

Abstract—This paper presents a semi-automatic

recommendation-based instance matching system using RDF

graph data. Based on a graph node similarity algorithm, our

instance matching system detects instance nodes with

similarities higher than an input threshold value and returns to

the user the subject node pairs. The system merges a matched

node pair when the user confirms the matched nodes in the

results. After a merge, the merged node is also considered as an

entity for the following candidate pair generation cycle. The

procedure continues until no new matching candidate pairs are

recommended by the algorithm and there is no more feedback

provided by the user.

Index Terms—Instance Matching, RDF, Semantic Web,

Similarity Metrics.

I. INTRODUCTION

In this study, we utilize an RDF entity similarity algorithm

for matching instances that may be merged if confirmed by

the user. Our assumption is that two graph entities are similar

if their neighbor entities are also similar. Our semi-automatic

instance algorithm runs in iterations with the input from the

user. At each consequent iteration, the algorithm generates

more precise results based on the input from the user. In

addition, our technique reduces the size of the RDF graph

since we merge the same or very similar RDF nodes. As a

result, the process reduces the complexity of the similarity

algorithm at each iteration.

A. Semantic Web and RDF

Resource Description Framework (RDF) [1] is a general

purpose language, for representing information in Semantic

Web [2] in a way that the meaning (or semantics) is

unambiguous to a machine or software process. RDF

describes resources through statements in the form of

(subject, predicate, object) expressions which are known as

triples.

The development of Semantic Web technologies has led to

significant progress including explicit semantics with data in

the Web in recent years. As increasing number of

organizations adopt Semantic Web technologies, publishing

data in a standard model and interlinking the data available

on the Web using Semantic Web technologies provide a Web

of data that is machine accessible and can be utilized by

applications through semantic queries.

The collection of inter-linked datasets on the Web is also

referred to as Linked Data [3]. With the contribution of

Manuscript received February 5, 2017; revised April 15, 2017.

M. Aydar is with the Department of Computer Science, Kent State

University, Kent, OH 44240 USA (e-mail: maydar@ kent.edu).

S. Ayvaz is with Department of Software Engineering, Bahcesehir

University, Besiktas 34353, Istanbul, Turkey (Corresponding author; e-mail:

serkan.ayvaz@eng.bau.edu.tr).

Linked Open Data along with several other Semantic Web

projects, the structured data available in the Semantic Web

have been increasing exponentially. Many datasets in various

domains such as publications, life sciences, media, social

web, geography have been incorporated into the Linked

Open Data.

B. Data Mapping and Linking

Data mapping [4] is the process of creating the linkages

and relations between data elements of distinct data models.

Data mapping creates connections between different data

elements. The connectivity of the data elements increases

data interoperability and data reusability while reducing the

redundancy. Moreover, it is a key task for data integration

processes including data transformation, data lineage

analysis, discovery of new data details within connected data

sources, consolidation of multiple data sources into a single

data source, etc. Furthermore, data mapping is needed for

standardization of the data. For instance, healthcare

institutions often need to map their local data to an accepted

medical standard such as ICD-9 [5] or SNOMED CT [6] to

be able to share their data with other medical facilities.

In essence, the task of data linking is connecting

semantically related instances from multiple data sources.

For our purposes, we use the term instance matching as

finding the semantically matching instances between

multiple RDF graphs. The matched instances do not

necessarily have to be identical or equivalent. They might

also be hierarchically related with subset or superset

relations.

C. Instance Matching for Semantic Interoperability

Instance matching is an essential task in achieving

semantic interoperability on the Semantic Web. As the

amount of publicly available heterogenic data on the

Semantic Web grows continually, the applications require

creating more and more linkages between the data sources.

For instance, in [7], the authors present a method for the

translation of data models from one format to another. The

Fig. 1 below shows how their system works.

Fig. 1. translation of instance data (taken from [7]).

A Suggestion-Based RDF Instance Matching System

Mehmet Aydar and Serkan Ayvaz

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

380DOI: 10.7763/IJCTE.2017.V9.1170

As shown in the figure, the approach defined a number of

steps required to perform the translation to support

heterogeneous data interoperability. In step 3 of the approach,

the mapping and the translation rules between various

schemata are manually defined a priori from a domain expert.

