

Abstract—Advent of the cloud computing revolution, Docker

technology becomes the crucial part of the virtualization in
terms of high resource utilization, less overheads and better
performance. Docker is evaluated by using Online Education
system based on various extended level of users and extended
level of Dockers by using Physical Machine and Linux
benchmarking tools. CPU, Memory and Network resources are
used as experimental variables. Finally a details analyst
compare among the user level and Docker level. As a result, we
conclude Docker has the near native performance during the
usage of OE system, archived high resource utilization in single
Docker by accessing more user as compare to more Dockers by
accessing more users.

Index Terms—Docker, performance, online education
system.

I. INTRODUCTION
Container based virtualization (CBV) and Hypervisor

based virtualization are the most popular virtualization
technology at current trend. We noticed the vast differentness
in the performance of OE system during the extension of the
Virtual Machine (VM) and User Level (UL) while using the
hypervisor in my first research. Due to that we will intent to
implement Docker to the Online Education system (OES)
and verify how the performances deviate from native to
Docker during the extension levels.

Recently containers implemented more project and
development instead of hypervisor. A Docker is not fully
virtualized systems which abstract the OS kernel. More
Docker definition mention, that Docker has given the native
performance as compare with Physical Machine (PM). So we
plan to test, whether the Docker definitions become true or
false during the execution of the OES. Docker registry has
contained the images and application in cloud which is
maintaining by Docker Company. If we need any images or
applications, we can grab and containerize We divided three
sections as CPU, Memory and Network which are more
appropriate host resources for finding the performance of
OES. The Linux command, Perl scripting and OES has been
used as an experimental tools. Overall Execution percentage
time, Resource Utilization, delay time of data sending and
receiving are the element we used to measure the matrices in

Manuscript received March 24, 2016; revised January 13, 2017.
This work was supported by the Department of Computer Science,

Huazhong University of Science and Technology – Docker in Online
Education: Have the near-native performance of CPU, Memory and
Network.

this experiment.

II. RELATED WORK
The author Miguel G [1] expecting, the Container Based

Technology (CBT) is given the near native performance from
the PM resources. Prove above task, conducted the
experiment in different kind of CBT using the NAS parallel
benchmark. CBT was compared with Xen in terms of
performance and isolation. The isolation performance test
was conducted separately by using two guest VMs in the
same host and resources divided in same manner. Author
concludes Xen obtain bad performance in all virtualization.
In container, Poor isolation and less security were observed
in resource management implementation. But in the Isolation,
Xen has shown the better performance due to non shared OS.

III. DOCKER TECHNOLOGY
Docker is one of the CBT released on March 2013. This is

offer the packaged and deployed the applications, compact
inside the virtual container, runs across the all Linux
distributions [2]. It has their own file system, libraries,
network, etc [3]. Name spaces and Cgroup are the two main
features in the Docker. Each Docker execute it’s their own
environment, not affect or not executing the processes inside
of the other Docker. Restricted the file system such as chroot
and provide the illusion by the way of wrapped the global
resources into the namespace layers are the responsibilities of
the namespaces [4]. CPU, I/O usage, memory and network
can be carried by Cgroup. Portable Deployment, Security,
Isolation, Resource Sharing and allocation, Version Control,
Less Time are some benefits of Dockers.

IV. EXPERIMENTAL SETUP, METHODOLOGY
The experimental setup for compare the performance of

OES fully depended on PM and its container. We plan to
conduct this experiment on real large scale system during the
execution of OES in some stages such as PM execution, PM
with containers execution.

A. Physical Machine and Container Setup
PM, networking and storage are the three main sections

having the significant impact on the performance of the PM.
Docker has running on top of this special hardware layers.
The performance of OES is validating through the
performance of PM. The hardware specification of PM
shows on Table I.

Basheer Riskhan and Raza Muhammad

Docker in Online Education: Have the Near-native
Performance of CPU, Memory and Network?

290

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

DOI: 10.7763/IJCTE.2017.V9.1154

Basheer Riskhan and Raza Muhammad are with the Department of

Computer Science, Huazhong University of Science and Technology,

Wuhan, China (e-mail: riskhan@yahoo.com, razacom_2000@yahoo.com).

