
  

 

Abstract—Storm surge models are vital nowadays because 

the recent destruction caused by hurricanes. In this study, we 

are profiling and evaluating explicit and implicit solvers, two 

popular methods used in storm surge predictions. Hurricane 

Katrina storm surge hindcast has been used in this simulation 

for both methods. We use analysis tools to examine both 

methods from various perspectives including: execution times, 

computational intensity, characterization of instructions, cache 

memory misses and others. Many experiments have been 

performed with various number of processors. We did not only 

present the differences between methods, but also we addressed 

the challenges associated with these methods.  

 

Index Terms—Storm surge, implicit and explicit solvers, 

parallelization, and profiling. 

 

I. INTRODUCTION 

Hurricanes are one of the most sophisticated phenomena, 

and it is evident that the disasters caused by hurricanes are 

affecting millions of people and cost a lot of money. Therefore, 

the need for precise, fast, and reliable models that are capable 

of predicating storm surges, floods, and levee overtopping is 

inevitable. An enormous amount of previous work is being 

done in this regard, resulting in computational models which 

solves the Shallow Water Equations (SWEs) for predication 

of water elevation and velocity. There are many variables that 

have been taken in consideration to formulate the phenomena 

mathematically, resulting in accurate simulation and 

prediction. These variables include: acceleration, wind stress, 

pressure, the Coriolis force due to planetary rotation, waves 

that ride the circulation, and many other potential parameters 

[1]. The algorithms used to solve the SWEs equations depends 

on explicit [1], implicit [2], or semi-implicit [1] methods.  

In this study, we are profiling and evaluating the 

performance of explicit and implicit solvers from various 

perspectives including: execution time, computational 

intensity, MIPS and MFLOPS, cache memory miss rates, TLB 

misses, IO and others. We are considering Advanced 

Circulation Model (ADCIRC) [3] and the Computation and 

Modeling Engineering Laboratory (CaMEL) [2] as models for 

the evaluation of explicit and implicit solvers, respectively.  

The rest of this paper is organized as the following: Section 

 
 

 

II discusses the related work regarding ADCIRC and CaMEL, 

section III discuss the methodology used in this study, Section 

IV presents the found results followed by the challenges in 

Section V, and conclusion in Section VI. 

 

II. RELATED WORK 

At the beginning, ADCIRC was developed by Luettich et al. 

[4] and Luettich and Westerink [1]; however, it has been 

improved throughout the years by many researchers [5]-[9]. In 

ADCIRC, the water elevation and velocity are obtained by 

solving the depth-integrated continuity equation in 

Generalized Wave-Continuity Equation (GWCE), and the 

momentum equations in its 2DDI or 3D forms, respectively. 

On the other hand, CaMEL is developed recently by Akbar 

and Alibadi [2] and Aliabadi et al. [10]. CaMEL uses hybrid 

finite element and finite volume techniques to solve the 

conservative equations implicitly with the focus of being 

numerically stable. Both models are written in Fortran, and 

both are using METIS [11] partitioning library; however, 

versions are different. 

 

III. METHODOLOGY 

In this study, we are measuring the performance of both 

models from various aspects including: execution time, cache 

misses, millions of instructions per second (MIPS) and mega 

floating-point operations per second (MFLOPS) and others 

with various number of processors. To achieve the consistency, 

we are using the same storm surge hindcast, Hurricane Katrina 

with a mesh that consists of 254,565 nodes and 492,179 

elements [12]. This mesh covers half of the Atlantic Ocean and 

the entire Gulf of Mexico. HPCtoolkit [13] with Performance 

Application Programming Interface (PAPI) [14] has been 

linked dynamically to both models to collect data during the 

execution for profiling and evaluation. Our experiments 

ranged from one processor up to 256 processors. We ran our 

experiments on a cluster formed of Dell blade servers that have 

two 8-core Intel Xeon E5-2400 processors and 96GB of RAM, 

and it is backed by an InfiniBand FDR/Ethernet 10/40GB 

interconnect [15]. For the results below, we ran the full 

simulation of Hurricane Katrina hindcast for each model, 

unless otherwise stated. Finally, it is worth noting that 

HPCtoolkit overhead is 1-5% [13]. 

