
  


 

Abstract—This paper presents a semi-automatic 

recommendation-based instance matching system using RDF 

graph data.  Based on a graph node similarity algorithm, our 

instance matching system detects instance nodes with 

similarities higher than an input threshold value and returns to 

the user the subject node pairs. The system merges a matched 

node pair when the user confirms the matched nodes in the 

results. After a merge, the merged node is also considered as an 

entity for the following candidate pair generation cycle. The 

procedure continues until no new matching candidate pairs are 

recommended by the algorithm and there is no more feedback 

provided by the user.  

 
Index Terms—Instance Matching, RDF, Semantic Web, 

Similarity Metrics.  

 

I. INTRODUCTION 

In this study, we utilize an RDF entity similarity algorithm 

for matching instances that may be merged if confirmed by 

the user. Our assumption is that two graph entities are similar 

if their neighbor entities are also similar. Our semi-automatic 

instance algorithm runs in iterations with the input from the 

user. At each consequent iteration, the algorithm generates 

more precise results based on the input from the user. In 

addition, our technique reduces the size of the RDF graph 

since we merge the same or very similar RDF nodes. As a 

result, the process reduces the complexity of the similarity 

algorithm at each iteration. 

A. Semantic Web and RDF  

Resource Description Framework (RDF) [1] is a general 

purpose language, for representing information in Semantic 

Web [2] in a way that the meaning (or semantics) is 

unambiguous to a machine or software process. RDF 

describes resources through statements in the form of 

(subject, predicate, object) expressions which are known as 

triples.  

The development of Semantic Web technologies has led to 

significant progress including explicit semantics with data in 

the Web in recent years. As increasing number of 

organizations adopt Semantic Web technologies, publishing 

data in a standard model and interlinking the data available 

on the Web using Semantic Web technologies provide a Web 

of data that is machine accessible and can be utilized by 

applications through semantic queries.  

The collection of inter-linked datasets on the Web is also 

referred to as Linked Data [3]. With the contribution of 
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Linked Open Data along with several other Semantic Web 

projects, the structured data available in the Semantic Web 

have been increasing exponentially. Many datasets in various 

domains such as publications, life sciences, media, social 

web, geography have been incorporated into the Linked 

Open Data. 

B. Data Mapping and Linking 

Data mapping [4] is the process of creating the linkages 

and relations between data elements of distinct data models. 

Data mapping creates connections between different data 

elements. The connectivity of the data elements increases 

data interoperability and data reusability while reducing the 

redundancy. Moreover, it is a key task for data integration 

processes including data transformation, data lineage 

analysis, discovery of new data details within connected data 

sources, consolidation of multiple data sources into a single 

data source, etc. Furthermore, data mapping is needed for 

standardization of the data. For instance, healthcare 

institutions often need to map their local data to an accepted 

medical standard such as ICD-9 [5] or SNOMED CT [6] to 

be able to share their data with other medical facilities. 

In essence, the task of data linking is connecting 

semantically related instances from multiple data sources. 

For our purposes, we use the term instance matching as 

finding the semantically matching instances between 

multiple RDF graphs. The matched instances do not 

necessarily have to be identical or equivalent. They might 

also be hierarchically related with subset or superset 

relations. 

C. Instance Matching for Semantic Interoperability 

Instance matching is an essential task in achieving 

semantic interoperability on the Semantic Web. As the 

amount of publicly available heterogenic data on the 

Semantic Web grows continually, the applications require 

creating more and more linkages between the data sources. 

For instance, in [7], the authors present a method for the 

translation of data models from one format to another. The 

Fig. 1 below shows how their system works. 

 

 
Fig. 1. translation of instance data (taken from [7]). 
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As shown in the figure, the approach defined a number of 

steps required to perform the translation to support 

heterogeneous data interoperability. In step 3 of the approach, 

the mapping and the translation rules between various 

schemata are manually defined a priori from a domain expert.  

The manually defining the mappings may result to 

time-consuming and costly work in the process due to the 

size the data. The RDF instance matching system introduced 

in this study contains a semi-automatic instance matching 

framework to help experts find linkages between different 

data elements. 

D. Semi-automatic Instance Matching Technique 

The computation of entity similarity is essential for the 

instance matching task as our instance matching system 

utilizes entity similarities to link the same or similar 

real-world objects. Our system uses a pairwise entity 

similarity algorithm for RDF graph data as explained in 

section IV. As the similarity algorithm generates the entity 

similarity results, our system processes the results and it 

returns the subject node pairs with a similarity score higher 

than a threshold. If the user confirms a matched node pair in 

the results, the system merges the nodes. After a merge, the 

merged node is also considered as an entity for the following 

candidate pair generation cycle. 

