

Abstract—Storm surge models are vital nowadays because

the recent destruction caused by hurricanes. In this study, we

are profiling and evaluating explicit and implicit solvers, two

popular methods used in storm surge predictions. Hurricane

Katrina storm surge hindcast has been used in this simulation

for both methods. We use analysis tools to examine both

methods from various perspectives including: execution times,

computational intensity, characterization of instructions, cache

memory misses and others. Many experiments have been

performed with various number of processors. We did not only

present the differences between methods, but also we addressed

the challenges associated with these methods.

Index Terms—Storm surge, implicit and explicit solvers,

parallelization, and profiling.

I. INTRODUCTION

Hurricanes are one of the most sophisticated phenomena,

and it is evident that the disasters caused by hurricanes are

affecting millions of people and cost a lot of money. Therefore,

the need for precise, fast, and reliable models that are capable

of predicating storm surges, floods, and levee overtopping is

inevitable. An enormous amount of previous work is being

done in this regard, resulting in computational models which

solves the Shallow Water Equations (SWEs) for predication

of water elevation and velocity. There are many variables that

have been taken in consideration to formulate the phenomena

mathematically, resulting in accurate simulation and

prediction. These variables include: acceleration, wind stress,

pressure, the Coriolis force due to planetary rotation, waves

that ride the circulation, and many other potential parameters

[1]. The algorithms used to solve the SWEs equations depends

on explicit [1], implicit [2], or semi-implicit [1] methods.

In this study, we are profiling and evaluating the

performance of explicit and implicit solvers from various

perspectives including: execution time, computational

intensity, MIPS and MFLOPS, cache memory miss rates, TLB

misses, IO and others. We are considering Advanced

Circulation Model (ADCIRC) [3] and the Computation and

Modeling Engineering Laboratory (CaMEL) [2] as models for

the evaluation of explicit and implicit solvers, respectively.

The rest of this paper is organized as the following: Section

II discusses the related work regarding ADCIRC and CaMEL,

section III discuss the methodology used in this study, Section

IV presents the found results followed by the challenges in

Section V, and conclusion in Section VI.

II. RELATED WORK

At the beginning, ADCIRC was developed by Luettich et al.

[4] and Luettich and Westerink [1]; however, it has been

improved throughout the years by many researchers [5]-[9]. In

ADCIRC, the water elevation and velocity are obtained by

solving the depth-integrated continuity equation in

Generalized Wave-Continuity Equation (GWCE), and the

momentum equations in its 2DDI or 3D forms, respectively.

On the other hand, CaMEL is developed recently by Akbar

and Alibadi [2] and Aliabadi et al. [10]. CaMEL uses hybrid

finite element and finite volume techniques to solve the

conservative equations implicitly with the focus of being

numerically stable. Both models are written in Fortran, and

both are using METIS [11] partitioning library; however,

versions are different.

III. METHODOLOGY

In this study, we are measuring the performance of both

models from various aspects including: execution time, cache

misses, millions of instructions per second (MIPS) and mega

floating-point operations per second (MFLOPS) and others

with various number of processors. To achieve the consistency,

we are using the same storm surge hindcast, Hurricane Katrina

with a mesh that consists of 254,565 nodes and 492,179

elements [12]. This mesh covers half of the Atlantic Ocean and

the entire Gulf of Mexico. HPCtoolkit [13] with Performance

Application Programming Interface (PAPI) [14] has been

linked dynamically to both models to collect data during the

execution for profiling and evaluation. Our experiments

ranged from one processor up to 256 processors. We ran our

experiments on a cluster formed of Dell blade servers that have

two 8-core Intel Xeon E5-2400 processors and 96GB of RAM,

and it is backed by an InfiniBand FDR/Ethernet 10/40GB

interconnect [15]. For the results below, we ran the full

simulation of Hurricane Katrina hindcast for each model,

unless otherwise stated. Finally, it is worth noting that

HPCtoolkit overhead is 1-5% [13].

IV. THE RESULTS

Even though the two models are using completely different

Profiling and Evaluation of Implicit and Explicit Storm

Surge Models

Abdullah Alghamdi and Muhammad Akbar

417

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Manuscript received June 1, 2017; revised November 24, 2017.

,

Nashville, TN 37209 USA (e-mail: aalghamd9@ my.tnstate.edu).

(e-mail:

makbar@tnstate.edu).
 at Tennessee State University, Nashville, TN 37209 USA

with College of Engineering at Tennessee State UniversityA. Alghamdi is

Akbar is with Mechanical and Manufacturing Engineering DepartmentM.

