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Abstract—Let K be a two conjunctive normal form and φ a 

three conjunctive normal form, both formulas are defined over 

the same set of variables. It is well known that SAT(K) is in the 

complexity class P, while SAT(φ) is a classic NP-Complete 

problem. We consider the computational complexity of 

determining SAT(K φ ) as an incremental satisfiability 

problem (2-ISAT). We show that this problem is NP-complete 

even if the number of occurrences of each variable in φ is one. 

Also, we propose a method to review SAT(Kφ ). Our proposal 

is adequate to solve 2-ISAT problem. Our algorithm allows us to 

recognize tractable instances of 2-ISAT. 

 

 

I. INTRODUCTION 

One of the fundamental problems in automatic reasoning is 

the satisfiability problem (SAT) that tries to determine 

whether a logical propositional formula F is (or not) satisfiable. 

Considering F as a conjunctive normal form (CNF) without 

restriction on the number of literals by clause, SAT(F) is a 

classic NP-complete problem, even if each clause has at least 3 

literals. 

The 2-SAT case, that determines the satisfiability of two 

conjunctive normal forms (2-CNF), is an important tractable 

case of SAT. Variations of the 2-SAT problem, e.g. in the 

optimization and counting area, have been essential for 

establishing frontiers between tractable and intractable 

problems. 

The incremental satisfiability problem (ISAT) consists in 

verifying whether satisfiability is maintained when new 

clauses are added to an initial satisfiable formula. ISAT is 

considered a generalization of the SAT problem since it allows 

changes of the input formula over time.  

 

 

 

 

 

case. In our proposal the incremental process is finished when 

Fi is unsatisfiable or there are no more clauses to be added. 

ISAT can be used in a large variety of applications that need to 

be processed in an evolutive environment. This could be the 

case of applications such as reactive scheduling and planning, 

dynamic combinatorial optimization, review faults in 

combinatorial circuits, dynamic constraint satisfaction, and 

machine learning in a dynamic environment [1].  

One idea used on ISAT methods, is to preserve the 

structures formed when previous formulas were processed, 

allowing the recognition of common subformulas that they 

were previously considered. More importantly, it allows the 

solver to reuse information across several related consecutive 

problems. The resulting performance improvements make 

ISAT a crucial feature for modern SAT solvers in real-life 

applications [2]. 

Rather than solving related formulas separately, modern 

solvers attempt to solve them incrementally, since many 

practical applications require solving a sequence of related 

SAT formulas [3], [4]. In this article, we consider ISAT as an 

incremental problem that starts with an initial satisfiable 

formula K=F  in 2-CNF. In a second phase, a new formula φ in 

3-CNF is added to K, both formulas; K and φ are defined on 

the same set of variables. We denote this version of ISAT as 

the 2-ISAT problem.  

As a generalization of SAT, ISAT has been considered as an 

NP Problem, although until now, the authors have not seen 

complexity theory studies about the complexity-time 

differences between SAT and ISAT. For example, it is known 

that 2-SAT is in the complexity class P. However, it is not 

known the computational complexity of 2-ISAT. 

In [5], we have proposed a method to review the 

satisfiability of (Kφ ), and we have analysed instances of K 

and φ that allows the existence of polynomial-time procedures. 

We present here, a study about the threshold for the 2-ISAT 

problem that could be helpful to understand the border 

between P and NP complexity classes for instances of 2-ISAT. 

In general, we show that 2-ISAT is NP-Complete, even if each 

variable in φ has only one occurrence. 

 

II. THE GRAPH VERTEX COLORING PROBLEM 

The graph vertex coloring problem consists of coloring the 

vertices of the graph with the smallest possible number of 

colors so that no two adjacent nodes receive the same color. If 

such a coloring with k colors exists, the graph is k-colorable. 

The chromatic number of a graph G, denoted as (G), 

represents the minimum number of colors for proper coloring 

G. The k-colorability problem consists of determining whether 
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ing, incremental satisfiability roblem, p

We consider ISAT as a dynamic incremental set of clauses: 

F0,F1,…, Fi starting with an initial satisfiable formula F0. Each 

Fi results from a change in the preceding formula Fi-1, imposed 

by the ‘outside world’.

Even though, the changes can be a restriction (add clauses)

or a relaxation (remove clauses), we focus in the restriction 
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an input graph is k-colorable.