 

IV. THE RESULTS 

Even though the two models are using completely different 
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techniques, we showed that very few mismatches, if any, are 

visible between the two results. Fig. 1 shows the comparison 

between ADCIRC and CaMEL solvers for Hurricane Katrina 

near its peak point. One of the most important differences is 

the time step. ADCIRC explicit solver uses 4 seconds as its 

maximum time step to run successfully, while CaMEL can go 

far beyond that with its capability to run successfully with 100 

seconds. Although CaMEL implicit solver is far stable than 

ADCIRC explicit solver, CaMEL is slower than ADCIRC. 

 

 
Fig. 1. Comparison between ADCIRC and CaMEL. 

 

In the following subsections, we will start by presenting our 

findings at the execution time followed by the computational 

intensity. Then, characterization of instructions, and cache 

memory misses and memory and IO operations will come after 

that. 

A. Execution Time 

In our work, we classified the models’ subroutines and 

statements into three categories. First, MPI category, which 

includes all the statements invoked for the sake of 

parallelization using Message-Passing Interface (MPI) library. 

Second, APP category, which includes all the core statements 

and subroutines that are concerned with the calculation of 

water elevation and velocity and IO statements of the model. 

Third, OTHERS category, which includes memory 

allocation/deallocation, resource reservation, preparatory 

steps, and any other statement that do not fit the previous 

categories. Fig. 2 shows our findings of ADCIRC explicit and 

CaMEL implicit solvers plotted against the number of 

processors used in every experiment. The presented findings 

are in seconds, and the total number of time steps is 70,000 

time-steps for both models to assure that both models undergo 

the same conditions.  

It is obvious that the CaMEL implicit solver is much slower 

than ADCIRC explicit solver. As expected, the APP time gets 

decreased significantly whenever we double the number of 

processors. Also, we notice that the time being spent on the 

OTHERS category is negligible, especially when we increase 

the number of processors. Observing the time of MPI 

increasing whenever we increase the number of processors was 

anticipated. We notice that MPI time of implicit solver is 

much higher than when we use explicit solver. This result 

could be correlated to the fact that the implicit solver 

communicates the results during every time step with all the 

processors; however, that is not the only reason. ADCIRC and 

CaMEL programming and parallelization are different. 

Noticing the performances of ADCIRC and CaMEL serial 

codes, where there are no processor-to-processor 

communications, indicates the huge difference between the 

two models. 

 

 
Fig. 2a. Execution time for ADCIRC model. 

 

 
Fig. 2b. Execution time for CaMEL model. 

 

B. Computational Intensity  

After finding that the serial program in CaMEL takes much 

more time than ADCIRC serial program, we decided to 

calculate the computational intensity for both programs. Fig. 3 

shows the results of our experiments. It is indisputable that 

ADCIRC executes twice more instructions as CaMEL 

executes per cycle, given the number of processors is 128 and 

256. Also, whenever we increase the number of processors, 

ADCIRC computational intensity is increasing, especially for 

128 and 256 processors, while CaMEL is not gaining much of 

its parallelization on this aspect.  

Also, we investigated the number of CPU cycles that has no 

instruction issued, and the difference was interesting. The 

difference in ADCIRC for each experiment with a different 

number of processors was imperceptible as presented in Fig. 4. 

On the other hand, CaMEL has significantly increasing the 

number of CPU cycles with no instruction issued which 
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inhibited the speedup of the program. One reason for such 

result is the communication intensity between processors 

where the processors will spend so much time waiting for 

others to communicate; however, that could not be the only 

reason. 

 

 
Fig. 3. Computational Intensity for both models. 

 

 
Fig. 4. The number of CPU cycles with no instruction issued.  

C. Characterization of Instructions 

In order to study the instructions being executed by both 

models, the instructions have been categorized into four 

classes: floating-point instructions (FL) which represents all 

the arithmetic operations over floating-points numbers, 

loading data instructions (LD) which represents instructions 

issued to fetch a piece of data from the memory, storing data 

instructions (SR) which represents the instructions to store a 

piece of data at the memory, branch instruction (BR) which 

represents all the jump instructions to execute a different 

sequence of instructions, and OTHERS which represents all 

the instructions that do not belong to the previous categories.  