DOI: 10.7763/IJCTE.2017.V9.1178

techniques, we showed that very few mismatches, if any, are

visible between the two results. Fig. 1 shows the comparison

between ADCIRC and CaMEL solvers for Hurricane Katrina

near its peak point. One of the most important differences is

the time step. ADCIRC explicit solver uses 4 seconds as its

maximum time step to run successfully, while CaMEL can go

far beyond that with its capability to run successfully with 100

seconds. Although CaMEL implicit solver is far stable than

ADCIRC explicit solver, CaMEL is slower than ADCIRC.

Fig. 1. Comparison between ADCIRC and CaMEL.

In the following subsections, we will start by presenting our

findings at the execution time followed by the computational

intensity. Then, characterization of instructions, and cache

memory misses and memory and IO operations will come after

that.

A. Execution Time

In our work, we classified the models’ subroutines and

statements into three categories. First, MPI category, which

includes all the statements invoked for the sake of

parallelization using Message-Passing Interface (MPI) library.

Second, APP category, which includes all the core statements

and subroutines that are concerned with the calculation of

water elevation and velocity and IO statements of the model.

Third, OTHERS category, which includes memory

allocation/deallocation, resource reservation, preparatory

steps, and any other statement that do not fit the previous

categories. Fig. 2 shows our findings of ADCIRC explicit and

CaMEL implicit solvers plotted against the number of

processors used in every experiment. The presented findings

are in seconds, and the total number of time steps is 70,000

time-steps for both models to assure that both models undergo

the same conditions.

It is obvious that the CaMEL implicit solver is much slower

than ADCIRC explicit solver. As expected, the APP time gets

decreased significantly whenever we double the number of

processors. Also, we notice that the time being spent on the

OTHERS category is negligible, especially when we increase

the number of processors. Observing the time of MPI

increasing whenever we increase the number of processors was

anticipated. We notice that MPI time of implicit solver is

much higher than when we use explicit solver. This result

could be correlated to the fact that the implicit solver

communicates the results during every time step with all the

processors; however, that is not the only reason. ADCIRC and

CaMEL programming and parallelization are different.

Noticing the performances of ADCIRC and CaMEL serial

codes, where there are no processor-to-processor

communications, indicates the huge difference between the

two models.

Fig. 2a. Execution time for ADCIRC model.

Fig. 2b. Execution time for CaMEL model.

B. Computational Intensity

After finding that the serial program in CaMEL takes much

more time than ADCIRC serial program, we decided to

calculate the computational intensity for both programs. Fig. 3

shows the results of our experiments. It is indisputable that

ADCIRC executes twice more instructions as CaMEL

executes per cycle, given the number of processors is 128 and

256. Also, whenever we increase the number of processors,

ADCIRC computational intensity is increasing, especially for

128 and 256 processors, while CaMEL is not gaining much of

its parallelization on this aspect.

Also, we investigated the number of CPU cycles that has no

instruction issued, and the difference was interesting. The

difference in ADCIRC for each experiment with a different

number of processors was imperceptible as presented in Fig. 4.

On the other hand, CaMEL has significantly increasing the

number of CPU cycles with no instruction issued which

418

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

inhibited the speedup of the program. One reason for such

result is the communication intensity between processors

where the processors will spend so much time waiting for

others to communicate; however, that could not be the only

reason.

Fig. 3. Computational Intensity for both models.

Fig. 4. The number of CPU cycles with no instruction issued.

C. Characterization of Instructions

In order to study the instructions being executed by both

models, the instructions have been categorized into four

classes: floating-point instructions (FL) which represents all

the arithmetic operations over floating-points numbers,

loading data instructions (LD) which represents instructions

issued to fetch a piece of data from the memory, storing data

instructions (SR) which represents the instructions to store a

piece of data at the memory, branch instruction (BR) which

represents all the jump instructions to execute a different

sequence of instructions, and OTHERS which represents all

the instructions that do not belong to the previous categories.

Because of the similarity between the experiments and to

avoid the repetition, Fig. 5 shows only the results of

instructions classification based on experiments for 2, 32, 256

processors. The LD instructions, which consume great deal of

time, are decreasing whenever we increase the number of

processors. Nonetheless, CaMEL’s LD instructions are much

higher comparing to ADCIRC for 256 processors. Because the

floating-point division is a time-consuming instruction [16], it

has been studied and we notice that around 9% of the FL

instructions are division instructions for ADCIRC. On the

other hand, CaMEL has only around 5% of the FL instruction

as division instructions; however, when we compare the actual

number of ADCIRC’s division instructions and CaMEL’s

division instructions, CaMEL has 4.41E+13 instructions,

which is significantly higher number comparing to ADCIRC

that has only 4.94E+12 instructions.

Fig. 5. Instruction characterization for both models.