We denote as Kn as the complete graph of n nodes. And (t 

Kn ) as the disjoint union of t copies of Kn. In the case of the 

vertex coloring problem, 2-coloring is solvable in polynomial 

time, as well as to determine the 3-colorability for AT-free 

graphs, perfect graphs [6], and for graphs free of K4 and (2 K2) 

[7]. Similarly, to determine (G) for some classes of graphs 

can be solved in polynomial time, as it is the case for interval 

graphs, chordal graphs and comparability graphs [8]. In all 

those cases, special structures (patterns) have been found to 

characterize the classes of graphs that are colorable in 

polynomial-time complexity. But in general, the k-colorability 

problem, when k  3 becomes NP-complete, even for graphs G

with degree   3 [9].

Several works have been done to determine when a graph is 

3-colorable, as well as  to design efficient approximation 

algorithms, namely, given a k-colorable graph to try to color it 

efficiently with l colors, l  k, where l is as small as possible 

[10]. The most recent results for determining the 3-colorability 

of a graph are based on recognizing if the input graph is planar 

and triangle-free [11], [12], or discovering some relationship 

between the topology of the graph and its structural parts 

[6]-[8], [13]-[17].

Although determining the 3-coloring of a graph is a 

NP-complete problem, there is a good deal of research which 

looks for specific topological patterns in graphs to determine 

their 3-colorability. One of the first results in this line is the 

renowned Grötzsch’s theorem [12], which guarantees that 

every triangle-free planar graph is 3-colorable. From this 

pioneer paper, several works have been developed looking for 

patterns which allow us to determine the 3-colorability of a 

graph. 

For example, Lozin [7] has recently show some 

polynomial-time instances of k-colorable graphs defined by 

finitely many forbidden induced subgraphs. Also, Borodin has 

shown that planar graphs without cycles of length 4 to 7 are 

3-colorable [11]. Gimbel and Thomasson [17] found an 

elegant 3-colorability proof for triangle-free projective planar 

graphs. Dvorák [13] found a linear-time algorithm to decide 

whether a triangle-free graph in a general surface Σ is 

3-colorable. 3-colorability is also polynomially solvable for 

graphs containing no induced path on 5 vertices [15].

3-coloring has been useful to show the NP-completeness of 

the other combinatorial problem. In particular, we will show in 

following chapter, a polynomial reduction from 3-coloring to 

2-ISAT, proving then, the hardness computational complexity 

of the 2-ISAT problem.

III. THE COMPUTATIONAL COMPLEXITY OF 2-ISAT

Lemma 1. 3-Coloring is polynomial reducible to SAT(K ⋀

φ), K a 2-CNF, φ a 3-CNF. 

Proof. Let G = (V, E) be a graph where n=|V|, m=|E|. We 

define the logical variables xv,c meaning that the vertex v∈V has 

assigned the color c∈{1,2,3}. For each vertex v∈V, 3 logical 

variables xv,1, xv,2, xv,3 are created. Therefore, there are 3*n

Boolean variables in (K ⋀ φ). We define first the constraints 

forming K. 

For every edge e = {u,v}∈ E, u and v must be colored 

differently. This restriction is modeled by 3 binary clauses, in 

the following way:(xu,1  xv,1)  ( xu,2xv,2) 

(xu,3xv,3). There are 3*|E| binary clauses of this class.  The 

other class of binary constraints allows to define the 

restriction that every vertex has not more than one color. This 

restriction is modeled by 3 binary clauses in the following way. 

For each vertex v∈V: 

(xv,1xv,2)( xv,2xv,3 )( xv,3xv,1). There are 3*|V|

binary clauses for this class. Both sets of 3*(|V|+|E|) binary 

clauses form the 2-CNF K.  On the other hand, the 3-CNFφ is 

formed by the clauses modeling the restriction that every 

vertex must be assigned at least one color. Then, for each 

vertex the following clause is generated: (xv,1 xv,2 xv,3). φ

has  3-clauses. Furthermore, each one of the 3*n variables of 

v(K) has only one occurrence  in φ . 

This reduction can be performed in polynomial time on the 

size n and m, since it consists in creating 3* (n+m) binary 

clauses for K, and (3*n) 3-clauses for φ. We also have that   G

has a 3-Coloring if and only if (K⋀φ) is satisfiable.

In order to design reductions from 3-Coloring to 2-ISAT, 

we must consider the dynamic nature of 2-ISAT. Our proposal 

of 2-ISAT works in two consecutive phases. In the first phase, 

the input is a 2-CNF K. The purpose of this phase is to 

determine SAT(K), as well as to build any computational or 

logical structure, denoted as AK and derived from K, that could 

be helpful for processing the input formula of the following 

phase. The main restriction on the construction of AK is to 

spent only polynomial time on the size |K|, such that all the 

phase 1 runs upper bounded by a polynomial on |K|. 