The manually defining the mappings may result to

time-consuming and costly work in the process due to the

size the data. The RDF instance matching system introduced

in this study contains a semi-automatic instance matching

framework to help experts find linkages between different

data elements.

D. Semi-automatic Instance Matching Technique

The computation of entity similarity is essential for the

instance matching task as our instance matching system

utilizes entity similarities to link the same or similar

real-world objects. Our system uses a pairwise entity

similarity algorithm for RDF graph data as explained in

section IV. As the similarity algorithm generates the entity

similarity results, our system processes the results and it

returns the subject node pairs with a similarity score higher

than a threshold. If the user confirms a matched node pair in

the results, the system merges the nodes. After a merge, the

merged node is also considered as an entity for the following

candidate pair generation cycle.

The system then reruns the similarity algorithm with the

merged RDF node pairs. Based on the common predicates

and neighbor similarity, a merged node can be matched with

another instance and presented to the user as a candidate pair.

This process continues until there is no more feedback from

the user. Each time the similarity algorithm produces more

accurate results with the input from the user. The size of the

input RDF graph data is reduced by merging process,

yielding less complexity each time.

II. CONTRIBUTION AND OUTLINE

This study investigates the problem of discovering the

linkages between semantically related entities that could be

classified as the same entity within and among different data

sources. Thus, the same or very similar entities can be

represented by a single entity. In the literature, this problem

has been studied by the research community as the task of

instance matching or concept matching. In this context, we

consider this problem an instance matching of RDF entities,

as we represent the data instances and data model details in

an RDF model. Our approach is semi-automatic: it utilizes a

pairwise graph node similarity computation algorithm for

finding similar entities for presenting the similar entities to

the domain experts.

Our main contributions:

 We present a suggestion-based semi-automatic

instance matching system utilized for the RDF

representation of data that contributes in the

information translation process.

 We use neighborhood similarity idea to infer

possible connections between the entities, such

that if two entities are matched, then other nodes

with similar predicates and in similar

neighborhoods are considered.

 We merge the matched entities and run the process

in iterations, and producing more accurate results

and yielding less complexity after each iteration.

The paper is organized as follows. We discuss the

application of instance matching in an RDF representation of

data elements. Subsequently, we review the computation of

entity similarity that is used for the matching. Then, we

describe the user interaction for semi-automatic instance

matching process. The subsequent section presents the results

of the evaluations. In the following section, the related work

is reviewed and followed by our conclusion.

III. INSTANCE MATCHING IN RDF GRAPH

The source data for an RDF graph may exist in

heterogeneous data sources with different formats and data

models. In this work, we assume that the data elements are

represented in RDF: i.e., the instance data, the data dictionary

elements that belong to the instance data and the mapping

between them are represented in RDF. For the data sources

that do not have a pre-defined data dictionary in place, a

summary graph generation algorithm as in [8] can be

exploited to extract the data dictionary elements. The main

data dictionary classes can be linked to the instance data

elements with the rdf:type [9] predicate. The RDF relations

allow linking the data elements from different systems,

constituting an extensive and connected RDF graph.

In such a data ecosystem, it is common to have redundant

instances and concepts between different data sources. Thus,

the instance matching technique explained in this study

covers both de-duplication and data concepts matching.

Merging the redundant nodes helps to reduce the size of the

dataset. Also, linking the concepts between diverse data

models assists in the information translation process and

semantic data interoperability of different systems.

IV. RDF ENTITY SIMILARITY FOR INSTANCE MATCHING

In the studies [8], [10], we introduced an effective

algorithm for the computation of pairwise graph node

similarity using graph locality, neighborhood similarity, and

the Jaccard measure. In the similarity algorithm, the

computation of entity similarity is studied as a pairwise RDF

graph node similarity problem. The algorithm is based on an

efficient graph node similarity metric. Our instance matching

system uses this RDF entity similarity algorithm for pairing

entities.

An RDF entity is described through a set of predicates, the

collection of literal neighboring nodes that it references and

the neighbor nodes with which it interacts. The predicates of

the subject nodes are treated as the dimensions of the entities.