D. MIPS and MFLOPS

MIPS and MFLOPS are commonly used metrics in

programs and computer architecture evaluations. In our study,

we show the aggregate MIPS and MFLOPS for both models in

Fig. 6. Both models have a very similar starting point, and it

increases when the number of processors get increased. For

MIPS, ADCIRC seems to gain much benefit of its

parallelization by having sharper growth compared to CaMEL,

especially with 128 and 256 processors. On the other hand,

both models have a similar growth on MFLOPS, with the

exception that CaMEL is slightly better with 64 and 128

processors.

Fig. 6. The aggregate MIPS and MFLOPS for both models.

419

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

E. Cache Memory Misses

Cache misses are a time-consuming process due to the long

latency associated with accessing the main memory after

failing to read or write to the cache. In our study, we

investigated the miss rate for both cache memories: level two

(L2) and level three (L3), and misses includes both data misses

and instructions misses. In Fig. 7, we show that CaMEL has an

enormous amount of L2 and L3 misses compared to ADCIRC.

This result explains another reason for CaMEL’s slowness

due to its low capability of reusing data and instructions

brought the cache. On the other hand, ADCIRC has a steady

cache miss rate. Moreover, examining the table lookaside

buffer (TLB) miss rates for both models shows that both

models has a similar starting point; however, the result varies

extremely when the number of processors increase. As shown

in Fig. 8, CaMEL has a significant TLB misses for 64, 128,

and 256 processors which indicates that CaMEL is not

optimized properly.

Fig. 7. The number of L2 and L3 cache misses for both models.

Fig. 8. The number of TLB misses for both models.

F. Memory and IO

Although the effect of memory allocations and deallocation

and reading input and writing output on models performances

is not prominent in our experiments, we examined these

factors too. Our results show that ADCIRC reads slightly less

input files than CaMEL because there are some specific

parameters required by CaMEL [2]. For writing output and

memory allocation and deallocation, ADCIRC seems to be

doing much more than what CaMEL is doing as shown in Fig.

9, and yet the memory allocation and deallocation and IO

operations are not significant compared to other operations.

V. CHALLENGES

This research endured some challenges along the way. One

is the limitation that we had regarding hardware counters

availability. Many hardware counters are not available in our

experimental environment and it couldn’t be derived such as:

cache memory misses for level one (L1) counter,

floating-point square root, multiplication, and inverse

operations counters, synchronized instructions counters and

others.

Because ADCIRC and CaMEL are programmed and

parallelized differently, the comparison between the explicit

and implicit storm surge models are not completely precise.

The less optimization that CaMEL has made the comparison

discouraged. Developing and evaluating implicit and explicit

solvers that have been developed for the same model would

have a significant impact on storm surge modeling.

Fig. 9. The number of IO and memory operations in megabytes for both models.

VI. CONCLUSION

In this study, we examine the storm surge explicit and

implicit solvers from various perspective in a comparative

study. ADCIRC and CaMEL models are chosen to represent

the explicit and implicit solvers, respectively. Hurricane

Katrina storm surge hindcast is used in all the experiments that

we did. The models are dynamically linked to HPCtoolkit for

measurement. We found that there are many factors that

contribute to the slowness of the implicit solver including:

intensive MPI communication, time-consuming instructions,

cache memory misses and TLB misses. The optimization of

CaMEL is an obstacle to conduct a precise comparative study

between the explicit and implicit solvers. Placing the explicit

and implicit solvers on the same programming and

parallelization architecture would have a significant impact on

storm surge modeling.

420

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

421

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

ACKNOWLEDGMENT

The authors would like to thank Renaissance Computing

Institute (RENCI) for providing the access to high

performance computing platform. Special thanks go to

scholarship program at Najran University, Saudi Arabia.

REFERENCES

[1] R. Albert Luettich and J. J. Westerink, Formulation and Numerical

Implementation of the 2D/3D ADCIRC Finite Element model R. Luettich,

2004.

[2] M. Akbar and S. Aliabadi, “Hybrid numerical methods to solve shallow

water equations for hurricane induced storm surge modeling,”

Environmental Modelling & Software, vol. 46, pp. 118-128, 2013.

[3] J. J. Westerink, R. A. Luettich Jr, C. A. Blain, and N. W. Scheffner,

“ADCIRC: An advanced three-dimensional circulation model for shelves,

coasts, and estuaries,” Report 2. User's Manual for ADCIRC-2DDI. No.

WES/TR/DRP-92-6-2. Army Engineer Waterways Experiment Station

Vicksburg MS, 1994.

[4] R. A. Luettich, J. J. Westerink, and N. W. Scheffner, “ADCIRC: An

advanced three-dimensional circulation model for shelves, coasts, and

estuaries,” Technical Report 1, Department of the Army, US Army Corps

of Engineers, Washington, DC 20314-1000, 1991.

