



Abstract—Let K be a two conjunctive normal form and φ a

three conjunctive normal form, both formulas are defined over

the same set of variables. It is well known that SAT(K) is in the

complexity class P, while SAT(φ) is a classic NP-Complete

problem. We consider the computational complexity of

determining SAT(K φ) as an incremental satisfiability

problem (2-ISAT). We show that this problem is NP-complete

even if the number of occurrences of each variable in φ is one.

Also, we propose a method to review SAT(Kφ). Our proposal

is adequate to solve 2-ISAT problem. Our algorithm allows us to

recognize tractable instances of 2-ISAT.

I. INTRODUCTION

One of the fundamental problems in automatic reasoning is

the satisfiability problem (SAT) that tries to determine

whether a logical propositional formula F is (or not) satisfiable.

Considering F as a conjunctive normal form (CNF) without

restriction on the number of literals by clause, SAT(F) is a

classic NP-complete problem, even if each clause has at least 3

literals.

The 2-SAT case, that determines the satisfiability of two

conjunctive normal forms (2-CNF), is an important tractable

case of SAT. Variations of the 2-SAT problem, e.g. in the

optimization and counting area, have been essential for

establishing frontiers between tractable and intractable

problems.

The incremental satisfiability problem (ISAT) consists in

verifying whether satisfiability is maintained when new

clauses are added to an initial satisfiable formula. ISAT is

considered a generalization of the SAT problem since it allows

changes of the input formula over time.

case. In our proposal the incremental process is finished when

Fi is unsatisfiable or there are no more clauses to be added.

ISAT can be used in a large variety of applications that need to

be processed in an evolutive environment. This could be the

case of applications such as reactive scheduling and planning,

dynamic combinatorial optimization, review faults in

combinatorial circuits, dynamic constraint satisfaction, and

machine learning in a dynamic environment [1].

One idea used on ISAT methods, is to preserve the

structures formed when previous formulas were processed,

allowing the recognition of common subformulas that they

were previously considered. More importantly, it allows the

solver to reuse information across several related consecutive

problems. The resulting performance improvements make

ISAT a crucial feature for modern SAT solvers in real-life

applications [2].

Rather than solving related formulas separately, modern

solvers attempt to solve them incrementally, since many

practical applications require solving a sequence of related

SAT formulas [3], [4]. In this article, we consider ISAT as an

incremental problem that starts with an initial satisfiable

formula K=F in 2-CNF. In a second phase, a new formula φ in

3-CNF is added to K, both formulas; K and φ are defined on

the same set of variables. We denote this version of ISAT as

the 2-ISAT problem.

As a generalization of SAT, ISAT has been considered as an

NP Problem, although until now, the authors have not seen

complexity theory studies about the complexity-time

differences between SAT and ISAT. For example, it is known

that 2-SAT is in the complexity class P. However, it is not

known the computational complexity of 2-ISAT.

In [5], we have proposed a method to review the

satisfiability of (Kφ), and we have analysed instances of K

and φ that allows the existence of polynomial-time procedures.

We present here, a study about the threshold for the 2-ISAT

problem that could be helpful to understand the border

between P and NP complexity classes for instances of 2-ISAT.

In general, we show that 2-ISAT is NP-Complete, even if each

variable in φ has only one occurrence.

II. THE GRAPH VERTEX COLORING PROBLEM

The graph vertex coloring problem consists of coloring the

vertices of the graph with the smallest possible number of

colors so that no two adjacent nodes receive the same color. If

such a coloring with k colors exists, the graph is k-colorable.

The chromatic number of a graph G, denoted as (G),

represents the minimum number of colors for proper coloring

G. The k-colorability problem consists of determining whether

A Note for the Two Incremental Satisfiability Problem

Cristina López R., Guillermo De Ita L., and Pedro Bello L.

412

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Index Terms—3-Color

2-ISAT, NP-Complete problem, SAT problem.

ing, incremental satisfiability roblem, p

We consider ISAT as a dynamic incremental set of clauses:

F0,F1,…, Fi starting with an initial satisfiable formula F0. Each

Fi results from a change in the preceding formula Fi-1, imposed

by the ‘outside world’.