In the second phase of 2-ISAT, the input is a 3-CNF φ

where all variables in φ have already appeared in K. This is 

denoted as v(φ)  v(K). The purpose of this phase is to 

determine SAT(K⋀φ). Although K has been already processed, 

it can be used again as well as AK, in order to accelerate the 

revision of SAT(K⋀φ). 

Theorem 1.  2-ISAT is NP-Complete

Proof. The membership of 2-ISAT in NP comes from the 

fact that SAT is in NP, since a nondeterministic algorithm 

needs to guess only a satisfying assignment for v(K), and 

check in polynomial time whether that assignment setting 

satisfies (K⋀φ), since v(φ) v(K). This happens independently 

of the two phases of 2-ISAT.

We have seen that 3-Coloring is polynomial reducible to 

SAT(K⋀φ), and since 3-Coloring is NP-complete, then 

SAT(K⋀φ) is also NP-complete. If a structure AK allows to 

determine SAT(K⋀φ) in upper-bounded time by a polynomial 

on |Kφ |, then 3-Coloring would be solvable in polynomial 

time. Thus, if 2-ISAT is polynomial solvable, then 3-Coloring 

too. This shows that 2-ISAT is NP-complete too.

From the above theorem, it is not expected (unless P=NP) 

to build an efficient algorithm for determining 2-ISAT, 
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although in the first phase, K has been already processed and 

some structures AK, describing the logical dependencies 

among variables in K, have been built.

Notice that each component of SAT(K⋀φ) is 

polynomial-time solvable, that is,  is solvable in linear time 

when K is a 2-CNF [18]. Meanwhile SAT(φ), where φ is a 

3-CNF and each one of its variables occurrs only one time on 

φ, is a trivial solvable problem, since every variable is pure in φ. 

Therefore, φ is always satisfiable. However, SAT(K⋀φ) is a 

NP-complete problem. Therefore, it is not expected to build a 

structure AK that allows to solve SAT(K⋀φ) efficiently. For 

example, if AK is the set of models of K, then to review 

SAT(K⋀φ)  can be performed efficiently, since it consists on 

delete from AK all falsifying assignment of each clause in  φ. 

However, the set of models AK does not have always a 

polynomial size on |K|. In the worst case, the construction of 

the set of models of K would require an exponential time on 

|K|. Nevertheless, we can look for restrictive cases of 2-ISAT 

that can be solved efficiently.

IV. THE TRANSITIVE CLOSURE OF A 2-CNF

The fact that in a 2-CNF formula a clause is equivalent to a 

pair of implications can be straightforward established as 

follows: if {x, y}∈F then {x, y} is equivalent to both ¬x → y

and ¬y → x. The arrow → has the usual meaning of 

implication in classical logic.

Definition 1. Let F  be a 2-CNF and L its set of literals. The 

relation → R  LxL is defined as follows: x → R Y if and only if 

x → y.

Definition 2. Let F be a 2-CNF, a partial assignment s of F  

is a feasible model for  , if s does not falsify any clause in F.

We consider now the transitive closure of x → R, denoted 

by ”⇒”. This new relation ⇒ can always be constructed 

inductively from x → R. For any feasible model s of  F where  x 

and y  occur in F; if x⇒ y and x is true in s then it is straight 

forward to show that y  is true in s. It is said that y is forced to 

be true by x. Let T(x) be the set of literals forced to be true by 

x, that is T(x) = { x }  { y: x⇒y}.

It is clear that, if x is a literal occurring in a formula F, and if 

¬x ∈ T(¬x) then x cannot be set to true in any model of F. 

Analogously, if x ∈ T(¬x) then x cannot be set to false in any 

model of  F.

Definition 3. Let F be a 2-CNF, for any literal x ∈ F, it is 

said that x ∈ T(x) is inconsistent if ¬x ∈ T(x) or ⟘∈ T(x), 

otherwise T(x) is said to be consistent.

Unit clauses in 2-CNF can be expressed as implications, 

that is, if F has unit clauses {u} then uu⟘, hence ⟘∈ T(¬u). 

As a consequence, in formulas with unit clause {u} follows 

that T(¬u) is inconsistent. Let F be a 2-CNF with n variables 

and m clauses, it has been shown that for any literal x ∈ F, T(x)

and T(¬x) are computed in polynomial time over |F|, in fact, 

for all l ∈ Lit(F), T(l) is computed with time complexity 

O(n*m) [19].

