

Abstract—Available SystemC IP blocks are commonly

modeled at either a cycle-accurate or a functional abstraction

level. The large interval between these two choices, combined

with non-trivial model replacement and integration effort, often

leads to a prolonged use of the functional model, resulting in a

verification gap once the model is eventually replaced with its

cycle-accurate counterpart. A finer control of the granularity of

both the adopted abstraction level and, even more important,

the scope of the chosen abstraction, can thus enable localized,

detailed analysis or verification with minimal impact on the

simulation speed. This paper presents a model for processor

registers in SystemC that makes use of several object-oriented

design patterns in order to transparently change its behavior,

starting from a functional model down to a cycle-accurate,

pipelined version, while preserving the same interface. The

register model has been integrated into a fork of the

open-source processor generation tool TRAP-Gen, which

generates SystemC processor models from high-level,

Python-based descriptions.

Index Terms—Abstraction level, processor generation,

registers, systemC.

I. INTRODUCTION

The rising complexity of Systems-on-Chips, combined

with a persevering time-to-market pressure, has rendered

virtual prototyping almost indispensable for early design

space exploration, verification and parallel HW/SW,

co-design [1]. Ideally, a virtual prototype should persist

throughout most of the design flow, evolving from a

functional model down to an implementation with as little

superfluous effort as possible. In practice, however, system

design is seldom a neat, straight-forward process. Instead, it

often involves different groups working at a different pace,

re-use of legacy IP and/or adoption of external IP [2]. This

results in top-level models containing a mixture of tools,

modeling styles, interfaces and abstractions with

correspondingly significant integration demands. Thus, the

longer a given model can perdure within the design cycle

with minimal changes, the greater the savings in integration

and verification efforts [3]-[5].

Nonetheless, state-of-the-art EDA tools, as well as

off-the-shelf IP, are mostly geared towards an approach

involving model refinement via replacement as opposed to

enhancement [6]: Both handwritten as well as tool-generated

Manuscript received January 30, 2017; revised June 25, 2017. This work

was supported by the ARTEMIS-JU EMC2 project, grant no. 621429.

L. Tadros is with the Technische Universität Dortmund, 44227 Dortmund,

Germany (e-mail: lillian.tadros@tu-dortmund.de).

models tend to offer either a full, cycle-accurate

implementation and/or a high-level, functional view. This

has several repercussions: First, there is the aforementioned

model replacement effort whenever the abstraction level is

lowered as the design materializes. Second, there is no

possibility of changing the abstraction scope for selective,

localized analysis or verification of a given, sub-modular

hardware block. Third, the slow-down in simulation speed

that accompanies accurate models [7], [8] might very well

induce a prolonged application of the functional model,

necessarily accompanied by the discovery of hitherto

unknown errors once it is eventually replaced by a detailed

implementation.

These shortcomings were perceptible during our work

integrating new processors into the SystemC/TLM virtual

platform SoCRocket [9], [10]. Our processor models were

generated using the open-source processor generation tool

TRAP-Gen (TRansactional Automatic Processor GENerator)

[11] that generates SystemC models from a common,

high-level Python description. Separate models are generated

of either cycle-accurate (i.e. pipelined) or functional

behavior combined with approximately-timed or

loosely-timed communication. During the verification phase,

we found we would have benefited from closer introspection,

specifically of the processor registers, but were held back

from utilizing the pipelined model due to code-size,

compilation- as well as run-time considerations.

This led us to undertake a complete rewrite of the register

generation methodology used in TRAP-Gen. Our approach

envisioned a model for processor registers that can be

parametrized in runtime to provide behavior varying in detail

from cycle-accurate/pipelined up to un-timed/functional. In a

sense, this does for intra-module behavior what is done by

TLM sockets [12] for inter-module communication.

This paper is organized as follows: Section II evaluates

some available processor models or processor-generating

tools. We describe the premises and general concepts of our

model in Section III. The multi-abstraction feature is

introduced in Section IV. Section V presents some

experimental evaluation. We conclude with some open

aspects for future consideration in Section VI.

II. RELATED WORK

To the best of our knowledge, there is no published work

dedicated to dynamically varying the internals of a model to

operate at a user-defined abstraction level. Nevertheless, it is

interesting to compare the underlying methodology behind

A SystemC Register Model for Multiple Levels of

Abstraction Using Advanced Object-Oriented Design

Patterns

Lillian Tadros

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

339DOI: 10.7763/IJCTE.2017.V9.1163

processor models both in commercial and open-source IP.