Even though, the changes can be a restriction (add clauses)

or a relaxation (remove clauses), we focus in the restriction

Manuscript received July 7, 2017; revised November 23, 2017. This work

was supported by the Benemérita Universidad Autónoma de Puebla.

Department of Computer Sciences, Puebla, México.

Cristina, López R. is with the Faculty of Computer Sciences in Benemérita

Universidad Aut

cristyna2001@hotmail.com).

Guillermo, De Ita. L. is with Faculty of Computer Sciences in Benemérita

Pedro. Bello L. is with Faculty of Computer Sciences in Benemérita

Universidad Aut

pb5pbello@gmail.com).

0

DOI: 10.7763/IJCTE.2017.V9.1177

Universidad Autónoma de Puebla, Mexico (e-mail: deita@ccc.inaoep.mx).

ónoma de Puebla, Puebla, Mexico (mail:

ónoma de Puebla, Puebla, Mexico (mail:

413

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

an input graph is k-colorable.

We denote as Kn as the complete graph of n nodes. And (t

Kn) as the disjoint union of t copies of Kn. In the case of the

vertex coloring problem, 2-coloring is solvable in polynomial

time, as well as to determine the 3-colorability for AT-free

graphs, perfect graphs [6], and for graphs free of K4 and (2 K2)

[7]. Similarly, to determine (G) for some classes of graphs

can be solved in polynomial time, as it is the case for interval

graphs, chordal graphs and comparability graphs [8]. In all

those cases, special structures (patterns) have been found to

characterize the classes of graphs that are colorable in

polynomial-time complexity. But in general, the k-colorability

problem, when k  3 becomes NP-complete, even for graphs G

with degree   3 [9].

Several works have been done to determine when a graph is

3-colorable, as well as to design efficient approximation

algorithms, namely, given a k-colorable graph to try to color it

efficiently with l colors, l  k, where l is as small as possible

[10]. The most recent results for determining the 3-colorability

of a graph are based on recognizing if the input graph is planar

and triangle-free [11], [12], or discovering some relationship

between the topology of the graph and its structural parts

[6]-[8], [13]-[17].

Although determining the 3-coloring of a graph is a

NP-complete problem, there is a good deal of research which

looks for specific topological patterns in graphs to determine

their 3-colorability. One of the first results in this line is the

renowned Grötzsch’s theorem [12], which guarantees that

every triangle-free planar graph is 3-colorable. From this

pioneer paper, several works have been developed looking for

patterns which allow us to determine the 3-colorability of a

graph.

For example, Lozin [7] has recently show some

polynomial-time instances of k-colorable graphs defined by

finitely many forbidden induced subgraphs. Also, Borodin has

shown that planar graphs without cycles of length 4 to 7 are

3-colorable [11]. Gimbel and Thomasson [17] found an

elegant 3-colorability proof for triangle-free projective planar

graphs. Dvorák [13] found a linear-time algorithm to decide

whether a triangle-free graph in a general surface Σ is

3-colorable. 3-colorability is also polynomially solvable for

graphs containing no induced path on 5 vertices [15].

3-coloring has been useful to show the NP-completeness of

the other combinatorial problem. In particular, we will show in

following chapter, a polynomial reduction from 3-coloring to

2-ISAT, proving then, the hardness computational complexity

of the 2-ISAT problem.

III. THE COMPUTATIONAL COMPLEXITY OF 2-ISAT

Lemma 1. 3-Coloring is polynomial reducible to SAT(K ⋀

φ), K a 2-CNF, φ a 3-CNF.

Proof. Let G = (V, E) be a graph where n=|V|, m=|E|. We

define the logical variables xv,c meaning that the vertex v∈V has

assigned the color c∈{1,2,3}. For each vertex v∈V, 3 logical

variables xv,1, xv,2, xv,3 are created. Therefore, there are 3*n

Boolean variables in (K ⋀ φ). We define first the constraints

forming K.