TABLE I: PM SPECIFICATION

Processor Intel Core 4200 series 2.4GHz
Main Stream Dell power edge R710
Memory 8 GB
Hard Disk 1024 GB SATA
Cache Memory 1642 MB
Host OS Ubuntu server 12.04.3 LTS
Application OE system
Web Server Nginx
File System Ext 3

We developed the real time OES which was our target

application installed in the PM. The docker installed on top of
PM. Then grab the image from docker registry (# docker pull
<OS image name>) and installed in the container (# docker
run it <image name> /bin/bash). Then installed nginx web
server inside the same container (apt-get install nginx) and
did some configuration. Continually connected to the host
directory to container directory (docker run -d -p -v <host
directory> <container directory> <image name> <container
name>). Next we set the network port (docker run -d -p
<local port > < container port> <image name>) for outside
user access.

B. Experimental Variable and Tools
This experiment evaluates the performance of the PM in

terms of CPU, Memory and Network resources. In CPU, we
measured the variable as CPU Usage, I/O wait time and idle
time [5]. The CPU Usage described to show how much the
processor is working currently used to do operations. I/O
wait is the time during which that CPU was idle and that has
at least one I/O in progress requested by task scheduled on
that CPU [6]. Unused or idle percentage of CPU called as idle
time. The percentage of using memory includes buffer
memory and cache memory out of total memory called as
Memory Usage (MU) [7]. The kind of delay occurs in the
round trip over the network in data communication called as
Network Latency (NL). The entire variable measured in PM
from percentage except NL. NL measured from client side
which has also indirectly depends on the performance of the
OES and measured by micro seconds [8].

As an experimental tool, we used Linux commands with
Perl scripting. The OES developed using HTML with CSS,
PHP, MySql and java script. The analysis has done by using
OrginPro8 software. We used SAR (SAR –u <interval> <
total time>) command which is called as System Activity
Reporter. It has a command line library of Ubuntu and
provides the hardware performance counter in the processor.
We can find the CPU usage by adding “%user, %system”,
I/O wait time and Idle time by using SAR. MU measured by
using FREE command with Perl scripting in Linux (FREE -m
-c <total time> -s <interval> | perl -pe 'print localtime().""' ,
Which helps to display the current time including their data.
NL tested from client machine by using Special Ping
command (“# ping IP address | while read pong; do echo
“$(date): $pong”;done”) due to display the current time.

C. Methodology
Experiment will be conducted in two ways. In first way,

the PM for a single user till 5 users and PM with One Docker

for single user till 5 users. The second way, PM with one
Docker is for one user. But this experiment one extra Docker
added to PM for every user till 5 users. . That means 5 users
accessing the OES in 5 Docker. The developed OES store in
the PM and it mapped with Docker. OES executed, measured
each variable matrix for 150 seconds and having the interval
of 3 seconds.

First Way
C1-1U: PM with OES, Access by 1 user
C1-2U: PM with OES, Access by 2 users
C1-3U: PM with OES, Access by 3 users
C1-4U: PM with OES, Access by 4 users
C1-5U: PM with OES, Access by 5 users
C2-1U: PM and One Docker, Access by 1 user
C2-2U: PM and One Docker, Access by 2 user
C2-3U: PM and One Docker, Access by 3 user
C2-4U: PM and One Docker, Access by 4 user
C2-5U: PM and One Docker, Access by 5 user
Second way
C1 - PM with OES, Access by 1 user
C2 - PM and 1 Docker, Access by 1 user
C3 - PM and 2 Docker, Access by 2 users
C4 - PM and 3 Docker, Access by 3 users
C5 - PM and 4 Docker, Access by 4 users
C6 - PM and 5 Docker, Access by 5 users
Our main idea is to highlights, the native performance of

PM that how deviating while increasing the docker during the
access of OES.

291

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

A. CPU Usage

CPU usage measured with the combination %user

and %System in every 3 seconds for 50 times during the

execution of OES and reported the metrics shows on Table II.