The system then reruns the similarity algorithm with the 

merged RDF node pairs. Based on the common predicates 

and neighbor similarity, a merged node can be matched with 

another instance and presented to the user as a candidate pair. 

This process continues until there is no more feedback from 

the user. Each time the similarity algorithm produces more 

accurate results with the input from the user. The size of the 

input RDF graph data is reduced by merging process, 

yielding less complexity each time.  

 

II. CONTRIBUTION AND OUTLINE 

This study investigates the problem of discovering the 

linkages between semantically related entities that could be 

classified as the same entity within and among different data 

sources. Thus, the same or very similar entities can be 

represented by a single entity. In the literature, this problem 

has been studied by the research community as the task of 

instance matching or concept matching. In this context, we 

consider this problem an instance matching of RDF entities, 

as we represent the data instances and data model details in 

an RDF model. Our approach is semi-automatic: it utilizes a 

pairwise graph node similarity computation algorithm for 

finding similar entities for presenting the similar entities to 

the domain experts. 

Our main contributions:  

 We present a suggestion-based semi-automatic 

instance matching system utilized for the RDF 

representation of data that contributes in the 

information translation process. 

 We use neighborhood similarity idea to infer 

possible connections between the entities, such 

that if two entities are matched, then other nodes 

with similar predicates and in similar 

neighborhoods are considered. 

 We merge the matched entities and run the process 

in iterations, and producing more accurate results 

and yielding less complexity after each iteration. 

The paper is organized as follows. We discuss the 

application of instance matching in an RDF representation of 

data elements. Subsequently, we review the computation of 

entity similarity that is used for the matching. Then, we 

describe the user interaction for semi-automatic instance 

matching process. The subsequent section presents the results 

of the evaluations. In the following section, the related work 

is reviewed and followed by our conclusion. 

 

III. INSTANCE MATCHING IN RDF GRAPH 

The source data for an RDF graph may exist in 

heterogeneous data sources with different formats and data 

models. In this work, we assume that the data elements are 

represented in RDF: i.e., the instance data, the data dictionary 

elements that belong to the instance data and the mapping 

between them are represented in RDF. For the data sources 

that do not have a pre-defined data dictionary in place, a 

summary graph generation algorithm as in [8] can be 

exploited to extract the data dictionary elements. The main 

data dictionary classes can be linked to the instance data 

elements with the rdf:type [9] predicate. The RDF relations 

allow linking the data elements from different systems, 

constituting an extensive and connected RDF graph.  

In such a data ecosystem, it is common to have redundant 

instances and concepts between different data sources. Thus, 

the instance matching technique explained in this study 

covers both de-duplication and data concepts matching. 

Merging the redundant nodes helps to reduce the size of the 

dataset. Also, linking the concepts between diverse data 

models assists in the information translation process and 

semantic data interoperability of different systems. 

 

IV. RDF ENTITY SIMILARITY FOR INSTANCE MATCHING 

In the studies [8], [10], we introduced an effective 

algorithm for the computation of pairwise graph node 

similarity using graph locality, neighborhood similarity, and 

the Jaccard measure. In the similarity algorithm, the 

computation of entity similarity is studied as a pairwise RDF 

graph node similarity problem. The algorithm is based on an 

efficient graph node similarity metric. Our instance matching 

system uses this RDF entity similarity algorithm for pairing 

entities. 

An RDF entity is described through a set of predicates, the 

collection of literal neighboring nodes that it references and 

the neighbor nodes with which it interacts. The predicates of 

the subject nodes are treated as the dimensions of the entities. 

We utilize the common descriptors within the Jaccard 

measure context when calculating the similarity of an RDF 

node pair, along with the similarities of their neighbors. Thus, 

the direct similarities of the entities are taken into account 

along with the similarities of the neighbors with which they 

interact.  

Each descriptor of an RDF node may have a different 

impact in the similarity calculation, in other words each 
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descriptor has a different importance weight. Therefore, we 

presented an importance weighting metric for the descriptors 

of the RDF nodes and enhanced the similarity metric by 

incorporating the auto-generated importance weights of the 

descriptors.  

 

V. USER INTERACTION 

The size of data in semantic interoperability tasks often 

requires an automated instance matching method. 

Nonetheless, fully automated techniques can be error prone. 

Therefore, a semi-automated instance matching technique 

with user interactions yields more accurate results. Since our 

goals include matching the instances belonging to the 

heterogeneous data sources, our semi-automatic instance 

matching system, allows the user to provide initial matches 

between the source and target graph elements. The system 

then runs the entity similarity algorithm introduced in section 

IV. After the entity similarities converge, it follows the steps 

below:  

 The system extracts the subject IRI node pairs which 

have similarities higher than a user defined and 

configurable parameter (threshold), and then 

presents them to the user. 