For every edge e = {u,v}∈ E, u and v must be colored

differently. This restriction is modeled by 3 binary clauses, in

the following way:(xu,1  xv,1)  (xu,2xv,2) 

(xu,3xv,3). There are 3*|E| binary clauses of this class. The

other class of binary constraints allows to define the

restriction that every vertex has not more than one color. This

restriction is modeled by 3 binary clauses in the following way.

For each vertex v∈V:

(xv,1xv,2)(xv,2xv,3)(xv,3xv,1). There are 3*|V|

binary clauses for this class. Both sets of 3*(|V|+|E|) binary

clauses form the 2-CNF K. On the other hand, the 3-CNFφ is

formed by the clauses modeling the restriction that every

vertex must be assigned at least one color. Then, for each

vertex the following clause is generated: (xv,1 xv,2 xv,3). φ

has 3-clauses. Furthermore, each one of the 3*n variables of

v(K) has only one occurrence in φ .

This reduction can be performed in polynomial time on the

size n and m, since it consists in creating 3* (n+m) binary

clauses for K, and (3*n) 3-clauses for φ. We also have that G

has a 3-Coloring if and only if (K⋀φ) is satisfiable.

In order to design reductions from 3-Coloring to 2-ISAT,

we must consider the dynamic nature of 2-ISAT. Our proposal

of 2-ISAT works in two consecutive phases. In the first phase,

the input is a 2-CNF K. The purpose of this phase is to

determine SAT(K), as well as to build any computational or

logical structure, denoted as AK and derived from K, that could

be helpful for processing the input formula of the following

phase. The main restriction on the construction of AK is to

spent only polynomial time on the size |K|, such that all the

phase 1 runs upper bounded by a polynomial on |K|.

In the second phase of 2-ISAT, the input is a 3-CNF φ

where all variables in φ have already appeared in K. This is

denoted as v(φ)  v(K). The purpose of this phase is to

determine SAT(K⋀φ). Although K has been already processed,

it can be used again as well as AK, in order to accelerate the

revision of SAT(K⋀φ).

Theorem 1. 2-ISAT is NP-Complete

Proof. The membership of 2-ISAT in NP comes from the

fact that SAT is in NP, since a nondeterministic algorithm

needs to guess only a satisfying assignment for v(K), and

check in polynomial time whether that assignment setting

satisfies (K⋀φ), since v(φ) v(K). This happens independently

of the two phases of 2-ISAT.

We have seen that 3-Coloring is polynomial reducible to

SAT(K⋀φ), and since 3-Coloring is NP-complete, then

SAT(K⋀φ) is also NP-complete. If a structure AK allows to

determine SAT(K⋀φ) in upper-bounded time by a polynomial

on |Kφ |, then 3-Coloring would be solvable in polynomial

time. Thus, if 2-ISAT is polynomial solvable, then 3-Coloring

too. This shows that 2-ISAT is NP-complete too.

From the above theorem, it is not expected (unless P=NP)

to build an efficient algorithm for determining 2-ISAT,

414

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

although in the first phase, K has been already processed and

some structures AK, describing the logical dependencies

among variables in K, have been built.

Notice that each component of SAT(K⋀φ) is

polynomial-time solvable, that is, is solvable in linear time

when K is a 2-CNF [18]. Meanwhile SAT(φ), where φ is a

3-CNF and each one of its variables occurrs only one time on

φ, is a trivial solvable problem, since every variable is pure in φ.

Therefore, φ is always satisfiable. However, SAT(K⋀φ) is a

NP-complete problem. Therefore, it is not expected to build a

structure AK that allows to solve SAT(K⋀φ) efficiently. For

example, if AK is the set of models of K, then to review

SAT(K⋀φ) can be performed efficiently, since it consists on

delete from AK all falsifying assignment of each clause in φ.

However, the set of models AK does not have always a

polynomial size on |K|. In the worst case, the construction of

the set of models of K would require an exponential time on

|K|. Nevertheless, we can look for restrictive cases of 2-ISAT

that can be solved efficiently.

