

Transceiver model.

The Bus model is shared by multiple ECUs transmitting

messages. If there is no ECU to transmit a message, the Bus

model is in an idle state, and when a ECU transmit s a message,

the Bus model transitions to a busy state.

In the Application model, non-periodic messages are

transitioned to the not_periodic state and are no longer

considered. In the case of a periodic message, the Application

model sets an offset as determined in the processing step, and

generates a transmission signal of the message at fixed cycle

time. Before the message transmission starts, the Application

model transitions to the ready state and consumes time as

much as jitter. Jitter includes the time the control logic is

processed and the time the message waits in the transmit queue.

In this paper, jitter is set to 100 μs as WCET (Worst Case

Execution Time). When the transmission is completed, the

Application model transitions to the idle state and waits for

the next cycle.

The Transceiver model receives the transmission signal

from the Application model and performs the arbitration

process. The highest priority message among the messages

participating in the arbitration process is transmitted

successfully (transmitting state of Transceiver model in Fig. 6),

and the other messages perform the arbitration process again

for retransmission (failed state of Transceiver model in Fig. 6).

Since the length of the arbitration field is 12 bits, 12 bit-time

is consumed to perform the arbitration process (ArbTime). The

message occupying the CAN bus through the arbitration

process transmits the remaining bits of the frame, and the time

corresponding to the number of bits is consumed (AfterArb).

Fig. 6. Bus model, application model, and transceiver model.

440

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Fig. 7. Comprehensive overview of UPPAAL model.

C. UPPAAL

UPPAAL is a tool for modeling, simulating, and verifying a

real-time system and specifies the behavior of the system with

the network of automata with UPPAAL clock and variables

[10]. Models specified through UPPAAL consist of templates,

locations, edges, labels, etc. and are represented in XML

format.

Model checking is performed by inputting the UPPAAL

model automatically generated from DBC2XML and

properties to be verified into UPPAAL. Model checking is a

method to automatically explore all the state space of the

model and check whether the properties are satisfied, and the

properties are expressed in simplified TCTL (Timed

Computation Tree Logic). If the UPPAAL model satisfies the

property, the result is 'satisfied'. If the UPPAAL model does

not satisfy the property, it returns 'not satisfied' with a counter

example.

III. VERIFICATION WITH MODEL CHECKING

We verify the logical and timing properties of the model

generated using DBC2XML. The verification was carried out

on Intel Xeon E5-2680 2.7GHz with 256GB RAM, running

Ubuntu 16.04 LTS.

A. Verifying Logical Properties of the Model

The UPPAAL model generated using DBC2XML should

be formally verified to satisfy the logical properties of Table I.

Properties can be expressed in simplified TCTL and we

confirmed that the model satisfied all the logical properties as

a result of performing model checking.

TABLE I: LOGICAL PROPERTIES IN SIMPLIFIED TCTL

1. Two different messages should not be transmitted at the same

time.

2. In the arbitration process, the situation that the higher priority

message fails due to the lower priority message should not

happen.

3. If the message is being transmitted, the CAN bus must be in busy

state.

1. A[] not (tra0.transmitting and tra1.transmitting)

2. A[] not tra0.failed

3. A[] tra0.transmitting imply Bus.busy

B. Verifying Timing Properties of the Model

Through the proposed framework, we can verify the timing

properties of a given DBC file. The given DBC file is as shown

in the Fig. 2, assuming that the deadline for all messages is 1

ms as a requirement. That is, if the response time of the

message is less than 1 ms, the message is successfully

transmitted according to the requirement. If the response time

exceeds 1 ms, the predetermined requirement is not satisfied

and the transmission is delayed.

The results of the verification of the DBC file of the Fig. 2

using the proposed framework are shown in the Table II. The

three messages with IDs 0x106, 0x109, and 0x10E were found

to have the worst case response times of 1.025 ms, 1.250, and

1.650 ms, respectively. That is, the load on the CAN bus is

very low at 28.5%, but the specific messages have been

transmitted exceeding the deadline. If these messages were

messages containing information directly related to the safety

of the driver and the vehicle, delay of response time would

have undermined the safety of the driver and the entire vehicle.