 A subject node pair that is presented to the user is 

denoted by (s1,s2) where s1 and s2 are two subject 

IRI nodes having similarity greater than the defined 

threshold. Our system merges these two nodes if 

their match is approved by the user. The merged 

node is considered as a single subject node which is 

denoted by [s1,s2], that retains all the predicates all 

from both s1 and s2. 

 Our system then checks the common object nodes of 

s1 and s2, and generates (p1,p2) as a candidate 

instance pair if both s1 and s2 are connected to a 

common object node by p1 and p2 correspondingly.  

 In addition, the system checks the common predicates 

of s1 and s2, and generates (o1, o2) as a candidate 

instance pair if both s1 and s2 correspondingly 

connects to the object nodes o1 and o2 by a 

common predicate. 

 The instance matching candidates (p1,p2) and (o1, o2) 

are then presented to the user and merged if their 

match is approved by the user. The merged entities 

are denoted by [p1,p2] and [o1,o2]. 

 The system then reruns the RDF entities similarity 

algorithm based on the new RDF graph generated 

by the merged graph entity pairs. 

 Our system repeats the steps explained above until the 

there is no new matching pairs generated by our 

algorithm and no more feedback from the user.  

An example of how our system handles the instance 

matching and merging process is shown in Fig. 2. In the 

figure, the nodes v1, v2, v3, v4 and the predicates p1, p2, p3 

belong to the source graph while the nodes v2, v5, v6 and the 

predicates p3, p4 belong to the target graph. Our goal is to 

find the matching instances between the source and the target 

graph.  

At first, the RDF entities similarity algorithm runs and our 

instance matching system generates the first instance 

matching candidates based on the results of the similarity 

algorithm. As shown in Fig. 2, our system pairs the subject 

nodes (v1, v5) as a candidate instance matching pair and 

presents them to the user at phase 1. The user approves that 

the candidates match and the subject nodes v1, v5 are merged 

to get [v1,v5].  

 

 
Fig. 2. Instance matching process. 

 

Then, on phase 2, the common predicates of the merged 

node [v1,v5] are checked by the algorithm. As the new node 

[v1,v5] connects to the subject nodes v4 and v6 by the 

common predicate p3, our system presents (v4,v6) to the user, 

and it gets [v4,v6] once the user approves that they match.  

On phase 3, our system checks the common object nodes 

of the new node [v1,v5]. As it is clear that [v1,v5] connects to 

a common object node v2 with the predicates p1 and p4, the 

algorithm presents the predicates pair (p1,p4) to the user, and 

it merges them to get [p1,p4] upon approval by the user. 

At phase 4, comparing to phase 1, the source and target 

graphs are merged, and the graph size in total is reduced by 

40% (from five triples to three triples). As the instance 

matching system runs in iterations, in the next iteration, the 

output graph of phase 3 becomes input in phase 1. The 

iterations continue until the optimum instance matching pairs 

are obtained. 

 

VI. EVALUATION 

In empirical evaluations, the following datasets were used: 

a subset of DBpedia [11] and a subset of SemanticDB [12]. 

SemanticDB is a Semantic Web data repository developed by 

the Cleveland Clinic for Clinical Research and Quality 

Reporting. To evaluate the effectiveness of the instance 

matching algorithm, we generated a validation dataset by 

replicating the original dataset and syntactically changing the 

names of the instances. We transformed instance names in 

the validation dataset using a specific naming pattern. The 

original dataset was considered as the source, and the 

validation dataset was as the target in the instance matching 

step. The instance node naming pattern was used for 

validation. In summary, the instance matching evaluation 

with DBpedia as the source dataset included 90 triples with 

60 distinct subject and predicate nodes. The algorithm 

semi-automatically matched 100% of the nodes to a target 

graph node. The algorithm achieved 85% accuracy and 

generated 20 instance matching candidates. The evaluations 
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with SemanticDB as the source dataset contained 2500 triples 

with 520 distinct subject and predicate nodes. 86% of the 

nodes were matched to a target graph node 

semi-automatically.  The accuracy of the algorithm was 95% 

and 310 instance matching candidates were generated the 

algorithm. 

 

VII. RELATED WORK 

In the literature, there has been much research in the 

subject of ontology mapping. The terminology used for 

defining the problem has varied such as matching, alignment, 

merging, articulation, fusion, integration, morphism, etc. 

Inherently, many tools and methods have emerged in the 

field. 

Many of these approaches are solely based on the use of 

string similarity mechanisms for finding matching entities 

between two ontologies [13], [14]. Approaches that have 

studied the ontology mapping problem from the schema 

matching perspective in the context of data integration have 

also been explored since schemata can be considered as 

ontologies with restricted relation types. These include [15], 

[16].  