IV. THE TRANSITIVE CLOSURE OF A 2-CNF

The fact that in a 2-CNF formula a clause is equivalent to a

pair of implications can be straightforward established as

follows: if {x, y}∈F then {x, y} is equivalent to both ¬x → y

and ¬y → x. The arrow → has the usual meaning of

implication in classical logic.

Definition 1. Let F be a 2-CNF and L its set of literals. The

relation → R  LxL is defined as follows: x → R Y if and only if

x → y.

Definition 2. Let F be a 2-CNF, a partial assignment s of F

is a feasible model for , if s does not falsify any clause in F.

We consider now the transitive closure of x → R, denoted

by ”⇒”. This new relation ⇒ can always be constructed

inductively from x → R. For any feasible model s of F where x

and y occur in F; if x⇒ y and x is true in s then it is straight

forward to show that y is true in s. It is said that y is forced to

be true by x. Let T(x) be the set of literals forced to be true by

x, that is T(x) = { x }  { y: x⇒y}.

It is clear that, if x is a literal occurring in a formula F, and if

¬x ∈ T(¬x) then x cannot be set to true in any model of F.

Analogously, if x ∈ T(¬x) then x cannot be set to false in any

model of F.

Definition 3. Let F be a 2-CNF, for any literal x ∈ F, it is

said that x ∈ T(x) is inconsistent if ¬x ∈ T(x) or ⟘∈ T(x),

otherwise T(x) is said to be consistent.

Unit clauses in 2-CNF can be expressed as implications,

that is, if F has unit clauses {u} then uu⟘, hence ⟘∈ T(¬u).

As a consequence, in formulas with unit clause {u} follows

that T(¬u) is inconsistent. Let F be a 2-CNF with n variables

and m clauses, it has been shown that for any literal x ∈ F, T(x)

and T(¬x) are computed in polynomial time over |F|, in fact,

for all l ∈ Lit(F), T(l) is computed with time complexity

O(n*m) [19].

For any literal x in a 2-CNF, the sets T(x) and T(x) allow

to determine which variables have a fixed logical values in

every model of F, that is to say, the variables that are true in

every model of F and the variables that are false in every model

of F. The properties of the sets T(x) and T(x) will be

established as a lemma.

Lemma 2. Let F be a 2-CNF and x a variable in F.

1. If T(x) is inconsistent and T(x) is consistent then x is

true in every model of F.

2. If T(x) is inconsistent and T(x) is consistent then x is

true in every model of F.

3. If both T(x) and T(x) are inconsistent then F does not

have models and F is unsatisfiable.

4. If both T(x) and T(x) are consistent then x does not have

a fixed valued in each model of F.

Proof. 1. Suppose x is false in a model of F, so x should be

true in that model of F. However, T(x) is inconsistent, so x 

x and x cannot be true in the model of F contradicting the

assumption. Hence, any model of F has to assign false to x and

true to x. The other cases are proved similarly.

From properties (1) and (2) of lemma 4 we formulate the

following definition:

Definition 4. A base for the set of models of a 2-CNF F,

denoted as S(F), is a partial assignment of F which consists of

the variables with a fixed truth value.

We denote by Transitive Closure(F) to the procedure which

computes the sets T(x) and T(x) for each x ∈ v(F). The

transitive procedure applied on a 2-CNF F allows to build

bases for the set of models of F. If a base S(F) is such that |S(F)|

= |v(F)|, then each variable of F has a fixed truth value in every

model of F, so there is just one model.

Definition 5. Let F be a 2-CNF and x a literal of F. The

reduction of F by x, also called forcing x and denoted by F(x),

is the formula generated from F by the following two rules.

a) removing from F the clauses containing x (subsumption

rule),

b) removing ¬x from the remaining clauses (unit resolution

rule).