Since we have no access to commercial products, we can

only offer a cursory depiction thereof. ARM processor

models are available from the former Carbon Design Systems,

now part of ARM Ltd. [13]. They offer both a cycle-accurate

Register Transfer Level (RTL) model and an

instruction-accurate model that integrate with their SoC

Designer Plus virtual prototyping environment. A similar

two-level approach is taken by Synopsys' DesignWare, in

this case the instruction-accurate nSIM and the

cycle-accurate xCAM [14]. Cadence's Tensilica processors

come in four flavors: Xtensa ISS / TuboXim for hardware

developers and XTensa SystemC / XTensa Modeling

Protocol for software developers [15]. The generation tool

from Cadence [16] follows a similar division between

abstractions. Mentor Graphics offers its microcontrollers in

Verilog or VHDL RTL [17]. Processor models from Imperas

[18] or the popular open-source QEMU project [19] are

geared towards software development and thus offer a purely

functional virtual machine interface.

The common factor in all preceding models is the

utilization of different models of the same processor core,

depending on use-case and target audience. Open-source

models are no different: OpenCores [20] is the

conglomeration of many processor models from both

industry and academia, with a corresponding multitude of

modeling languages, detail levels and styles. SoCLib [21]

attempts to reduce the number of core models to less than the

product of cores and abstractions by providing one

abstraction-agnostic model per instruction set plus

retargetable wrappers for the communication timing, in their

case cycle-accurate, approximately-timed and untimed [22].

While this handles communication timing, the behavior

timing is only approximated using annotation. Registers are

modeled as integers for all abstractions, pipelining and

similar implementation-dependent effects are not considered.

Along the same lines, gem5 [23] offers four generic

processor models of different behavioral granularities, to be

combined with a given instruction set model in a

mix-and-match fashion [24]. While this successfully reduces

the total number of core models, the problem of integrating,

maintaining and verifying multiple, in this case four, models

of the same processor remains.

III. REQUIREMENTS AND PROPOSED REGISTER CLASS

HIERARCHY

A. Requirements

Depending on the abstraction level, the behavioral model

of a processor register can range from a simple value to a

complex set of latches that propagate on clock cycle edges.

After analyzing several instruction set architectures, we

identified the following requirements for a register

implementation:

1) Modeled behavior

a) Ability to access and manipulate named register fields

(named bit sequences within a register).

b) Ability to define and manipulate register banks.

c) Ability to define, possibly variable, offsets to be

added to register values (e.g. the +4/+8 PC (program

counter) offset in ARMv7 [25]).

d) Ability to define a time delay between register writes

and subsequent reads, introducing a notion of time

for un-pipelined registers. This can be considered a

loosely-timed behavioral modeling style, in a

similar vein to loosely-timed TLM communication.

e) Ability to define register aliases, with or without

offsets, to enable virtualization of the available

physical registers (e.g. SPARC9 [26]).

2) User experience and flexibility

f) Choice of abstraction level as a run-time parameter.

The set of available abstraction levels should be

easily expandable.

g) Powerful and semi-uniform interface to the register

hierarchy (registers, register fields, register banks).

h) Ability to attach callback functions to read and write

events.

3) Efficiency

i) Run-time overhead reduction (number of function

calls).

j) Compile-time overhead reduction (code size).

Many well-established design patterns found their way

into our model [27]. In the rest of this section, we present our

proposed model along with some design considerations.

B. Composite Interface: Register Field, Register and

Register Bank

The hierarchy of registers, register banks and register

fields (requirements 1a, 1b and 2b) naturally leads to a set of

composite classes. We start with the setup depicted in Fig. 1.

There are several interesting points to note in this design:

1) RegInterface

This class defines both the value access and manipulation

as well as the child management interface. It includes

common operations that can be performed by all register

classes (read, write, arithmetic, bitwise, relational, logical

and debug operations).

The CHILD template parameter is used by the classes

deriving from RegInterface for specifying the type of child

they are composed of. Since our hierarchy only allows Bit ϵ

RegField ϵ Register ϵ RegBank, a generic solution is

consequently neither needed nor even sound. Hence, the

derived classes store and manipulate the derived type directly,

instead of a RegInterface, avoiding costly and unnecessary

dynamic casting.

