
 

Abstract—Available SystemC IP blocks are commonly 

modeled at either a cycle-accurate or a functional abstraction 

level. The large interval between these two choices, combined 

with non-trivial model replacement and integration effort, often 

leads to a prolonged use of the functional model, resulting in a 

verification gap once the model is eventually replaced with its 

cycle-accurate counterpart. A finer control of the granularity of 

both the adopted abstraction level and, even more important, 

the scope of the chosen abstraction, can thus enable localized, 

detailed analysis or verification with minimal impact on the 

simulation speed. This paper presents a model for processor 

registers in SystemC that makes use of several object-oriented 

design patterns in order to transparently change its behavior, 

starting from a functional model down to a cycle-accurate, 

pipelined version, while preserving the same interface. The 

register model has been integrated into a fork of the 

open-source processor generation tool TRAP-Gen, which 

generates SystemC processor models from high-level, 

Python-based descriptions. 

 
Index Terms—Abstraction level, processor generation, 

registers, systemC. 

 

I. INTRODUCTION 

The rising complexity of Systems-on-Chips, combined 

with a persevering time-to-market pressure, has rendered 

virtual prototyping almost indispensable for early design 

space exploration, verification and parallel HW/SW, 

co-design [1]. Ideally, a virtual prototype should persist 

throughout most of the design flow, evolving from a 

functional model down to an implementation with as little 

superfluous effort as possible. In practice, however, system 

design is seldom a neat, straight-forward process. Instead, it 

often involves different groups working at a different pace, 

re-use of legacy IP and/or adoption of external IP [2]. This 

results in top-level models containing a mixture of tools, 

modeling styles, interfaces and abstractions with 

correspondingly significant integration demands. Thus, the 

longer a given model can perdure within the design cycle 

with minimal changes, the greater the savings in integration 

and verification efforts [3]-[5]. 

Nonetheless, state-of-the-art EDA tools, as well as 

off-the-shelf IP, are mostly geared towards an approach 

involving model refinement via replacement as opposed to 

enhancement [6]: Both handwritten as well as tool-generated 

 
Manuscript received January 30, 2017; revised June 25, 2017. This work 

was supported by the ARTEMIS-JU EMC2 project, grant no. 621429.  

L. Tadros is with the Technische Universität Dortmund, 44227 Dortmund, 

Germany (e-mail: lillian.tadros@tu-dortmund.de). 

models tend to offer either a full, cycle-accurate 

implementation and/or a high-level, functional view. This 

has several repercussions: First, there is the aforementioned 

model replacement effort whenever the abstraction level is 

lowered as the design materializes. Second, there is no 

possibility of changing the abstraction scope for selective, 

localized analysis or verification of a given, sub-modular 

hardware block. Third, the slow-down in simulation speed 

that accompanies accurate models [7], [8] might very well 

induce a prolonged application of the functional model, 

necessarily accompanied by the discovery of hitherto 

unknown errors once it is eventually replaced by a detailed 

implementation. 

These shortcomings were perceptible during our work 

integrating new processors into the SystemC/TLM virtual 

platform SoCRocket [9], [10]. Our processor models were 

generated using the open-source processor generation tool 

TRAP-Gen (TRansactional Automatic Processor GENerator) 

[11] that generates SystemC models from a common, 

high-level Python description. Separate models are generated 

of either cycle-accurate (i.e. pipelined) or functional 

behavior combined with approximately-timed or 

loosely-timed communication. During the verification phase, 

we found we would have benefited from closer introspection, 

specifically of the processor registers, but were held back 

from utilizing the pipelined model due to code-size, 

compilation- as well as run-time considerations. 

This led us to undertake a complete rewrite of the register 

generation methodology used in TRAP-Gen. Our approach 

envisioned a model for processor registers that can be 

parametrized in runtime to provide behavior varying in detail 

from cycle-accurate/pipelined up to un-timed/functional. In a 

sense, this does for intra-module behavior what is done by 

TLM sockets [12] for inter-module communication. 

This paper is organized as follows: Section II evaluates 

some available processor models or processor-generating 

tools. We describe the premises and general concepts of our 

model in Section III. The multi-abstraction feature is 

introduced in Section IV. Section V presents some 

experimental evaluation. We conclude with some open 

aspects for future consideration in Section VI. 

