
  

 

Abstract—Because of the dynamic nature of JavaScript, an 

array access operation with a property (index) that is out of its 

range will not throw an arrayIndexoutOfBound exception, but 

will silently return the value undefined. This can cause 

programs to crash or malfunction. This work extends the 

JavaScript language with range assertions and allows 

developers to insert them at any program point. Range 

assertions could help detect such silent arrayIndexoutOfBound 

exceptions and can be useful for program understanding and 

debugging. We propose an assertion language that can be used 

in any JavaScript static analyzer. Assertions are statically 

checked and possible violations are reported. The experiments 

on a set of benchmark programs reported a violation that would 

have been previously unnoticed. 

 
Index Terms—Abstract interpretation, interval domain, 

JavaScript, range assertions. 

 

I. INTRODUCTION 

Static analysis, which is the automatic discovery of 

program properties, has long been used for program 

understanding and program verification. Program developers 

rely on it to identify potential errors and correct them. For 

programming languages like C and Java, state of the art static 

analyzers are available for each stage of development thanks 

to their static nature. However, the situation is different for 

JavaScript. It supports first class functions, uses prototype 

inheritance and dynamic typing. The very same features that 

made JavaScript special, easy to use and attractive for 

developers are the same ones behind the difficulty of 

developing static analyzers that are scalable and precise 

enough. 

With the increasing use of the language, a lot of effort has 

been done this last decade by the research community to 

equip JavaScript developers with better tools. Contributions 

have been made on pointer analysis [1], type inference 

analysis [2]-[7] and vulnerabilities detection [8]-[12]. They 

include static, dynamic or blended analysis approaches for 

the whole language or just a subset. This paper focuses solely 

on abstract interpretation based static analysis. Abstract 

interpretation is a theory of semantic based approximations 

formalized by Cousot and Cousot [13], [14]. Often required 

for the analysis of large and complex programs, it allows the 

analysis of a program in an abstract universe equipped with 

abstract domains. 

Several abstract interpretation-based static analyzers have 

 
Manuscript received February 23, 2017; revised April 25, 2017. This 

work was supported by Oakland University.  

Lunjin Lu and Astrid Younang are with the Computer Science and 

Engineering department at Oakland University in Michigan, USA (e-mail: 

L2Lu@ oakland.edu, awaindja@oakland.edu).  

been proposed for JavaScript programs. Those static 

analyzers detect and report various bugs in JavaScript 

programs such as type errors, reference errors, null/undefined 

variables and unreachable code. TAJS is a tool that detects 

type related errors in JavaScript programs. TAJS was 

designed and implemented by Jensen et al. [4]. It tracks 

undefinedness, nullness, type and point-to information and 

uses recency abstraction to increase analysis precision. TAJS 

detects definite type errors in JavaScript programs and 

generates warnings on potential type errors. Kashyap et al. 

[15] designed and implemented JSAI (JavaScript Abstract 

Interpreter), an abstract interpreter for static analysis of 

JavaScript programs. JSAI, which has a similar purpose as 

TAJS, detects and reports type errors in JavaScript programs. 

The main difference between the two tools is context 

sensitivity. In JSAI, the user can choose between a range of 

context-sensitivities. Lee et al. proposed SAFE [16], a 

Scalable Analysis Framework for ECMAScript. It provides 

three intermediate representations for JavaScript that can be 

used in various analyses and optimizations. SAFE detects 

range errors, reference errors, syntax errors, type and URI 

errors and successfully generates warnings such as the 

reading of an absent property of an object or a conditional 

expression that is always true or false. Range assertions can 

be viewed as an additional feature to be included in current 

static analyzers. 

The main contributions of this paper are: 

1. The extension of the JavaScript language with range 

assertions. We designed an assertion language that 

can be integrated in any JavaScript static analyzer. 

2. An empirical evaluation of assertion checks on a set of 

benchmarks. Range assertions were manually inserted 

in the analyzed programs. On most of the benchmarks, 

the inserted assertions were satisfied, which is a sign 

of a good execution of the programs as far as the 

checked properties were concerned. Some assertions 

were reported to have failed due to the 

over-approximation of the analysis. We found one 

real violation on 7 benchmark programs analyzed. 