The child-parent access and storage mechanism is

discussed separately for each of the three derived classes.

2) Register

This is a heavy-weight class that contains the full

implementation of the access and manipulation interface

(read/write, operators, etc.). All operators call either read() or

write() instead of directly manipulating values. Since read

and write are inlined, no runtime cost is incurred. The

advantage of this approach will be obvious when discussing

different abstractions in Section IV.

On initialization, the register sets up a - possibly empty -

container of RegFields. Fields can be accessed using array

notation (operator []). Named field access is achieved using

the C++ enum class construct.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

340

Fig. 1. Register field, register and register bank hierarchy.

3) RegField

A field stores a reference to a register object. It does not

directly manipulate the register value, but delegates all

accesses to the read() and write() operations of the parent

register, after some bit manipulations and access checks. This

makes this class very light-weight.

The child management of fields is not immediately

obvious. We chose to define a bit as the "child" of a field.

Adding or removing bits, as declared in RegInterface,

obviously makes little sense, but accessing bits in the form

field [bit] is a consistent interpretation of the access operator.

As with all other access functions, the bit value is not saved in

the field but read on demand from the parent register.

4) RegBank

Encapsulating registers in one place provides two

advantages: First, it greatly simplifies passing registers

around the processor modules (individual instructions, ABI,

tests, etc.). Second, it provides a unified interface, so that the

processor or some test function can, for example,

conveniently call RegBank::reset() or RegBank::write() with

no further knowledge of the names, number of properties of

the stored registers. The advantages of this encapsulation will

be more apparent upon discussing register aliases in section

III-E.

The relationship between a register bank and the container

register is a weak aggregation, as opposed to the stronger

composition existing between registers and fields.

Accordingly, registers can exist independently of banks and

manage their own creation and destruction.

5) Iterator interface

Further tweaking the previous design, we add a robust

child iteration interface in addition to the child access

operations provided by RegInterface. The RegIterator class

in Fig. 2 provides basic sequential access with

bounds-checking. It saves a pointer to the iterable container,

i.e. RegField, Register or RegBank, and the index of the

current iterator position. As with RegInterface, the CHILD

template parameter enables specifying the underlying node

type for more efficient access. Most of the well-known

iterator manipulations from the standard C++ library are

provided. The iterator class relies on RegInterface::operator[]

for accessing children.

Fig. 2. Register iterator.

C. Observer Interface: RegCallback

Requirement 2c foresees hooking user-defined functions,

i.e. callbacks, to read and write operations on a register

interface class. We adopt the scireg interface as provided by

Cadence [28], which already defines a notion for callbacks.

The interface foresees an abstract callback type that supports

a do_callback() method, as in a classic observer pattern. Each

callback stores a type, specifying whether to be called on a

read, write or state change. The offset and size attributes

allow attaching callbacks to specific register fields. As with

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

341

all preceding constructs, both fields and banks delegate

callback execution to registers. The register class stores a

callback container and provides methods for adding,

removing and executing callbacks. This is illustrated in Fig.

3.

1
Fig. 3. Register callbacks1.

D. Decorator Interface: Register Alias

The concept of a register alias is warranted by instruction

sets that distinguish between the set of available physical

registers and the set of logical registers that are addressable in

a given configuration, the latter being a subset of the former.

An intuitive solution implementing aliases as pointers or

references to registers is not viable for several reasons:

1) Defining an alias as a simple register pointer (Register*)

requires that the user remembers to use a different syntax

for registers and aliases, which is hardly feasible.

2) References (Register&) are transparent to the user, but

have the disadvantage that they are not meant to be

re-assignable, which retracts the gain in having aliases in

the first place. Furthermore, many constructs, such as

arrays, are not possible with references as subjects.

3) As identified in requirement 1e, an alias can possibly be

prescribed to return a fixed offset to the register value.

This is obviously not realizable with plain-old-data.

Thus, we augment our class hierarchy by a RegAlias class

that retains the same interface as the underlying register.

Along the same lines as the field and bank classes, the alias

class also delegates everything to the underlying register, as

shown in Fig. 4. An optional offset is added dynamically

whenever the register value is read, whether due to an

1The scireg interface depicted here is abbreviated and modified for clarity.

external request or for further processing2.