TABLE II: RESULT OF TIMING PROPERTIES VERIFICATION

Message ID
Cycle time

(ms)

Offset

(ms)

Response time

(ms)

0x100 10 4 0.350

0x101 10 4 0.575

0x102 20 2 0.350

0x103 20 3 0.350

0x104 20 4 0.800

0x105 20 0 0.350

0x106 10 4 1.025

0x107 0 2 ·

0x108 0 3 ·

0x109 10 4 1.250

0x10A 5 0 0.525

0x10B 5 1 0.350

0x10C 5 2 0.575

0x10D 20 3 0.575

0x10E 10 4 1.650

IV. CONCLUSION

We propose a framework that can easily verify logical and

timing properties using UPPAAL and DBC2XML which

automatically generate UPPAAL model from CAN database.

CAN network designers can use this framework to easily

verify the safety of the CAN database at the vehicle design

stage. It will also help reduce vehicle development costs.

However, there is a limitation that the CAN network is

abstracted and modeled to prevent the state explosion problem

and to minimize the verification time. In order to obtain more

accurate results, the degree of abstraction should be lowered,

and research on this will be left as future research.

REFERENCES

[1] ISO 11898-1: 2015 Road vehicles – Controller area network (CAN) –

Part 1: Data link layer and physical signaling.

[2] K. Tindell and A. Burns, “Guaranteeing message latencies on Control

Area Network (CAN),” in Proc. the 1st International CAN Conference,

1994.

[3] J. Krakora and Z. Hanzalek, “Timed automata approach to CAN

verification,” in Proc. 11th IFAC Symposium on Information Control

Problems in Manufacturing, INCOM, Salvador, Elsevier, 2004.

441

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

[4] C. Pan, J. Guo, and L. F. Zhu, “Modeling and verification of CAN bus

with application layer using UPPAAL,” Electronic Notes in Theoretical

Computer Science, vol. 309, pp. 31-49, December 22, 2014.

[5] P. M. Yomsi, D. Bertrand, N. Navet, and R. I. Davis, “Controller area

network (CAN): Response time analysis with offsets,” in Proc. the 9th

IEEE International Workshop on Factory Communication System, 2012,

pp. 43-52.

[6] S. Mubeen, J. M. Turja, and M. Sjodin, “Extending offset-based

response-time analysis for mixed messages in controller area network,”

presented at 18th IEEE Conference on Emerging Technologies and

Factory Automation (ETFA), Cagliari, Italy, Sep. 10-13, 2013.

[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

Computer Science, vol. 126, pp. 183-235, April 25, 1994.

[8] J. P. Katoen, Concepts, Algorithms, and Tools for Model Checking, pp.

189-256, 1999, ch. 4.

[9] E. M. Clarke, “The birth of model checking,” 25 Years of Model

Checking, Springer, pp. 1-26, 2008.

[10] G. Behrmann, A. David, and K. G. Larsen. (2006). A Tutorial on Uppaal

4.0. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.222.9120

Beomyeon Cho was born in Seongnam, Korea on

February 11, 1989. He received the BS degree in

computer science from Korea University in 2016. He

started MS degree in electronic control from March

2016.

His research interests are formal methods and

automotive communication protocols (CAN,

automotive ethernet, and WAVE).

Taewook Kim was born in Seoul, Korea on September

22, 1990. He received the BS degree in electronic

engineering from Kookmin University. He started MS

degree in electronic control from March 2016.

His research interests include formal methods,

software integration and safety.

Jin-Young Choi was born in 1959 in Korea. He

received the BS degree in computer engineering from

Seoul National University in 1982. He received MS

degree in computer science, Drexel University in 1986

and acquired the Ph. D degree in computer science from

the University of Pennsylvania in 1993. His research

interests are real-time computing, formal methods

(formal specification, formal verification, and model

checking), process algebras, SDN, security, and

software engineering.

He is a professor in Graduate School of Information Security in Korea

University.

442

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Virtual Reality and Technology