 

II. MOTIVATING EXAMPLE 

Arrays in JavaScript are different from regular objects 

with the length property. An index is a string of digit 

characters representing a positive integer property between 0 

and 232-2. The length property is automatically updated to the 

maximum index plus 1. Due to its dynamic nature, JavaScript 

allows array objects to have properties that are negative 

numbers, non-integer numbers and non-numeric values. 

When accessing a non-existing property in an array, 

JavaScript does not throw an arrayIndexoutOfBound 
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exception, but silently returns the value undefined. Range 

assertions could be useful as to check the range of array 

properties and identify such silent arrayIndexoutOfBound 

errors. The example below illustrates a range assertion check 

in a JavaScript program.  
 

1      var i,number,ind=0; 

2      var A=[1,2,3,4,5,6,7,8,9,10]; 

3        

4      while (ind<7) { 

5       i=i+3; 

6   assert(“range”, i,0,9); // range assertion 

7   number=A[i]; 

8    f(number,i); 

9    i=i+ind; 

10   ind=ind+2; 

11   } 

12 

13   function f(x,y){ 

14   var result; 

15   result=x.toPrecision(y); 

16   } 
 

In the above example, the range assertion fails because the 

variable i has not been initialized. The JavaScript engine will 

continue the execution of the program with undefined as the 

value of i and this will impact the rest of the program. The 

condition in line 4 successfully evaluates to true at the first 

iteration. The value of i in line 5 is undefined, the assertion in 

line 6 fails and the array access in line 7 fails silently. A 

regular execution without assertions will not throw errors. 

The failed assertion in line 6 comes as a warning that this will 

compromise the following array access operation. The 

program then calls the function f in line 8 with 2 arguments 

that are undefined. At the entrance of the function, there is a 

possible type error that can occur in line 15 as the program 

cannot call the method toPrecision of undefined. This 

example shows that the insertion of assertions in the program 

can detect errors that would otherwise occur silently. This is 

an example where an initialization that has been forgotten has 

compromised the execution of the program. Due to the lack 

of static type checking in JavaScript programs, program 

developers can encounter the proliferation of undefined 

values throughout their programs. Also, in the presence of 

boolean expressions in loops or conditional statements, an 

undefined value will cause the boolean expression to always 

evaluate to false as the undefined value is converted to NaN. 

 

III. THE RANGE ASSERTION LANGUAGE 

In this section, we present an assertion language for 

JavaScript. Let Number be the set of numbers, Variable the 

set of variables and Stmt the set of statements. Number 

consists of 64-bit floating point numbers as defined by the 

IEEE-754 standard [17]. Assertion statements inserted in 

JavaScript programs respect the following grammar: 

 

      (1) 

 
Fig. 1 illustrates the JavaScript Abstract Interpreter 

augmented with assertions. Before a JavaScript program is 

analyzed. It is passed to the Mozilla Rhino JavaScript parser 

to produce a Rhino abstract syntax tree (AST) [18]. The 

Rhino AST is then passed to a translator to produce another 

abstract syntax tree called notJS. The translator was modified 

to recognize assertion statements and produces a new node in 

the notJS intermediate representation. The assertion 

statement is a special function call. All the details about the 

translator can be found in [15]. The static analysis engine 

takes as input the abstract syntax tree extended with assertion 

statements.  

An abstract state  is a tuple of 4 elements. The first 

element  is the next statement to execute, followed by the 

abstract environment  which is a map from variables to 

locations. The abstract store  is a map from locations to 

values and the continuation stack k is the stack that contains 

the rest of the statements to execute to reach the final state. 

The semantic rule for the assertions statements is as follows:  

 
 

 

                   (2)

 
 

The statement  represents a range assertion statement. 

The assertions statements do not modify the environment nor 

the store. Let bl and bu be two abstract boolean variables. 

                       (3) 

 
                       (4)

 

The variable bl evaluates to True when the value of the 

variable v is greater or equal to n1, False when it is strictly 

smaller than n1 and TB when we cannot precisely compare the 

values due to the imprecision of the analysis. The same 

reasoning applies to the boolean variable bu.  