 

II. RELATED WORK 

To the best of our knowledge, there is no published work 

dedicated to dynamically varying the internals of a model to 

operate at a user-defined abstraction level. Nevertheless, it is 

interesting to compare the underlying methodology behind 
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processor models both in commercial and open-source IP. 

Since we have no access to commercial products, we can 

only offer a cursory depiction thereof. ARM processor 

models are available from the former Carbon Design Systems, 

now part of ARM Ltd. [13]. They offer both a cycle-accurate 

Register Transfer Level (RTL) model and an 

instruction-accurate model that integrate with their SoC 

Designer Plus virtual prototyping environment. A similar 

two-level approach is taken by Synopsys' DesignWare, in 

this case the instruction-accurate nSIM and the 

cycle-accurate xCAM [14]. Cadence's Tensilica processors 

come in four flavors: Xtensa ISS / TuboXim for hardware 

developers and XTensa SystemC / XTensa Modeling 

Protocol for software developers [15]. The generation tool 

from Cadence [16] follows a similar division between 

abstractions. Mentor Graphics offers its microcontrollers in 

Verilog or VHDL RTL [17]. Processor models from Imperas 

[18] or the popular open-source QEMU project [19] are 

geared towards software development and thus offer a purely 

functional virtual machine interface. 

The common factor in all preceding models is the 

utilization of different models of the same processor core, 

depending on use-case and target audience. Open-source 

models are no different: OpenCores [20] is the 

conglomeration of many processor models from both 

industry and academia, with a corresponding multitude of 

modeling languages, detail levels and styles. SoCLib [21] 

attempts to reduce the number of core models to less than the 

product of cores and abstractions by providing one 

abstraction-agnostic model per instruction set plus 

retargetable wrappers for the communication timing, in their 

case cycle-accurate, approximately-timed and untimed [22]. 

While this handles communication timing, the behavior 

timing is only approximated using annotation. Registers are 

modeled as integers for all abstractions, pipelining and 

similar implementation-dependent effects are not considered. 

Along the same lines, gem5 [23] offers four generic 

processor models of different behavioral granularities, to be 

combined with a given instruction set model in a 

mix-and-match fashion [24]. While this successfully reduces 

the total number of core models, the problem of integrating, 

maintaining and verifying multiple, in this case four, models 

of the same processor remains. 

 

III. REQUIREMENTS AND PROPOSED REGISTER CLASS 

HIERARCHY 

A. Requirements 

Depending on the abstraction level, the behavioral model 

of a processor register can range from a simple value to a 

complex set of latches that propagate on clock cycle edges. 

After analyzing several instruction set architectures, we 

identified the following requirements for a register 

implementation: 

1) Modeled behavior 

a) Ability to access and manipulate named register fields 

(named bit sequences within a register). 

b) Ability to define and manipulate register banks. 

c) Ability to define, possibly variable, offsets to be 

added to register values (e.g. the +4/+8 PC (program 

counter) offset in ARMv7 [25]). 

d) Ability to define a time delay between register writes 

and subsequent reads, introducing a notion of time 

for un-pipelined registers. This can be considered a 

loosely-timed behavioral modeling style, in a 

similar vein to loosely-timed TLM communication. 

e) Ability to define register aliases, with or without 

offsets, to enable virtualization of the available 

physical registers (e.g. SPARC9 [26]). 

2) User experience and flexibility 

f) Choice of abstraction level as a run-time parameter. 

The set of available abstraction levels should be 

easily expandable. 

g) Powerful and semi-uniform interface to the register 

hierarchy (registers, register fields, register banks). 

h)  Ability to attach callback functions to read and write 

events. 

3) Efficiency 

i) Run-time overhead reduction (number of function 

calls). 

j) Compile-time overhead reduction (code size). 

Many well-established design patterns found their way 

into our model [27]. In the rest of this section, we present our 

proposed model along with some design considerations. 

B. Composite Interface: Register Field, Register and 

Register Bank 

The hierarchy of registers, register banks and register 

fields (requirements 1a, 1b and 2b) naturally leads to a set of 

composite classes. We start with the setup depicted in Fig. 1.  

There are several interesting points to note in this design: 

1) RegInterface 

This class defines both the value access and manipulation 

as well as the child management interface. It includes 

common operations that can be performed by all register 

classes (read, write, arithmetic, bitwise, relational, logical 

and debug operations). 