We utilize the common descriptors within the Jaccard

measure context when calculating the similarity of an RDF

node pair, along with the similarities of their neighbors. Thus,

the direct similarities of the entities are taken into account

along with the similarities of the neighbors with which they

interact.

Each descriptor of an RDF node may have a different

impact in the similarity calculation, in other words each

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

381

descriptor has a different importance weight. Therefore, we

presented an importance weighting metric for the descriptors

of the RDF nodes and enhanced the similarity metric by

incorporating the auto-generated importance weights of the

descriptors.

V. USER INTERACTION

The size of data in semantic interoperability tasks often

requires an automated instance matching method.

Nonetheless, fully automated techniques can be error prone.

Therefore, a semi-automated instance matching technique

with user interactions yields more accurate results. Since our

goals include matching the instances belonging to the

heterogeneous data sources, our semi-automatic instance

matching system, allows the user to provide initial matches

between the source and target graph elements. The system

then runs the entity similarity algorithm introduced in section

IV. After the entity similarities converge, it follows the steps

below:

 The system extracts the subject IRI node pairs which

have similarities higher than a user defined and

configurable parameter (threshold), and then

presents them to the user.

 A subject node pair that is presented to the user is

denoted by (s1,s2) where s1 and s2 are two subject

IRI nodes having similarity greater than the defined

threshold. Our system merges these two nodes if

their match is approved by the user. The merged

node is considered as a single subject node which is

denoted by [s1,s2], that retains all the predicates all

from both s1 and s2.

 Our system then checks the common object nodes of

s1 and s2, and generates (p1,p2) as a candidate

instance pair if both s1 and s2 are connected to a

common object node by p1 and p2 correspondingly.

 In addition, the system checks the common predicates

of s1 and s2, and generates (o1, o2) as a candidate

instance pair if both s1 and s2 correspondingly

connects to the object nodes o1 and o2 by a

common predicate.

 The instance matching candidates (p1,p2) and (o1, o2)

are then presented to the user and merged if their

match is approved by the user. The merged entities

are denoted by [p1,p2] and [o1,o2].

 The system then reruns the RDF entities similarity

algorithm based on the new RDF graph generated

by the merged graph entity pairs.

 Our system repeats the steps explained above until the

there is no new matching pairs generated by our

algorithm and no more feedback from the user.

An example of how our system handles the instance

matching and merging process is shown in Fig. 2. In the

figure, the nodes v1, v2, v3, v4 and the predicates p1, p2, p3

belong to the source graph while the nodes v2, v5, v6 and the

predicates p3, p4 belong to the target graph. Our goal is to

find the matching instances between the source and the target

graph.

At first, the RDF entities similarity algorithm runs and our

instance matching system generates the first instance

matching candidates based on the results of the similarity

algorithm. As shown in Fig. 2, our system pairs the subject

nodes (v1, v5) as a candidate instance matching pair and

presents them to the user at phase 1. The user approves that

the candidates match and the subject nodes v1, v5 are merged

to get [v1,v5].

Fig. 2. Instance matching process.

Then, on phase 2, the common predicates of the merged

node [v1,v5] are checked by the algorithm. As the new node

[v1,v5] connects to the subject nodes v4 and v6 by the

common predicate p3, our system presents (v4,v6) to the user,

and it gets [v4,v6] once the user approves that they match.

On phase 3, our system checks the common object nodes

of the new node [v1,v5]. As it is clear that [v1,v5] connects to

a common object node v2 with the predicates p1 and p4, the

algorithm presents the predicates pair (p1,p4) to the user, and

it merges them to get [p1,p4] upon approval by the user.

At phase 4, comparing to phase 1, the source and target

graphs are merged, and the graph size in total is reduced by

40% (from five triples to three triples). As the instance

matching system runs in iterations, in the next iteration, the

output graph of phase 3 becomes input in phase 1. The

iterations continue until the optimum instance matching pairs

are obtained.

VI. EVALUATION

In empirical evaluations, the following datasets were used:

a subset of DBpedia [11] and a subset of SemanticDB [12].