The abstract numeric domain used in our analysis is the 

extended abstract domain of intervals from our previous 

work in [19]. Let Float754 denote the set of all IEEE-754 

numbers including the special numbers NaN,  and  

The extended abstract domain of intervals  is defined as 

follows: 

 

 (5) 

 

         (6) 

 
Norm (a,b) describes the set of real numbers between a and 

b including NaN, Int(a,b) the same set of real numbers 

without NaN. NConst(c) describes the real number c and 
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Int32 the set of all unsigned 32-bit integers. NaN is the 

special number arising from computations such as  or 

. 

The concretization function  for 

the extended abstract domain of intervals is defined as 

follows: 
     

(7)

 

 
Fig. 1. JavaScript abstract interpreter (JSAI) augmented with assertions. 

 

 

IV. APPROXIMATION OF MATH FUNCTIONS 

Each built-in mathematical function f over the domain of 

numbers is simulated by a corresponding abstract function f# 
over the domain of intervals. Abstract mathematical 

functions such as abs#, acos#, asin#, atan#, atan2#, ceil#, cos#, 

exp#, floor#, log#, min#, max#, pow#, random#, round#, sin#, 

sqrt#, tan# have been designed and implemented in the 

analyzer using the interval domain. We now give definitions 

for some of these abstract functions. 

 

  

(8) 

 

     

(9) 

 

 

  

(10) 

 

 
(11) 

 

The abstract mathematical functions were defined for all 

the elements of the extended interval domain. Above are the 

definitions for the log#, sqrt#, abs# and atan2# on abstract 

elements Int (a,b), NConst(c) and Norm(a,b). The function 

artan2 () returns the arctangent of the quotient of its 

arguments which is a value between -π and π.  Depending on 

the intervals, different results are obtained when computing 

their arctangent. Similarly, the absolute value of an interval 

can be computed based on the values of its bounds. 

 

V. EVALUATION 

We used the abstract interpreter JSAI from [15] to test the 

assertions. JSAI is a framework written in Scala. We ran 

JSAI on a Scientific Linux 6.3 distribution with 24 Intel Xeon 

CPUs with a capacity of 1.6GHz and 32GB memory. The 

modifications made to JSAI are detailed in Section III. The 

benchmarks chosen are the standard SunSpider [21] and V8 

programs [22], browser addon programs from the Mozilla 

addon repository [23], machine generated JavaScript code 

from the Emscripten LLVM test suite [24]. 

We used the following rules to insert range assertions in 

our programs: 

 If the length of an array is known, then we insert a 

range assertion statement before any array access 

with the lower bound equals to 0 and the upper 

bound equals to the value of the length 

 If the length of an array is unknown, we insert a range 

assertion statement with the lower bound equals to 0 

and the upper bound equals to the value of the 

maximum index in a JavaScript array which is 

4294967295. 

 Some programs like ems-aha.js had their own 

assertion statements like 

 

 We use those statements to add additional range 

assertions statements. 

A. Precision 

The precision metric used in our benchmark programs for 

range assertions is the number of program points satisfying or 

violating an assertion. Fig. 2 presents the reports on the 

benchmark programs. The source codes of the first set of 

benchmark programs with the prefix adn are similar. They all 

reported the same program point for the violation of the range 

assertion. There is an access operation on the array 

globalFuncList[TopNum] with TopNum=Date.now(); 
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Fig. 2. Report on range assertions. For each benchmark program, we count the number of programs locations that possibly satisfy or violate the assertions on 

the lower or upper bounds. 

 

Date.now() is a JavaScript function returning the number 

of milliseconds between midnight, January 1, 1970 and the 

current date and time. This value could possibly be larger 

than the maximum value of an array index. The possibly 

violated range assertions in ems-aha.js, ems-fannkuch.js, 

ems-fasta.js, ems-fourinarow.js and ems-hashtest.js are the 

result of the over-approximation on the bitwise shift 

operators. Those operators produce a number that is 

approximated to the abstract element Int32, which describes 

the set of unsigned 32-bit integers. Therefore, the range 

assertions cannot be precisely checked. This opens room for 

the use of a more precise numeric domain in future work. The 

programs std-richards.js and std-splay.js do not contain 

arrays.  