For any literal x in a 2-CNF, the sets T(x) and T(x) allow 

to determine which variables have a fixed logical values in 

every model of F, that is to say, the variables that are true in 

every model of F and the variables that are false in every model 

of F. The properties of the sets T(x) and T(x) will be 

established as a lemma.

Lemma 2. Let F be a 2-CNF and x a variable in F.

1. If T(x) is inconsistent and T(x) is consistent then x is 

true in every model of F.

2. If T(x) is inconsistent and T(x) is consistent then x is 

true in every model of F.

3. If both T(x) and T(x) are inconsistent then F does not 

have models and F is unsatisfiable.

4. If both T(x) and T(x) are consistent then x does not have 

a fixed valued in each model of F.

Proof. 1. Suppose x is false in a model of F, so x should be 

true in that model of F. However, T(x) is inconsistent, so x 

x and x cannot be true in the model of F contradicting the 

assumption. Hence, any model of F has to assign false to x and 

true to x. The other cases are proved similarly.

From properties (1) and (2) of lemma 4 we formulate the 

following definition:

Definition 4. A base for the set of models of a 2-CNF F, 

denoted as S(F), is a partial assignment of F which consists of 

the variables with a fixed truth value.

We denote by Transitive Closure(F) to the procedure which 

computes the sets T(x) and T(x) for each x ∈ v(F). The 

transitive procedure applied on a 2-CNF F allows to build 

bases for the set of models of F. If a base S(F) is such that |S(F)| 

= |v(F)|, then each variable of F has a fixed truth value in every 

model of F, so there is just one model.

Definition 5. Let F be a 2-CNF and x a literal of F. The 

reduction of F by x, also called forcing x and denoted by F(x), 

is the formula generated from F by the following two rules.

a) removing from F the clauses containing x (subsumption 

rule),

b) removing ¬x from the remaining clauses (unit resolution 

rule).

A reduction is also sometimes called a unit reduction. The 

reduction by a set of literals can be inductively established as 

follows: let s={l1,l2,…,lk} be a partial assignment of v(F). The 

reduction of F by s is defined by successively applying 

definition 5 for li, i = 1,…,k. That is reduction of F by l1 gives 

the formula F(l1), following a reduction of F(l1) by l2, giving as 

a result the formula F [l1], [l2] and so on. The process 

continues until F[s] = [l1,l2,…,lk] is reached. In case that s = φ

then F[s]=F.

Let F be a 2-CNF formula and s a partial assignment of F. If 

a pair of contradictory unitary clauses is obtained while F[s] is 

being computed, then F is falsified by the assignment s. 

Furthermore, during the computation of F[s], new unitary 

clauses can be generated. Thus, the partial assignment s is 

extended by adding the already found unitary clauses, that is, 

s=s {u} where {u} is a unitary clause. So, F[s] can be again 

reduced using the new unitary clauses. The above iterative 

process is generalized, and we call to this iterative process 

Unit Propagation (F, s). For simplicity, we will abbreviate 
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Unit Propagation (F, s) as UP(F, s).

As a result of applying UP(F, s), we obtain a new 

assignment s’ that extend to s, and a new subformula F’

formed by the clauses from F that are not satisfied by s’. We 

denote (F’,s’)=UP(F, s) to the pair resulting of the application 

of Unit Propagation on F by the assignment s. Notice that if s

falsifies F then s’ could have complementary literals and F’

contains the null clause. And when s satisfies F, then F’ is 

empty.

V. INCREMENTAL SATISFIABILITY PROBLEM

The incremental satisfiability problem (ISAT) involves 

checking whether satisfiability is maintained when new 

clauses are added to an initial satisfiable knowledge base K. 

ISAT is considered as a generalization of SAT since it allows 

changes of the input formula overtime. Different methods have 

been applied to solve ISAT, among them, variations of the 

branch and bounds procedure, denoted as IDPL methods, 

which are usually based in the classical 

Davis-Putnam-Loveland (DPL) method. In a IDPL procedure, 

when adding new clauses, the procedure maintains the search 

tree generated previously for the set of clauses K. Rather than 

solving related formulas separately, modern solvers attempt to 

solve them incrementally since many practical applications 

require solving a sequence of related SAT formulas [3], [4]. 

From now on, let us consider that K is a 2-CNF and φ is a 

3-CNF. We consider that φ consists of clauses that effectively 

decrease the set of models of K. We present now, an algorithm 

to solve 2-ISAT.