A reduction is also sometimes called a unit reduction. The

reduction by a set of literals can be inductively established as

follows: let s={l1,l2,…,lk} be a partial assignment of v(F). The

reduction of F by s is defined by successively applying

definition 5 for li, i = 1,…,k. That is reduction of F by l1 gives

the formula F(l1), following a reduction of F(l1) by l2, giving as

a result the formula F [l1], [l2] and so on. The process

continues until F[s] = [l1,l2,…,lk] is reached. In case that s = φ

then F[s]=F.

Let F be a 2-CNF formula and s a partial assignment of F. If

a pair of contradictory unitary clauses is obtained while F[s] is

being computed, then F is falsified by the assignment s.

Furthermore, during the computation of F[s], new unitary

clauses can be generated. Thus, the partial assignment s is

extended by adding the already found unitary clauses, that is,

s=s {u} where {u} is a unitary clause. So, F[s] can be again

reduced using the new unitary clauses. The above iterative

process is generalized, and we call to this iterative process

Unit Propagation (F, s). For simplicity, we will abbreviate

415

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

Unit Propagation (F, s) as UP(F, s).

As a result of applying UP(F, s), we obtain a new

assignment s’ that extend to s, and a new subformula F’

formed by the clauses from F that are not satisfied by s’. We

denote (F’,s’)=UP(F, s) to the pair resulting of the application

of Unit Propagation on F by the assignment s. Notice that if s

falsifies F then s’ could have complementary literals and F’

contains the null clause. And when s satisfies F, then F’ is

empty.

V. INCREMENTAL SATISFIABILITY PROBLEM

The incremental satisfiability problem (ISAT) involves

checking whether satisfiability is maintained when new

clauses are added to an initial satisfiable knowledge base K.

ISAT is considered as a generalization of SAT since it allows

changes of the input formula overtime. Different methods have

been applied to solve ISAT, among them, variations of the

branch and bounds procedure, denoted as IDPL methods,

which are usually based in the classical

Davis-Putnam-Loveland (DPL) method. In a IDPL procedure,

when adding new clauses, the procedure maintains the search

tree generated previously for the set of clauses K. Rather than

solving related formulas separately, modern solvers attempt to

solve them incrementally since many practical applications

require solving a sequence of related SAT formulas [3], [4].

From now on, let us consider that K is a 2-CNF and φ is a

3-CNF. We consider that φ consists of clauses that effectively

decrease the set of models of K. We present now, an algorithm

to solve 2-ISAT.

Algorithm 1. Adv

Input: K, ɸ
Output: a message ”SAT” or “UNSAT”

S = Base(K)

Cola = ⌀

while ɸ  ⌀ do

for all x ∈ υ(ɸ) do /* Apply the reduced rules on K and ɸ
{ includes ɸ = ɸ [S]} */

 S1=ST(x)

 S2=ST(¬x) /*{S1,S2 are consistent because x,¬x/∈ S}*/

 (F4, K1, S4) = UP(ɸ, S1)

 (F5, K2, S5) = UP(ɸ, S2)

 M4 = KK1S4

 M5 = KK2S5 /* {test for inconsistency} */

 if (((Nil ∈ F4) or (M4 is unsatisfiable)) and ((Nil ∈ F5) or

(M5 is unsatisfiable))) then

 return (’UnSat’)

 end if

 if (F4 = ⌀)∨(F5 =⌀) then

 return (’Sat’)

 end if

 if (Nil ∈ F4 or M4 is unsatisfiable) then

 S = ST(¬x)

 Cola = Append(Cola, M5)

 ɸ = F5

 end if

 if (Nil ∈ F5 or M5 is unsatisfiable) then

 S = ST(x)

 Cola = Append(Cola, M4)

 ɸ = F4

 end if

 for all l∈ S4 do /* Updating the sets T[X’s] in S4 */

 T(x) = T(x)T(l)

 T(¬l) = T(¬l)T(¬x)

 end for

 for all l ∈ S5 do /* Updating the sets T[X’s] in S5 */

 T(¬x) = T(¬x)T(l)

 T(¬l) = T(¬l)T(x)

 end for

end for

 K=Next(Cola)

end while

return

We show now, the soundness and completeness of our

algorithm.