Some others have suggested asking the user for feedback, 

as in our work, to perform the mapping generation 

interactively by providing proper visualization to support the 

decision. We think this is a useful feature for generating 

high-quality links. However, in this work we minimize the 

need for user feedback to reduce the load on the users. 

Doan et al. [17] provided a system, GLUE, which employs 

learning techniques to semi-automatically find mappings 

between two given ontologies. For each concept in one 

ontology, their framework uses a multi-learning strategy to 

predict a similar concept in the other using probabilistic 

definitions of several similarity measures. GLUE calculates a 

joint probability distribution to measure the overlap between 

two input sets. The authors offer two learners: a content 

learner and a name learner for learning information such as 

the word frequencies, instance names and value formats. The 

content learner uses Naive Bayesian learning, a text 

classification method, for the instance content whereas the 

name learner uses the full name instead of its content. Then 

they combine the predictions of the two learners and assign 

weights to them using a meta-learner. Additionally, they use 

a technique, relaxation labelling, which gives labels to nodes 

of a graph, based on a set of constraints. Similar to their 

system, we also propose a machine learning framework. In 

contrast to them, we don't employ an active learning 

technique, which relies on the quality of the training dataset. 

Jain et al. offered a framework called BLOOMS [18] and 

later an improved version under BLOOMS+ [19]. They 

propose a metric to determine which classes to align between 

two ontologies and a technique for using contextual 

information to support the alignment process. However, they 

rely on existence of a human-generated upper ontology and 

the concept categorization in the form of a tree structure. Our 

approach does not rely on an upper ontology, as we think 

these assumptions are problematic since the quality of the 

mapping strictly depends on the categorization of the concept 

by humans, and any potential categorization issue in the 

upper ontology will have an impact on the whole context. 

The notion of instance matching has also been studied by 

the Semantic Web community. With an ontology instance 

matching perspective, some research studies have 

investigated comparing instances based on the properties and 

roles. However, they primarily focus on the ontology 

mapping [20], [21] or ontology population [22] tasks. 

On the other hand, [23] studies an automatic instance 

matching problem in RDF graphs with the focus on property 

weights, where property weights yield precedence to 

properties that make the instances more unique. The 

similarity metric utilized in this work also employs 

auto-generated property weights, which is a similar notion to 

the term frequency-inverse document frequency (tf-idf)  [24], 

[25]. Our work is also different in the sense that it is 

semi-automatic, allowing for user feedback. 

A matching algorithm called similarity flooding (SF) is 

proposed in [8]. SF matches two directed and labeled graphs 

to produce a multi-mapping of analogous nodes.  

For the similarity computation, SF relies on the intuition 

that elements of two graphs are similar when their adjacent 

elements are similar, exploiting the neighboring structure of a 

concept map, the semantic meaning of the content of the 

graph node and the labels of the relations between the nodes. 

In SF, the similarity of the node pairs starts either with a 

string similarity between the content of the nodes or with a 

similarity of 1. It then propagates the initial similarity of any 

two nodes through the graphs. The algorithm runs in multiple 

iterations until the similarity values are converged, or until a 

pre-defined maximum number of iterations. SF also does not 

distinguish between a schema node and the instance data 

node. 

In SF, filters are utilized to select the best mappings. The 

mappings are then manually reviewed. The accuracy of the 

algorithm is measured by the estimated human labor savings 

obtained utilizing the algorithm for the matching tasks. In our 

work, we make an assumption for similarity computation like 

that of SF, that the nodes connected to similar neighbors with 

similar predicates are similar. We also run our similarity 

algorithm in iterations, and we do not distinguish between the 

data model elements and the instance data elements like in SF. 

However by the end of the iterations, we suggest the similar 

node pairs to the user for matching, and we merge the triples 

of the approved matched nodes. Consequently, we suggest 

matching of the nodes and predicates based on the common 

predicates and neighbors of the already matched nodes, and 

we rerun the similarity iterations. In this sense, our technique 

requires more user interactions but the consequent similarity 

iterations produces more accurate results assuming the user 

provides accurate feedback. 

 

VIII. CONCLUSION 

In this study, we provided an instance matching system 

using RDF graphs. Our instance matching technique is 

semi-automatic and does not distinguish between the instance 

data elements and the data model elements. The system 

makes use of an efficient similarity algorithm, and it makes 

smart suggestions to the user by utilizing the neighborhood 

concept to infer possible connections between the graph 
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entities for finding the linkages between different data 

elements. The linkages found can further be utilized in a data 

translation framework to support data interoperability. 

Additionally, we performed exploratory evaluations that 

demonstrated significant results in matching similar graph 

elements. 
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