SemanticDB is a Semantic Web data repository developed by

the Cleveland Clinic for Clinical Research and Quality

Reporting. To evaluate the effectiveness of the instance

matching algorithm, we generated a validation dataset by

replicating the original dataset and syntactically changing the

names of the instances. We transformed instance names in

the validation dataset using a specific naming pattern. The

original dataset was considered as the source, and the

validation dataset was as the target in the instance matching

step. The instance node naming pattern was used for

validation. In summary, the instance matching evaluation

with DBpedia as the source dataset included 90 triples with

60 distinct subject and predicate nodes. The algorithm

semi-automatically matched 100% of the nodes to a target

graph node. The algorithm achieved 85% accuracy and

generated 20 instance matching candidates. The evaluations

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

382

with SemanticDB as the source dataset contained 2500 triples

with 520 distinct subject and predicate nodes. 86% of the

nodes were matched to a target graph node

semi-automatically. The accuracy of the algorithm was 95%

and 310 instance matching candidates were generated the

algorithm.

VII. RELATED WORK

In the literature, there has been much research in the

subject of ontology mapping. The terminology used for

defining the problem has varied such as matching, alignment,

merging, articulation, fusion, integration, morphism, etc.

Inherently, many tools and methods have emerged in the

field.

Many of these approaches are solely based on the use of

string similarity mechanisms for finding matching entities

between two ontologies [13], [14]. Approaches that have

studied the ontology mapping problem from the schema

matching perspective in the context of data integration have

also been explored since schemata can be considered as

ontologies with restricted relation types. These include [15],

[16].

Some others have suggested asking the user for feedback,

as in our work, to perform the mapping generation

interactively by providing proper visualization to support the

decision. We think this is a useful feature for generating

high-quality links. However, in this work we minimize the

need for user feedback to reduce the load on the users.

Doan et al. [17] provided a system, GLUE, which employs

learning techniques to semi-automatically find mappings

between two given ontologies. For each concept in one

ontology, their framework uses a multi-learning strategy to

predict a similar concept in the other using probabilistic

definitions of several similarity measures. GLUE calculates a

joint probability distribution to measure the overlap between

two input sets. The authors offer two learners: a content

learner and a name learner for learning information such as

the word frequencies, instance names and value formats. The

content learner uses Naive Bayesian learning, a text

classification method, for the instance content whereas the

name learner uses the full name instead of its content. Then

they combine the predictions of the two learners and assign

weights to them using a meta-learner. Additionally, they use

a technique, relaxation labelling, which gives labels to nodes

of a graph, based on a set of constraints. Similar to their

system, we also propose a machine learning framework. In

contrast to them, we don't employ an active learning

technique, which relies on the quality of the training dataset.

Jain et al. offered a framework called BLOOMS [18] and

later an improved version under BLOOMS+ [19]. They

propose a metric to determine which classes to align between

two ontologies and a technique for using contextual

information to support the alignment process. However, they

rely on existence of a human-generated upper ontology and

the concept categorization in the form of a tree structure. Our

approach does not rely on an upper ontology, as we think

these assumptions are problematic since the quality of the

mapping strictly depends on the categorization of the concept

by humans, and any potential categorization issue in the

upper ontology will have an impact on the whole context.

The notion of instance matching has also been studied by

the Semantic Web community. With an ontology instance

matching perspective, some research studies have

investigated comparing instances based on the properties and

roles. However, they primarily focus on the ontology

mapping [20], [21] or ontology population [22] tasks.

On the other hand, [23] studies an automatic instance

matching problem in RDF graphs with the focus on property

weights, where property weights yield precedence to

properties that make the instances more unique. The

similarity metric utilized in this work also employs

auto-generated property weights, which is a similar notion to

the term frequency-inverse document frequency (tf-idf) [24],

[25]. Our work is also different in the sense that it is

semi-automatic, allowing for user feedback.

A matching algorithm called similarity flooding (SF) is

proposed in [8]. SF matches two directed and labeled graphs

to produce a multi-mapping of analogous nodes.

For the similarity computation, SF relies on the intuition

that elements of two graphs are similar when their adjacent

elements are similar, exploiting the neighboring structure of a

concept map, the semantic meaning of the content of the

graph node and the labels of the relations between the nodes.