The CHILD template parameter is used by the classes 

deriving from RegInterface for specifying the type of child 

they are composed of. Since our hierarchy only allows Bit ϵ 

RegField ϵ Register ϵ RegBank, a generic solution is 

consequently neither needed nor even sound. Hence, the 

derived classes store and manipulate the derived type directly, 

instead of a RegInterface, avoiding costly and unnecessary 

dynamic casting. 

The child-parent access and storage mechanism is 

discussed separately for each of the three derived classes. 

2) Register 

This is a heavy-weight class that contains the full 

implementation of the access and manipulation interface 

(read/write, operators, etc.). All operators call either read() or 

write() instead of directly manipulating values. Since read 

and write are inlined, no runtime cost is incurred. The 

advantage of this approach will be obvious when discussing 

different abstractions in Section IV. 

On initialization, the register sets up a - possibly empty - 

container of RegFields. Fields can be accessed using array 

notation (operator []). Named field access is achieved using 

the C++ enum class construct. 
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Fig. 1. Register field, register and register bank hierarchy. 

 

3) RegField  

A field stores a reference to a register object. It does not 

directly manipulate the register value, but delegates all 

accesses to the read() and write() operations of the parent 

register, after some bit manipulations and access checks. This 

makes this class very light-weight. 

The child management of fields is not immediately 

obvious. We chose to define a bit as the "child" of a field. 

Adding or removing bits, as declared in RegInterface, 

obviously makes little sense, but accessing bits in the form 

field [bit] is a consistent interpretation of the access operator. 

As with all other access functions, the bit value is not saved in 

the field but read on demand from the parent register. 

4) RegBank  

Encapsulating registers in one place provides two 

advantages: First, it greatly simplifies passing registers 

around the processor modules (individual instructions, ABI, 

tests, etc.). Second, it provides a unified interface, so that the 

processor or some test function can, for example, 

conveniently call RegBank::reset() or RegBank::write() with 

no further knowledge of the names, number of properties of 

the stored registers. The advantages of this encapsulation will 

be more apparent upon discussing register aliases in section 

III-E. 

The relationship between a register bank and the container 

register is a weak aggregation, as opposed to the stronger 

composition existing between registers and fields. 

Accordingly, registers can exist independently of banks and 

manage their own creation and destruction. 

5) Iterator interface 

Further tweaking the previous design, we add a robust 

child iteration interface in addition to the child access 

operations provided by RegInterface. The RegIterator class 

in Fig. 2 provides basic sequential access with 

bounds-checking. It saves a pointer to the iterable container, 

i.e. RegField, Register or RegBank, and the index of the 

current iterator position. As with RegInterface, the CHILD 

template parameter enables specifying the underlying node 

type for more efficient access. Most of the well-known 

iterator manipulations from the standard C++ library are 

provided. The iterator class relies on RegInterface::operator[] 

for accessing children. 

 

Fig. 2. Register iterator. 

C. Observer Interface: RegCallback 

Requirement 2c foresees hooking user-defined functions, 

i.e. callbacks, to read and write operations on a register 

interface class. We adopt the scireg interface as provided by 

Cadence [28], which already defines a notion for callbacks. 

The interface foresees an abstract callback type that supports 

a do_callback() method, as in a classic observer pattern. Each 

callback stores a type, specifying whether to be called on a 

read, write or state change. The offset and size attributes 

allow attaching callbacks to specific register fields. As with 
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all preceding constructs, both fields and banks delegate 

callback execution to registers. The register class stores a 

callback container and provides methods for adding, 

removing and executing callbacks. This is illustrated in Fig. 

3. 

1  
Fig. 3. Register callbacks1. 

D. Decorator Interface: Register Alias 

The concept of a register alias is warranted by instruction 

sets that distinguish between the set of available physical 

registers and the set of logical registers that are addressable in 

a given configuration, the latter being a subset of the former. 

An intuitive solution implementing aliases as pointers or 

references to registers is not viable for several reasons: 

1) Defining an alias as a simple register pointer (Register*) 

requires that the user remembers to use a different syntax 

for registers and aliases, which is hardly feasible. 

2) References (Register&) are transparent to the user, but 

have the disadvantage that they are not meant to be 

re-assignable, which retracts the gain in having aliases in 

the first place. Furthermore, many constructs, such as 

arrays, are not possible with references as subjects. 