[5] J. H. Atkinson, J. J. Westerink, and J. M. Hervouet, “Similarities between

the quasi‐bubble and the generalized wave continuity equation

solutions to the shallow water equations,” International Journal for

Numerical Methods in Fluids,

[6] C. Dawson, J. J. Westerink, J. C. Feyen, and D. Pothina, “Continuous,

discontinuous and coupled discontinuous–

element methods for the shallow water equations,” International Journal

for Numerical Methods in Fluids, vol. 52, no. 1, 63-88, 2006.

[7] J. J. Westerink, R. A. Luettich, J. C. Feyen, J. H. Atkinson, C. Dawson,

H. J. Roberts, M. D. Powell, J. P. Dunion, E. J. Kubatko, and H.

Pourtaheri, “A basin-to channel-scale unstructured grid hurricane storm

surge model applied to southern Louisiana,” Monthly Weather Review,

vol. 136, no. 3, 833-864, 2008.

[8] J. C. Dietrich, M. Zijlema, J. J. Westerink, L. H. Holthuijsen, C. Dawson,

R. A. Luettich, R. E. Jensen, J. M. Smith, G. S. Stelling, and G. W. Stone.

“Modeling hurricane waves and storm surge using integrally-coupled,

scalable computations,” Coastal Engineering, vol. 58, no. 1, pp. 45-65,

2011.

[9] S.

H. Atkinson, R. Jensen et al.., “A high-resolution coupled riverine flow,

tide, wind, wind wave, and storm surge model for southern Louisiana and

Mississippi. Part I: Model development and validation,” Monthly

Weather Review , 2010.

[10] S. Aliabadi, M. Akbar, and R. Patel, “Hybrid finite element/volume

method for shallow water equations,” International Journal for

Numerical Methods in Engineering, vol. 83, no. 13, 1719-1738, 2010.

[11] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for

partitioning irregular graphs,” SIAM Journal on Scientific Computing,
no. 1, pp. 359-392, 1998.

[13] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J.

Mellor‐Crummey, and N. R. Tallent, “HPCToolkit: Tools for

performance analysis of optimized parallel programs,” Concurrency and

Computation: Practice and Experience, vol. 22, no. 6, 685-701, 2010.

[14] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable interface

to hardware performance counters,” in Proc. the Department of Defense

HPCMP Users Group Conference,

[15] Predicting hurricane storm surge and waves precisely. [Online].

Available:

http://renci.org/wp-content/uploads/2014/08/2014_RENCI_Dell-CaseSt

udy.pdf

[16] M. Abd-El-Barr and H. El-Rewini, Fundamentals of computer

Organization and Architecture, vol. 38, John Wiley & Sons, 2005.

Abdullah A. Alghamdi currently is a Ph.D. student at

Tennessee State University (TSU), College of

Engineering, and team member of High Performance

Computing for Global Challenges (HPCGC) laboratory

at TSU. He got his masters from Rochester Institute of

Technology, Rochester, NY, 2013 in networking and

systems administration. Previously, he worked as

teaching assistant, and lecturer at Najran University,

Najran, Saudi Arabia. Currently, he is working on

developing a fully implicit solver for ADCIRC storm surge model, where we

try to increase the stability, and keep up the parallelization of model. Also, he

is interested in any multidisciplinary applications where his skills and

knowledge can be applied to address global challenges.

Muhammad K. Akbar is an assistant professor at

Mechanical and Manufacturing Engineering Department

at Tennessee State University (TSU) and the leader of

High Performance Computing for Global Challenges

(HPCGC) laboratory. Previously, he served as senior

research associate at Jackson State University, visiting

assistant professor at Georgia Institute of Technology.

Also, he was graduate research assistant at Georgia

Institute of Technology and University of Alabama.

He has received many funds as PI and CO-PI from NSF, DHS and Air Force

Research Laboratory. His research interests are computational fluid Dynamics;

thermal fluids, hurricane storm surge model development; porous media; gas

turbine film cooling; catalyticl converter simulation; multiphase flow;

particulate flow; microchannel / minichannel flow; MPI based parallel model

development; delayed detached eddy simulation turbulence model

development; Ansys fluent based modeling; fluid structure interaction; solar

energy.

vol. 45, no. 7, pp. 689-714, 2004.

J. M. Smith, J. Bunya, J. C. Dietrich, J. J. Westerink, B. A. Ebersole,

, vol.

 vol.

 138, no. 2, pp. 345-377

20,

[12] A. Y. Mukai, J. J. Westerink, and R. A. Luettich, “Guidelines for

using Eastcoast 2001 database of tidal constituents within Western

north Atlantic Ocean, Gulf of Mexico and Caribbean sea,” No.

ERDC/CHL-CHETN-IV-40. Engineer Research and Development

Center Vicksburg MS Coastal and Hydraulics LAB, 2002.

1999, vol. 710.

Continuous Galerkin finite