In SF, the similarity of the node pairs starts either with a

string similarity between the content of the nodes or with a

similarity of 1. It then propagates the initial similarity of any

two nodes through the graphs. The algorithm runs in multiple

iterations until the similarity values are converged, or until a

pre-defined maximum number of iterations. SF also does not

distinguish between a schema node and the instance data

node.

In SF, filters are utilized to select the best mappings. The

mappings are then manually reviewed. The accuracy of the

algorithm is measured by the estimated human labor savings

obtained utilizing the algorithm for the matching tasks. In our

work, we make an assumption for similarity computation like

that of SF, that the nodes connected to similar neighbors with

similar predicates are similar. We also run our similarity

algorithm in iterations, and we do not distinguish between the

data model elements and the instance data elements like in SF.

However by the end of the iterations, we suggest the similar

node pairs to the user for matching, and we merge the triples

of the approved matched nodes. Consequently, we suggest

matching of the nodes and predicates based on the common

predicates and neighbors of the already matched nodes, and

we rerun the similarity iterations. In this sense, our technique

requires more user interactions but the consequent similarity

iterations produces more accurate results assuming the user

provides accurate feedback.

VIII. CONCLUSION

In this study, we provided an instance matching system

using RDF graphs. Our instance matching technique is

semi-automatic and does not distinguish between the instance

data elements and the data model elements. The system

makes use of an efficient similarity algorithm, and it makes

smart suggestions to the user by utilizing the neighborhood

concept to infer possible connections between the graph

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

383

entities for finding the linkages between different data

elements. The linkages found can further be utilized in a data

translation framework to support data interoperability.

Additionally, we performed exploratory evaluations that

demonstrated significant results in matching similar graph

elements.

ACKNOWLEDGMENT

A special note of thanks to Prof. Austin Melton for his

invaluable help and guidance during the study. Also, the

authors would like to thank the Cleveland Clinic Cardiology

Application Group members for their valuable feedback.

REFERENCES

[1] G. Klyne and J. J. Carroll, “Resource description framework (RDF):

Concepts and abstract syntax,” 2006.

[2] T. Berners-Lee, J. Hendler, O. Lassila et al., “The semantic web,” Sci.

Am., vol. 284, no. 5, pp. 28–37, 2001.

[3] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so far,”

Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pp. 1–22, 2009.

[4] Wikipedia. (2017). Data Mapping. [Online]. Available:

https://en.wikipedia.org/wiki/Data_mapping

[5] C. for D. Control and Prevention. ICD - ICD-9 - International

Classification of Diseases, Ninth Revision. [Online]. Available:

http//www.cdc.gov/nchs/icd/icd9cm.htm

[6] U. S. N. L. of Medicine. SNOMED Clinical Terms® (SNOMED CT®).

[Online]. Available: http//www.snomed.org/snomed-ct

[7] M. Aydar and A. C. Melton, “Translation of instance data using RDF

and structured mapping definitions,” in Proc. 14th International

Semantic Web Conference ISWC, 2015.

[8] S. Ayvaz, M. Aydar, and A. C. Melton, “Building summary graphs of

RDF data in semantic web,” in Proc. 2015 IEEE 39th International

Computer Software and Applications Conference (COMPSAC), 2015.

[9] D. Brickley and R. V. Guha, “RDF vocabulary description language

1.0: RDF schema,” 2004.

[10] M. Aydar, S. Ayvaz, and A. C. Melton, “Automatic weight generation

and class predicate stability in RDF summary graphs,” 2015.

[11] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,

“Dbpedia: A nucleus for a web of open data,” Springer, 2007.

[12] C. D Pierce, D. Booth, C. Ogbuji, C. Deaton, E. Blackstone, and D.

Lenat, “SemanticDB: A semantic Web infrastructure for clinical

research and quality reporting,” Curr. Bioinforma., vol. 7, no. 3, pp.

267–277, 2012.

[13] D. Spohr, L. Hollink, and P. Cimiano, “A machine learning approach to

multilingual and cross-lingual ontology matching,” The Semantic

Web–ISWC 2011, pp. 665–680, 2011.