3) As identified in requirement 1e, an alias can possibly be 

prescribed to return a fixed offset to the register value. 

This is obviously not realizable with plain-old-data. 

Thus, we augment our class hierarchy by a RegAlias class 

that retains the same interface as the underlying register. 

Along the same lines as the field and bank classes, the alias 

class also delegates everything to the underlying register, as 

shown in Fig. 4. An optional offset is added dynamically 

whenever the register value is read, whether due to an 

 
1The scireg interface depicted here is abbreviated and modified for clarity. 

external request or for further processing2. 

In addition to the base register, an alias stores optional 

pointers to predecessor and successor aliases that enable 

building an arbitrarily long alias chain. The offset is defined 

relative to the predecessor alias for convenience. In practice, 

however, all value manipulations are performed directly on 

the register. The list of aliases is required for correct offset 

calculations whenever an alias is relocated to point to a 

different register or to another alias using set_alias(). An 

example for offset calculations is illustrated in Fig. 5. 

The addition of aliases requires adding an alias container 

to RegBank, in addition to the available register container. 

This further accentuates the transparency attained by the 

register bank construct. The possible dynamic overhead of 

searching two containers at every register access is mitigated 

in the case of generated models, which is our original intent, 

since it becomes possible to hard-code the individual register 

and alias names, whereby lookup is reduced to a simple 

member access. 

 
Fig. 4. Register alias class diagram. 

 
Fig. 5. Example register alias object diagram.

 
2 This interpretation, though sound, causes interesting mathematical 

properties, such as (alias = x) != x, which may confuse the unwary. 
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Fig. 6. Register abstractions. 

 

 

IV. IMPLEMENTING BEHAVIORAL ABSTRACTIONS 

A. Strategy Interface: Register Abstraction 

We now elaborate on the concepts already described to add 

support for multiple behavioral abstraction levels. The 

attention given so far to redirecting the interface to the 

Register::read() and write() methods now pays off: It suffices 

to relocate both methods to a class that supplies a strategy 

appropriate for the chosen abstraction level. On a read or 

write, the register simply delegates the behavior to the chosen 

strategy class. The heavy-weight register class can thus be 

used for all abstractions by just varying the strategy 

(requirement 2a). 

Fig. 6 depicts an abstract RegAbstraction class, now 

responsible for the read/write interface. 

RegTLM 3 provides an implementation for un-timed 

registers. Reads and writes are simply applied to the register 

value, to which the strategy class has access. 

Although RegTLMDelay, RegTLMOffset and 

RegTLMDelayOffset technically derive from RegTLM, they 

are actually loosely-timed models. They fulfill requirements 

1c and 1d by introducing a notion of time via a time-delay or 

a value-offset, respectively. The former buffers as many 

values as the given delay in clock cycles. Every clock cycle, 

an update function advances the array one step. The latter is 

mostly needed by PC registers to mimic the value increment 

in different pipeline stages. 

The fully-pipelined RegCA model requires some 

elaboration and is deferred to Section IV-B. 

An interesting consequence of strategies is that we can 

expand on the idea to handle the behavior of special registers. 

 
3The name "TLM" is perhaps somewhat misleading, as it is usually 

applied to inter-module communication. "Functional" would perhaps be 

more appropriate. We still adopt it, since TLM communication is usually 

combined with un-timed/loosely-timed behavior. 

Constant-value registers, for instance, have different 

write-logic from the regular case. This makes for a second 

level of delegation, where an abstraction delegates to a more 

specialized implementation. This is illustrated in the 

RegTLMConst class in Fig. 6. 

B. Pipelined Register Model 

Given that as good as every modern processor is pipelined, 

a cycle-accurate register model has to consider the manifold 

effects of pipelining on register values. A typical processor 

pipeline is illustrated in Fig. 7. Each pipeline stage 

manipulates a latched version of a given register which 

propagates one stage forward on clock cycle edges. The 

value written in the write-back stage is fed back to the first 

stage. 

A modern pipeline that supports forwarding also feeds 

certain latches back to preceding pipeline stages to prevent 

the manipulation of stale values. This is for example the case 

for the PC register in the decode and write-back stages of the 

LEON3 processor [29]. 

 
Fig. 7. Example of pipelined registers, inspired by [30]. The dashed lines are 

possible forwarding paths. 