(Soundness) If Adv outputs Unsat then effectively (Kφ)

is unsatisfiable step1, because any feasible assignment S

cannot be extended with value for the variable x without

falsifying (Kφ). Similarly, when Adv outputs SAT then

effectively (Kφ) is satisfiable because the step 2 has built a

model for (Kφ). While the steps 3 and 4 fix the correct

logical value of a variable x∈ v(K) and the procedure continue

the main loop but with one less variable.

(Completeness) Our procedure always stops for any input

(Kφ), where K is a 2-CNF and φ a 3-CNF. The first two

steps of Adv halt our procedure. On the other hand, the steps 3

and 4 determine a unique value for a variable in v(K).

Otherwise, the step 5 allows to modify K or φ since v(φ) ⊆ v(K)

and always is possible to find a consistent T(x) (while K keeps

satisfiable) to be extended by resolution on φ . Thus, at most

in n =|v(K)| iterations, adv determines the satisfiability of (K

φ).

It is clear that a set of changes over a satisfiable KB K in

2-CNF could change K into a general CNF, in which case, K

will turn into a general CNF K’, K  K’, where the SAT

problem on K’ is a classic NP-complete problem. One relevant

question, in our opinion, is to establish the frontiers between

P and NP by adding 3-clauses φ to an initial tractable 2-CNF K,

and taking advantages of the structures formed by any efficient

algorithm solving SAT(K), in order to determine SAT(K⋀φ).

Assuming an initial formula K, and a new formula φ to be

added, our proposal allows us to determine some tractables

cases for 2-ISAT.

i. If K and φ are 2-CNF’s then (Kφ) is a 2-CNF. In this

case, 2-ISAT is solvable in linear-time by applying a

well known algorithm by Tarjan [18].

ii. For monotone formulas, ISAT keeps only satisfiable

formulas. If each variable maintains a unique sign in

416

International Journal of Computer Theory and Engineering, Vol. 9, No. 6, December 2017

both formulas K and φ, then (Kφ) is always

satisfiable.

iii. If φ consists of a single clause and we have the

transitive closures of K, we only have to review which

closures comes inconsistent for containing the

falsifying assignments of φ. This process can be done

in linear time on the number of literals of K.

VI. CONCLUSIONS

Let K be a two conjunctive normal form and φ a three

conjunctive normal form, both formulas are defined over the

same set of variables. We consider the computational

complexity of determining SAT(K⋀φ) that is considered as a

base case of the incremental satisfiability problem (2-ISAT).

We show that this problem is NP-complete even if the number

of occurrences of each variable in φ is one. Also, we propose a

method to review SAT(K⋀φ). Our proposal is adequate to

solve the 2-ISAT problem, and our method allows to recognize

tractable instances of 2-ISAT.

REFERENCES

[1] M. Mouhoub and S. Sadaoui, “Systematic versus non systematic

methods for solving incremental satisifiability,” Int. J. on A.I. Tools, vol.

16, no. 1, pp. 543-551, 2007.

[2] S. Wieringa, “Incremental satisfiability solving and its applications,”

Ph.D. thesis, Department of Computer Science and Engineering, Alto

University, 2014.

[3] G. Cabodi, L. Lavagno, M. Murciano, A. Kondratyev, and Y. Watanabe,

“Speeding-up heuristic allocation, scheduling and binding with

SAT-based abstraction/refinement techniques,” ACM Trans. Design

Autom. Electr. Syst., vol. 15, no. 2, 2010.

[4] N. Eén and K. Sörensson, “An extensible SAT-solver,” in Proc. of 6th

International Conference on Theory and Applications of Satisfiability

Testing (SAT), Santa Margherita Ligure, vol. 2919, Enrico Giunchiglia

and Armando Tacchella, Ed. Italy: LNCS, 2003, pp. 502-518.