In addition to the base register, an alias stores optional

pointers to predecessor and successor aliases that enable

building an arbitrarily long alias chain. The offset is defined

relative to the predecessor alias for convenience. In practice,

however, all value manipulations are performed directly on

the register. The list of aliases is required for correct offset

calculations whenever an alias is relocated to point to a

different register or to another alias using set_alias(). An

example for offset calculations is illustrated in Fig. 5.

The addition of aliases requires adding an alias container

to RegBank, in addition to the available register container.

This further accentuates the transparency attained by the

register bank construct. The possible dynamic overhead of

searching two containers at every register access is mitigated

in the case of generated models, which is our original intent,

since it becomes possible to hard-code the individual register

and alias names, whereby lookup is reduced to a simple

member access.

Fig. 4. Register alias class diagram.

Fig. 5. Example register alias object diagram.

2 This interpretation, though sound, causes interesting mathematical

properties, such as (alias = x) != x, which may confuse the unwary.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

342

Fig. 6. Register abstractions.

IV. IMPLEMENTING BEHAVIORAL ABSTRACTIONS

A. Strategy Interface: Register Abstraction

We now elaborate on the concepts already described to add

support for multiple behavioral abstraction levels. The

attention given so far to redirecting the interface to the

Register::read() and write() methods now pays off: It suffices

to relocate both methods to a class that supplies a strategy

appropriate for the chosen abstraction level. On a read or

write, the register simply delegates the behavior to the chosen

strategy class. The heavy-weight register class can thus be

used for all abstractions by just varying the strategy

(requirement 2a).

Fig. 6 depicts an abstract RegAbstraction class, now

responsible for the read/write interface.

RegTLM 3 provides an implementation for un-timed

registers. Reads and writes are simply applied to the register

value, to which the strategy class has access.

Although RegTLMDelay, RegTLMOffset and

RegTLMDelayOffset technically derive from RegTLM, they

are actually loosely-timed models. They fulfill requirements

1c and 1d by introducing a notion of time via a time-delay or

a value-offset, respectively. The former buffers as many

values as the given delay in clock cycles. Every clock cycle,

an update function advances the array one step. The latter is

mostly needed by PC registers to mimic the value increment

in different pipeline stages.

The fully-pipelined RegCA model requires some

elaboration and is deferred to Section IV-B.

An interesting consequence of strategies is that we can

expand on the idea to handle the behavior of special registers.

3The name "TLM" is perhaps somewhat misleading, as it is usually

applied to inter-module communication. "Functional" would perhaps be

more appropriate. We still adopt it, since TLM communication is usually

combined with un-timed/loosely-timed behavior.

Constant-value registers, for instance, have different

write-logic from the regular case. This makes for a second

level of delegation, where an abstraction delegates to a more

specialized implementation. This is illustrated in the

RegTLMConst class in Fig. 6.

B. Pipelined Register Model

Given that as good as every modern processor is pipelined,

a cycle-accurate register model has to consider the manifold

effects of pipelining on register values. A typical processor

pipeline is illustrated in Fig. 7. Each pipeline stage

manipulates a latched version of a given register which

propagates one stage forward on clock cycle edges. The

value written in the write-back stage is fed back to the first

stage.

A modern pipeline that supports forwarding also feeds

certain latches back to preceding pipeline stages to prevent

the manipulation of stale values. This is for example the case

for the PC register in the decode and write-back stages of the

LEON3 processor [29].

Fig. 7. Example of pipelined registers, inspired by [30]. The dashed lines are

possible forwarding paths.

Our TRAP-Gen-generated instruction set implementation

integrates behavioral blocks provided by the user per

instruction and pipeline stage. For non-pipelined models, the

behavior is summed up in one procedure. This dictates that

the notion of register latches should be kept concealed from

the user, i.e. a block of instruction behavior must use the

same register name irrespective of the pipeline stage. After

evaluating several options, we finally opted for the pipeline

register model to contain a fast and simple array of values

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

343

that model the latches. To enable transparent access to the

correct latch, an auto-generated Register::set_stage()

function is transparently called at the beginning of each

instruction stage-behavior function. The register stores the

current stage, and all subsequent reads or write manipulate

the correct latch. An excerpt of the implementation is

provided in listing 1. To add support for forwarding, we can

store special write-back sequences as hash tables that map a

pipeline stage to one or more stages. At each clock cycle edge,

an update() function (line 17) propagates values one step

forward as well as to all stages specified in the hash table.