 

Our TRAP-Gen-generated instruction set implementation 

integrates behavioral blocks provided by the user per 

instruction and pipeline stage. For non-pipelined models, the 

behavior is summed up in one procedure. This dictates that 

the notion of register latches should be kept concealed from 

the user, i.e. a block of instruction behavior must use the 

same register name irrespective of the pipeline stage. After 

evaluating several options, we finally opted for the pipeline 

register model to contain a fast and simple array of values 
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that model the latches. To enable transparent access to the 

correct latch, an auto-generated Register::set_stage() 

function is transparently called at the beginning of each 

instruction stage-behavior function. The register stores the 

current stage, and all subsequent reads or write manipulate 

the correct latch. An excerpt of the implementation is 

provided in listing 1. To add support for forwarding, we can 

store special write-back sequences as hash tables that map a 

pipeline stage to one or more stages. At each clock cycle edge, 

an update() function (line 17) propagates values one step 

forward as well as to all stages specified in the hash table. 

Since the correspondence is known a priori, we let 

TRAP-Gen generate a hard-coded mapping in 

clock_cycle_func() (line 22) which is called by update() 

every cycle. This keeps the implementation general without 

compromising simulation speed. 

 
 1 template <typename DATA> 

 2 class RegCA 

 3 : public RegAbstraction<DATA> { 

 4 

 5   public: 

 6   typedef bool (*clock_cycle_func_t)(); 

 7 

 8   const DATA read() const { 

 9     return values[current_stage] & read_mask; 

10   } 

11 

12   bool write(const DATA & data) { 

13     values[current_stage] = data & write_mask; 

14     return true; 

15   } 

16 

17   void update() { 

18     // Propagate from each stage to the next. 

19     // Last stage feeds back to first. 

20     // Honor special feedback paths. 

21     if (clock_cycle_func != NULL) 

22       clock_cycle_func(); 

23   } 

24 

25   void set_stage(unsigned stage) { 

26     current_stage = stage; 

27   } 

28 }; 

Listing 1. RegisterCA implementation. 

 

V. EVALUATION OF THE REGISTER MODEL 

To assess the performance of our model, we generated four 

versions of six different processors using TRAP-Gen, as 

listed in Table I: The first two versions were generated using 

the fixed-abstraction register model initially deployed in 

TRAP-Gen (initial/untimed and initial/cycle-accurate). The 

third and fourth models (combined) are an 

abstraction-agnostic version generated using our 

methodology, which we parametrized twice to run at the 

above-mentioned abstraction levels. The difference in code 

size between the combined/un-timed and 

combined/cycle-accurate models is due to the fact that, even 

though the registers are abstraction-parameterizable, the rest 

of the processor is still modeled at a fixed abstraction (see 

future work in Section VI). 

The combined model shows a consistent decrease in the 

code size of the generated processor compared with the initial 

implementation. The effect is most perceptible for 

cycle-accurate models, which show a reduction of up to 85% 

in the case of the modern ARM Cortex A9. This dramatic 

decrease is due to the greater savings incurred on large 

register sets and/or deep pipelines. 

 
TABLE I: COMPARISON OF GENERATED MODELS 

 Source Code Size [kiB] 

 Untimed Cycle-accurate 

 Initial Combined Initial 
Combin

ed 

ARM7TDMI 537 526 1453 618 

ARM9TDMI 634 585 1777 704 

ARM Cortex A9 1976 1188 12133 1768 

LEON2 867 828 3170 1555 

LEON3 851 812 4012 1793 

MICROBLAZE 662 550 1191 592 

 

VI. CONCLUSION 

We have presented a comprehensive SystemC model for 

processor registers that covers several levels of abstraction. 

Our model greatly eases mixing and altering abstraction 

levels with little loss of simulation speed. Using several 

object-oriented design patterns, it enables changing the 

abstraction on a sub-module granularity, in our case, that of 

registers instead of processors. Our results have been 

integrated in the open-source processor generation tool 

TRAP-Gen. We have generated six processors using the 

cycle-accurate and un-timed modeling styles. Compared to 

the initial implementation in TRAP-Gen, we achieved a 

code-size reduction ranging between 50%-85%. 

In our future work, we aim to benchmark our model with 

respect to runtime performance as well as other criteria. Our 

long-term goal is extending the concepts developed here to 

other processor elements. We envision unifying 

TRAP-Gen-generated models into a single, 

abstraction-parametrized model. 
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