B. Performance 

A comparison between the running time of the analyzer 

with and without assertions shows no significant increase. 

Therefore, a JavaScript static analyzer can include assertion 

checks with little to no cost. 

 

VI. RELATED WORK 

Compared to Java and C, JavaScript is still in need 

sophisticated tools to aid program developers in their testing 

activities. Sound and unsound approaches have been 

proposed in [8]-[12] to detect security vulnerabilities in 

browser extensions and JavaScript web applications. Due to 

the dynamic typing of JavaScript, type inference analysis has 

received a lot of attention [2]-[4], [6] and [7]. Contributions 

have also been made on pointer analysis in [1], which can be 

used for further JavaScript analyses. Some effort has been 

done by the research community and some tools have been 

proposed over the years to aid developers improve the quality 

of the JavaScript code they are writing. In this section, we 

focus on the main static analyzers available and the 

functionalities that they offer. 

A. Code Quality Tools 

JSlint, JSHint, ESLint and Closure-Linter are mainly code 

quality tools. They analyze JavaScript programs and report 

bugs based on a set of predefined rules. JSLint [25] is a code 

quality tool that was originally developped by Douglas 

Crockford from Yahoo. The tool is made available via an 

online interface (www.jslint.com) where a user can paste 

JavaScript code to be analyzed. JSlint analyzes the program 

over a set of strict rules and produces a report about the errors 

detected. In order to loosen some rules and reduce the 

number of errors, JSLint presents several options such as 

tolerate eval, tolerate messy white space and tolerate unused 

parameters. It also allows the program to be analyzed in 

different contexts by assuming different environments such 

as NodeJS, couchDB and ES6. 

JSHint [26] was created by forking the original JSLint. 

The motivation behind the creation of JSHint was to allow 

more configuration over the options available in JSLint and 

to give more power to the user. Another reason behind the 

creation of JSHint was to reduce the number of format related 

errors and to focus more on errors that will cause the program 

to malfunction.  

ESLint [27] is another tool that can be used to validate 

JavaScript and check for errors. It allows the user to write 

their own linting rules and it is designed to have all the rules 

completely pluggable.  
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Google Closure Linter [28] is another utility that can be 

used to check JavaScript files for issues such as missing 

columns or spacing. The tool follows the Google JavaScript 

style guide and the user has no control over the rules. Among 

the errors detected by those linter tools, we can cite missing 

semi-columns, already defined variables, null/undefined 

variables, use of eval function, variables that are used before 

they are defined. 

B. Type Errors Reporting Tools 

Variables in JavaScript can hold different types during the 

execution of a program. This leads to type errors that can 

cause the program to malfunction or terminate. Several 

frameworks are available to detect type related errors in 

JavaScript programs. Jensen et al in [4] introduced TAJS - 

Type Analysis tool for JavaScript. TAJS detects type related 

errors in JavaScript programs in addition to other errors such 

as unreachable code, reference errors, null/undefined 

variables, unused variables and properties that are never read. 

TAJS has evolved over the years and improved its precision 

with techniques such as recency abstraction and lazy 

propagation. JSAI is a JavaScript Abstract Interpreter 

developed by Kashyap et al in [15]. JSAI detects type and 

range errors in JavaScript programs. It is different from TAJS 

with the context sensitivity aspect which is entirely 

configurable by the user. SAFE is another static analyzer for 

JavaScript programs [16]. Unlike TAJS and JSAI which use 

a parser based on EcmaScript 3, SAFE is based on 

EcmaScript 5. It also detects type related errors in JavaScript 

programs in addition to reference errors, properties never 

read, unused variables, range errors, conditional expressions 

always true or false and reading of absent properties. 

 

VII. CONCLUSION AND FUTURE WORK 

We extended the JavaScript language to support range 

assertions. Those assertions are statically checked in order to 

locate possible silent arrayIndexOutOfBound exceptions that 

could cause programs to crash or malfunctions. However, a 

thorough check on those assertions requires the use of 

sophisticated and precise abstract numeric domain. Future 

work will investigate the tradeoff between cost and precision 

of the octagon domain as abstract numeric domain. 
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