Since the correspondence is known a priori, we let

TRAP-Gen generate a hard-coded mapping in

clock_cycle_func() (line 22) which is called by update()

every cycle. This keeps the implementation general without

compromising simulation speed.

 1 template <typename DATA>

 2 class RegCA

 3 : public RegAbstraction<DATA> {

 4

 5 public:

 6 typedef bool (*clock_cycle_func_t)();

 7

 8 const DATA read() const {

 9 return values[current_stage] & read_mask;

10 }

11

12 bool write(const DATA & data) {

13 values[current_stage] = data & write_mask;

14 return true;

15 }

16

17 void update() {

18 // Propagate from each stage to the next.

19 // Last stage feeds back to first.

20 // Honor special feedback paths.

21 if (clock_cycle_func != NULL)

22 clock_cycle_func();

23 }

24

25 void set_stage(unsigned stage) {

26 current_stage = stage;

27 }

28 };

Listing 1. RegisterCA implementation.

V. EVALUATION OF THE REGISTER MODEL

To assess the performance of our model, we generated four

versions of six different processors using TRAP-Gen, as

listed in Table I: The first two versions were generated using

the fixed-abstraction register model initially deployed in

TRAP-Gen (initial/untimed and initial/cycle-accurate). The

third and fourth models (combined) are an

abstraction-agnostic version generated using our

methodology, which we parametrized twice to run at the

above-mentioned abstraction levels. The difference in code

size between the combined/un-timed and

combined/cycle-accurate models is due to the fact that, even

though the registers are abstraction-parameterizable, the rest

of the processor is still modeled at a fixed abstraction (see

future work in Section VI).

The combined model shows a consistent decrease in the

code size of the generated processor compared with the initial

implementation. The effect is most perceptible for

cycle-accurate models, which show a reduction of up to 85%

in the case of the modern ARM Cortex A9. This dramatic

decrease is due to the greater savings incurred on large

register sets and/or deep pipelines.

TABLE I: COMPARISON OF GENERATED MODELS

 Source Code Size [kiB]

 Untimed Cycle-accurate

 Initial Combined Initial
Combin

ed

ARM7TDMI 537 526 1453 618

ARM9TDMI 634 585 1777 704

ARM Cortex A9 1976 1188 12133 1768

LEON2 867 828 3170 1555

LEON3 851 812 4012 1793

MICROBLAZE 662 550 1191 592

VI. CONCLUSION

We have presented a comprehensive SystemC model for

processor registers that covers several levels of abstraction.

Our model greatly eases mixing and altering abstraction

levels with little loss of simulation speed. Using several

object-oriented design patterns, it enables changing the

abstraction on a sub-module granularity, in our case, that of

registers instead of processors. Our results have been

integrated in the open-source processor generation tool

TRAP-Gen. We have generated six processors using the

cycle-accurate and un-timed modeling styles. Compared to

the initial implementation in TRAP-Gen, we achieved a

code-size reduction ranging between 50%-85%.

In our future work, we aim to benchmark our model with

respect to runtime performance as well as other criteria. Our

long-term goal is extending the concepts developed here to

other processor elements. We envision unifying

TRAP-Gen-generated models into a single,

abstraction-parametrized model.

REFERENCES

[1] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with

SystemC. Hingham, MA: Kluwer Academic Publishers, 2002.

[2] S. Sarkar, S. C. G., and S. Shinde, “Effective IP reuse for high quality

SoC design,” in Proc. the 2005 IEEE International SOC Conference,

Sept. 2005, pp. 217–224.

[3] M. Keating and P. Bricaud, Reuse Methodology Manual for

System-on-a-chip Designs, Norwell, MA: Kluwer Academic

Publishers, 1998.

[4] B. Bailey and K. Werner, Intellectual Property for Electronic Systems:

An Essential Introduction, Waltham, MA: International Engineering

Consortium, 2007.

[5] T. D. Schutter, Better Software. Faster! Best Practices in Virtual

Prototyping, Mountain View, CA: Synopsys Press, 2014.