Because of the similarity between the experiments and to 

avoid the repetition, Fig. 5 shows only the results of 

instructions classification based on experiments for 2, 32, 256 

processors. The LD instructions, which consume great deal of 

time, are decreasing whenever we increase the number of 

processors. Nonetheless, CaMEL’s LD instructions are much 

higher comparing to ADCIRC for 256 processors. Because the 

floating-point division is a time-consuming instruction [16], it 

has been studied and we notice that around 9% of the FL 

instructions are division instructions for ADCIRC. On the 

other hand, CaMEL has only around 5% of the FL instruction 

as division instructions; however, when we compare the actual 

number of ADCIRC’s division instructions and CaMEL’s 

division instructions, CaMEL has 4.41E+13 instructions, 

which is significantly higher number comparing to ADCIRC 

that has only 4.94E+12 instructions. 

 

 
Fig. 5. Instruction characterization for both models. 

D. MIPS and MFLOPS 

MIPS and MFLOPS are commonly used metrics in 

programs and computer architecture evaluations. In our study, 

we show the aggregate MIPS and MFLOPS for both models in 

Fig. 6. Both models have a very similar starting point, and it 

increases when the number of processors get increased. For 

MIPS, ADCIRC seems to gain much benefit of its 

parallelization by having sharper growth compared to CaMEL, 

especially with 128 and 256 processors. On the other hand, 

both models have a similar growth on MFLOPS, with the 

exception that CaMEL is slightly better with 64 and 128 

processors. 

 

 
Fig. 6. The aggregate MIPS and MFLOPS for both models. 
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E. Cache Memory Misses  

Cache misses are a time-consuming process due to the long 

latency associated with accessing the main memory after 

failing to read or write to the cache. In our study, we 

investigated the miss rate for both cache memories: level two 

(L2) and level three (L3), and misses includes both data misses 

and instructions misses. In Fig. 7, we show that CaMEL has an 

enormous amount of L2 and L3 misses compared to ADCIRC. 

This result explains another reason for CaMEL’s slowness 

due to its low capability of reusing data and instructions 

brought the cache. On the other hand, ADCIRC has a steady 

cache miss rate. Moreover, examining the table lookaside 

buffer (TLB) miss rates for both models shows that both 

models has a similar starting point; however, the result varies 

extremely when the number of processors increase. As shown 

in Fig. 8, CaMEL has a significant TLB misses for 64, 128, 

and 256 processors which indicates that CaMEL is not 

optimized properly. 

 

 
Fig. 7. The number of L2 and L3 cache misses for both models. 

 

 
Fig. 8. The number of TLB misses for both models. 

F. Memory and IO 

Although the effect of memory allocations and deallocation 

and reading input and writing output on models performances 

is not prominent in our experiments, we examined these 

factors too. Our results show that ADCIRC reads slightly less 

input files than CaMEL because there are some specific 

parameters required by CaMEL [2]. For writing output and 

memory allocation and deallocation, ADCIRC seems to be 

doing much more than what CaMEL is doing as shown in Fig. 

9, and yet the memory allocation and deallocation and IO 

operations are not significant compared to other operations.  

 

V. CHALLENGES  

This research endured some challenges along the way. One 

is the limitation that we had regarding hardware counters 

availability. Many hardware counters are not available in our 

experimental environment and it couldn’t be derived such as: 

cache memory misses for level one (L1) counter, 

floating-point square root, multiplication, and inverse 

operations counters, synchronized instructions counters and 

others. 

Because ADCIRC and CaMEL are programmed and 

parallelized differently, the comparison between the explicit 

and implicit storm surge models are not completely precise. 

The less optimization that CaMEL has made the comparison 

discouraged. Developing and evaluating implicit and explicit 

solvers that have been developed for the same model would 

have a significant impact on storm surge modeling. 

 

 
Fig. 9. The number of IO and memory operations in megabytes for both models. 

 

VI. CONCLUSION  

In this study, we examine the storm surge explicit and 

implicit solvers from various perspective in a comparative 

study. ADCIRC and CaMEL models are chosen to represent 

the explicit and implicit solvers, respectively. Hurricane 

Katrina storm surge hindcast is used in all the experiments that 

we did. The models are dynamically linked to HPCtoolkit for 

measurement. We found that there are many factors that 

contribute to the slowness of the implicit solver including: 

intensive MPI communication, time-consuming instructions, 

cache memory misses and TLB misses. The optimization of 

CaMEL is an obstacle to conduct a precise comparative study 

between the explicit and implicit solvers. Placing the explicit 

and implicit solvers on the same programming and 

parallelization architecture would have a significant impact on 

storm surge modeling.  
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