Algorithm 1. Adv 

Input: K, ɸ
Output: a message ”SAT” or “UNSAT”

S = Base(K) 

Cola = ⌀

while ɸ  ⌀ do

for all x ∈ υ(ɸ) do /* Apply the reduced rules on K and ɸ
{ includes ɸ = ɸ [S]} */

    S1=ST(x)

    S2=ST(¬x) /*{S1,S2 are consistent because x,¬x/∈ S}*/

    (F4, K1, S4) = UP(ɸ, S1) 

    (F5, K2, S5) = UP(ɸ, S2)

    M4 = KK1S4

    M5 = KK2S5  /* {test for inconsistency} */ 

    if (((Nil ∈ F4) or (M4 is unsatisfiable)) and ((Nil ∈ F5) or 

(M5 is unsatisfiable) )) then

        return (’UnSat’) 

    end if 

    if (F4 = ⌀)∨(F5 =⌀ ) then 

        return (’Sat’) 

    end if 

    if (Nil ∈ F4 or M4 is unsatisfiable) then 

         S = ST(¬x) 

         Cola = Append(Cola, M5)

          ɸ = F5

    end if 

    if (Nil ∈ F5 or M5 is unsatisfiable) then 

        S = ST(x) 

       Cola = Append(Cola, M4) 

        ɸ = F4

    end if 

    for all l∈ S4 do  /* Updating  the sets T[X’s] in S4 */

        T(x) = T(x)T(l) 

        T(¬l) = T(¬l)T(¬x) 

    end for 

    for all l ∈ S5 do   /* Updating the sets T[X’s] in S5 */

       T(¬x) = T(¬x)T(l) 

       T(¬l) = T(¬l)T(x) 

    end for 

end for 

  K=Next(Cola)  

end while 

return

We show now, the soundness and completeness of our 

algorithm. 

(Soundness) If Adv outputs Unsat then effectively (Kφ ) 

is unsatisfiable step1, because any feasible assignment S 

cannot be extended with value for the variable x without 

falsifying (Kφ ). Similarly, when Adv outputs SAT then 

effectively (Kφ ) is satisfiable because the step 2 has built a 

model for (Kφ ). While the steps 3 and 4 fix the correct 

logical value of a variable x∈ v(K) and the procedure continue 

the main loop but with one less variable.

(Completeness) Our procedure always stops for any input 

(Kφ ), where K is a 2-CNF and φ a 3-CNF. The first two 

steps of Adv halt our procedure. On the other hand, the steps 3 

and 4 determine a unique value for a variable in v(K). 

Otherwise, the step 5 allows to modify K or φ since v(φ) ⊆ v(K) 

and always is possible to find a consistent T(x) (while K keeps 

satisfiable) to be extended by resolution on φ . Thus, at most 

in n =|v(K)|  iterations, adv determines the satisfiability of (K

φ ).

It is clear that a set of changes over a satisfiable KB K in 

2-CNF could change K into a general CNF, in which case, K

will turn into a general CNF K’, K  K’, where the SAT 

problem on K’ is a classic NP-complete problem. One relevant 

question, in our opinion, is to establish the frontiers between 

P and NP by adding 3-clauses φ to an initial tractable 2-CNF K, 

and taking advantages of the structures formed by any efficient 

algorithm solving SAT(K), in order to determine SAT(K⋀φ). 

Assuming an initial formula K, and a new formula φ to be 

added, our proposal allows us to determine some tractables 

cases for 2-ISAT.

i. If K and φ are 2-CNF’s then (Kφ) is a 2-CNF. In this 

case, 2-ISAT is solvable in linear-time by applying a 

well known algorithm by Tarjan [18].

ii. For monotone formulas, ISAT keeps only satisfiable 

formulas. If each variable maintains a unique sign in 
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both formulas K and φ, then (Kφ) is always 

satisfiable.

iii. If φ consists of a single clause and we have the 

transitive closures of K, we only have to review which 

closures comes inconsistent for containing the 

falsifying assignments of φ. This process can be done 

in linear time on the number of literals of K.

VI. CONCLUSIONS

Let K be a two conjunctive normal form and φ a three 

conjunctive normal form, both formulas are defined over the 

same set of variables. We consider the computational 

complexity of determining SAT(K⋀φ) that is considered as a 

base case of the incremental satisfiability problem (2-ISAT). 

We show that this problem is NP-complete even if the number 

of occurrences of each variable in φ is one. Also, we propose a 

method to review SAT(K⋀φ). Our proposal is adequate to 

solve the 2-ISAT problem, and our method allows to recognize 

tractable instances of 2-ISAT.
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