[6] I. Petkov, P. Amblard, M. Hristov, and A. Jerraya, “Systematic design

flow for fast hardware/software prototype generation from bus

functional model for MPSoC,” in Proc. the 16th International

Workshop on Rapid System Prototyping (RSP), Montreal, Canada:

IEEE, Jun. 2005, pp. 218–224.

[7] B. Bunton, “A comparison of TLM modeling styles’ performance and

accuracy,” in Proc. the 18th North American SystemC Users’ Group

Meeting (NASCUG), Jun. 2012.

[8] A. Alali, I. Assayad, and M. Sadik, “Modeling and simulation of

multiprocessor systems MPSoC by SystemC/TLM2,” International

Journal of Computer Science Issues (IJCSI), vol. 11, no. 2, May 2014.

[9] T. Schuster, R. Meyer, R. Buchty, L. Fossati, and M. Berekovic,

“SoCRocket - a virtual platform for the european space agency’s SoC

development,” in Proc. the 9th International Symposium on

Reconfigurable and Communication-Centric Systems-on-Chip

(ReCoSoC), May 2014, pp. 1–7.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

344

[10] SoCRocket-transaction-level modeling framework for space

applications. [Online]. Available: https://github.com/socrocket

[11] L. Fossati. Trap-gen. [Online]. Available:

https://code.google.com/archive/p/trap-gen/

[12] M. Montoreano, “Transaction level modeling using OSCI TLM 2.0,”

Open SystemC Initiative (OSCI), Tech. Rep., May 2007.

[13] IP Exchange. Carbon design systems. [Online]. Available:

http://www.carbondesignsystems.com/

[14] Designware processor IP portfolio, synopsys, Inc. [Online]. Available:

https://www.synopsys.com/dw/doc.php/ds/cc/dw-processor-solutions.

pdf

[15] Tensilica Processors, Cadence Design Systems, Inc. [Online].

Available: http://ip.cadence.com/knowledgecenter/know-ten/.

[16] Xtensa Processor Generator, Cadence Design Systems, Inc. [Online].

Available: http://ip.cadence.com/hwdes/

[17] MicroController IP, Mentor Graphics. [Online]. Available:

https://www.mentor.com/products/ip/peripheral/microcontroller/.

[18] ISS - The Imperas Instruction Set Simulator, Imperas Software Ltd.

[Online] Available:

http://www.imperas.com/iss-the-imperas-instruction-set-simulator/

[19] F. Bellard. QEMU. Open Source Processor Emulator.

wiki.qemu.org/Main Page.

[20] OpenCores. [Online]. Available: http://opencores.org/

[21] SoCLib. [Online]. Available: http://www.soclib.fr/

[22] N. Pouillon, A. Becoulet, A. V. de Mello, F. Pecheux, and A. Greiner,

“A generic instruction set simulator API for timed and untimed

simulation and debug of MP2-SoCs,” in Proc. 2009 IEEE/IFIP

International Symposium on Rapid System Prototyping, Jun. 2009, pp.

116–122.

[23] The gem5 simulator. [Online]. Available: http://www.gem5.org/

[24] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5

simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2, pp.

1–7, Aug. 2011.

[25] ARM Architecture Reference Manual, ARM Ltd. Std. ARMv7-A and

ARMv7-R edition (C.b), July 2012.

[26] D. L. Weaver and T. Germond, The SPARC Architecture Manual:

Version 9, SPARC International Inc. Std., 1994.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Elements of

reusable object-oriented software,” in Professional Computing Series,

B. W. Kernighan, Ed. Addison-Wesley, Mar. 2007.

[28] S. Swan and J. Cornet. Beyond TLM 2.0: New virtual platform

standards proposals from ST and Cadence. [Online]. Available:

wiki.qemu.org/Main Page

[29] GRLIB IP Core User’s Manual, Version 1.4.1 - b4156 May 2015,

Cobham Gaisler, Göteborg, Sweden, 2015.

[30] J. L. Hennessy and D. A. Patterson, Computer Architecture. A

Quantitative Approach, Waltham, MA: Morgan Kaufmann, 2012.

Lillian Tadros obtained her Dipl.-Ing. in electrical

engineering and information technology from the

Ruhr-Universität Bochum, Germany, in 2007. She

joined the Institute for Robotic Studies of the

Technische Universität Dortmund, Germany, in 2014,

where she is currently a research assistant. Her

research focuses on multi- and many-core platforms

for embedded and cyber-physical systems.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

345