[5] G. De Ita, R. Marcial-Romero, and J. A. Hernández, “The incremental

Satisfiability problem for a two conjunctive normal form,” Electronic

Notes in Theoretical Computer Science, vol. 328, pp. 31-45, 2016.

[6] J. Stacho, “3-Colouring AT-free graphs in polynomial time, algorithms

and computation,” ISAAC 2010, pp. 144-155, 2010.

[7] V. V. Lozin and D. S. Malyshev, “Vertex coloring of graphs with few

obstructions,” Discrete Applied Mathematics, vol. 216, pp. 273-280,

2017, Elsevier.

[8] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed.

North Holland, 2004.

[9] D. Johnson, “The NP-completeness column: An ongoing guide,” Jour. of

Algorithms, vol. 6, pp. 434-451, 1985.

[10] S. Arora, E. Chlamtac, and M. Charikar, “New approximation guarantee

for chromatic number,” Proceedings STOC, 2006.

[11] O. V. Borodin, A. N. Glebov, A. Raspaud, and M. R. Salavatipour,

“Planar graphs without cycles of length from 4 to 7 are 3-colorable,”

Journal of Combinatorial Theory, Series B 93, pp. 303-311, 2005.

[12] H. Grötzsch and Z. Wiss, “Ein dreifarbensatz fur dreikreisfreie netze auf

der kugel,” Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8,

pp. 109-120, 1959.

[13] Z. Dvorák, D. Král, and R. Thomas, “Three-coloring triangle-free graphs

on surfaces,” in Proc. of the 20th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA), NY, 2009, pp. 120-129.

[14] F. V. Fomin and D. Kratsch, “Exact exponential algorithms,” Texts in

Theoretical Computer Science, an EATCS Series, Springer, 2010.

[15] C. Hoang, M. Kaminski, V. Lozin, J. Sawada, and X. Shu, “Deciding k

colorability of P5-free graphs in polynomial time,” Algorithmica, vol. 57,

pp. 74-81, 2010.

[16] G. B. Mertzios and P. G. Spirakis. (2012). Algorithms and almost tight

results for 3-colorability of small diameter graphs. [Online]. Available:

arxiv.org/pdf/1202.4665v2.pdf

[17] J. Gimbel and C. Thomassen, “Coloring graphs with fixed genus and

girth,” Trans. Amer. Math. Soc., vol. 349, pp.4555-4564, 1997.

[18] B. Aspvall, M. R. Plas, and R. E. Tarjan, “A linear-time algorithm for

testing the truth of certain quantified Boolean formulas,” Information

Processing Letters, vol. 8, no. 3, pp. 121-123, 1979.

[19] D. Gusfield, and L. Pitt, “A bounded approximation for the minimum cost

2-sat problem,” Algorithmica, vol. 8, pp. 103–117, 1992.

Cristina López R. is a researcher-professor at DAIS -

Academic Division in informatic and systems, in Juarez

Autonomous University of Tabasco, México. Her areas

of interest are intelligent systems and satisfiability

methods. She is currently a Ph.D student in the language

& knowledge engineering (LKE) at the Faculty of

Computer Sciences in Benemérita Universidad

Autónoma de Puebla, Puebla, México.

Guillermo De Ita L. obtained his PhD in engineering in

the CINVESTAV of the IPN, Mexico. He has worked

for more than 10 years as a developer and consultant in

different enterprises in Mexico. He has done research

stances at the University of Chicago, Texas, INAOEP

Puebla, and the INRIA institute in Lille France.

Currently, he is researcher-professor at the Faculty of

Computer Sciences in Benemérita Universidad

Autónoma de Puebla, Puebla, México

Pedro Bello L. is a researcher-professor at the Faculty

of Computer Science, BUAP. His areas of interest are

graph theory and belief revision. He developed a system

of simulation as a master degree thesis for the Pierre

Auger Project. He is currently a PhD student in the

Language & Knowledge Engineering (LKE) at the

Faculty of Computer Sciences in Benemérita

Universidad Autónoma de Puebla, Puebla, México.

geographical information databases systems for