[14] G. Stoilos, G. Stamou, and S. Kollias, “A String Metric for Ontology

Alignment,” The Semantic Web–ISWC 2005, Springer, pp. 624–637,

2005.

[15] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic schema matching

with cupid,” VLDB, vol. 1, pp. 49–58, 2001.

[16] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A

versatile graph matching algorithm and its application to schema

matching,” in Proc. 2002 18th International Conference on Data

Engineering, 2002, pp. 117–128.

[17] H. Bohring and S. Auer, A.-H. Doan, J. Madhavan, P. Domingos, and

A. Halevy, “Ontology matching: a machine learning approach,” Handb.

Ontol. STAAB STUDER REds Int. Handb. Inf. Syst. Springer Verl. Berl.,

pp. 385–404, 2004.

[18] P. Jain, P. Hitzler, A. P. Sheth, K. Verma, and P. Z. Yeh, “Ontology

Alignment For Linked Open Data,” The Semantic Web–ISWC 2010,

Springer, pp. 402–417, 2010.

[19] P. Jain et al., “Contextual ontology alignment of lod with an upper

ontology: A case study with proton,” The Semantic Web: Research and

Applications, Springer, pp. 80–92, 2011.

[20] A. Isaac, L. Van Der Meij, S. Schlobach, and S. Wang, “An empirical

study of instance-based ontology matching,” Springer, 2007.

[21] C. Wang, J. Lu, and G. Zhang, “Integration of Ontology Data through

Learning Instance Matching,” in Proc. International Conference on

Web Intelligence, 2006, pp. 536–539.

[22] S. Castano, A. Ferrara, S. Montanelli, and D. Lorusso, “Instance

Matching for Ontology Population,” SEBD, pp. 121–132, 2008.

[23] M. H. Seddiqui, R. P. D. Nath, and M. Aono, “An efficient metric of

automatic weight generation for properties in instance matching

technique,” Int. J. Web Semantic Technol., vol. 6, no. 1, p. 1, 2015.

[24] H. P. Luhn, “A statistical approach to mechanized encoding and

searching of literary information,” IBM J. Res. Dev., vol. 1, no. 4, pp.

309–317, 1957.

[25] K. Sparck Jones, “A statistical interpretation of term specificity and its

application in retrieval,” J. Doc., vol. 28, no. 1, pp. 11–21, 1972.

Mehmet Aydar was born in Iskenderun, Turkey in

1986. He took his bachelor degree in computer

engineering in 2005 from Bahcesehir University,

Istanbul, Turkey. He then took his master's degree in

computer technology in 2008 from Kent State

University in OH, USA. He also received his Ph.D

degree in computer science from Kent State University

in 2015, OH, USA.

He worked as a PLC programmer between

2005-2006 in Hipertech LTD, Istanbul, Turkey. He was a graduate assistant

between 2007-2008 in Kent State University, OH, USA. Between 2008 and

2011 he worked as a programmer/analyst in visual evidence LLC company,

Cleveland, OH. He then worked in Cleveland Clinic Heart and Vascular

Institute as a senior system analyst between 2011 and 2016. He is currently

the owner of multiple e-commerce web. His research interests and previous

publications are in the field of semantic web and its applications in healthcare

and life sciences and data mining.

Serkan Ayvaz received his bachelor’s degree in

mathematics and computer science in 2006 from

Bahçeşehir University Istanbul, Turkey. Later, he

received his master’s degree in technology with

specialization in computer technology from Kent State

University in 2008. He completed his Ph.D. in

computer science at Kent State University in 2015. He

has over 8 years of industry work experience in the

USA, most recently as lead systems analyst at

eResearch Department at the Cleveland Clinic Foundation between 2011 and

2016. In his role, he served on multidisciplinary research teams focusing on

medical research projects. Prior to joining the Cleveland Clinic, he had

worked as a software engineer at Hartville Group for three years.

He is currently a faculty member at the Department of Software

Engineering and serves as the coordinator of the big data analytics and

management graduate program at Bahcesehir University.

His research interests include semantic searches, machine learning and

scalable knowledge discovery in Big Data Semantic Web and its

applications, particularly in healthcare and the life sciences.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

384