TABLE II: CPU USAGE

Condition 1 U 2 U 3 U 4 U 5 U

C1 PM 1.01 1.03 1.03 1.06 1.07

C2 PM,1D 1.11 1.14 1.16 1.17 1.20

C3 PM,2D 1.17

C4 PM,3D 1.24

C5 PM,4D 1.29

C6 PM,5D 1.33

In first way, CPU usage matrix has gradually increased in

C1 and C2. The Fig. 1 shows the result of second way of

experiment.

V. EXPERIMENT AND EVALUATION

This section is discussing the performance of OES through

the measured matrix of each variable individually. The first

way, result was obtained by increasing the user one by one

till five. Similarly this procedure was followed for the PM

with one docker. The second way, the level of Docker has

increase and each Docker access by each user.

292

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

Fig. 1. CPU usage in each docker.

In both ways, found the gradual increment of CPU usage.

This may be the cause of processing multitasking, execute

more application and need resources for schedule the

processing to the Docker.

Further the first way of increment level is lower than the

second way. That’s clearly said, access the more users to less

Docker is better than the more users to more Docker.

B. I/O wait Time

I/O wait time indicates the percentage of CPU cycle

waiting for I/O events. Table III shows the reported matrices.

The results of I/O wait time increased in C1 and C2 same as

CPU usage in first way. The Fig. 2 shows the result of second

way.

TABLE III: I/O WAIT TIME

Condition 1 U 2 U 3 U 4 U 5 U

C1 PM 0.27 0.28 0.30 0.31 0.35

C2 PM,1D 0.30 0.32 0.35 0.36 0.40

C3 PM,2D 0.34

C4 PM,3D 0.37

C5 PM,4D 0.39

C6 PM,5D 0.42

Gradual increment observed in I/O wait time like CPU

Usage in both ways. Use of web server, Network Issues, OES

access by multi users, delay process are might be the causes

of increase level of I/O wait time. But these increments have

not more harmful to the performance of the OES. This result

also motivated to use more users in fewer Dockers.

Fig. 2. I/O wait time in each docker.

C. Idle Time

CPU was idle and System did not have an outstanding I/O

request called Idle time. Table IV shows the reported

matrices.

TABLE IV: IDLE TIME

Condition 1 U 2 U 3 U 4 U 5 U

C1 PM 98.98 98.95 98.84 98.67 98.56

C2 PM,1D 98.89 98.91 98.80 98.60 98.52

C3 PM,2D 98.83

C4 PM,3D 98.71

C5 PM,4D 98.61

C6 PM,5D 98.47

The results of idle time decreased in C1 and C2 in first

way.

Fig. 3. Idle time in each docker.

The Fig. 3 shows the result of second way. The idle time

has decreasing while we extended the level of Docker and

user. It may be cause of lot of disk processing. But according

to the matrices we understand that the through put was better

during the extended of Docker and users.

D. Memory Utilization (MU)

MU measured the usage of PM includes buffered and

cached [7]. We used Perl scripting to display the current time.

TABLE V: MEMORY UTILIZATION

Condition 1 U 2 U 3 U 4 U 5 U

C1 PM 23 25 28 28 30

C2 PM,1D 28 29 31 32 35

C3 PM,2D 32

C4 PM,3D 33

C5 PM,4D 35

C6 PM,5D 38

Table V shows the reported matrices. The results of MU

increased in C1 and C2 in first way. The Fig. 4 shows the

result of second way.

Fig. 4. Memory Utilization in each docker.

Due number context switching which required to fetch the

data form main memory is taken high utilization as compare

to fetching the same data from cache. Further during the

extending the process on the Docker and extending the

number of Docker lead to increase the overhead of context

switching. These Might be the reason of high utilization of

memory.

293

International Journal of Computer Theory and Engineering, Vol. 9, No. 4, August 2017

E. Network Latency (NL)

NL can be varies from application to application. NL

measured from client side and special PING test command

used for displaying the system time which was the unique

element.

TABLE VI: NETWORK LATENCY

Condition 1 U 2 U 3 U 4 U 5 U

C1 PM 104 111/
109

116/
124/
118

117/124/
129/122

138/122/118/
132/120

C2 PM,1D 114 118/
114

130/
118/
121

138/134/
121/126

126/144/128/
138/136

C3 PM,2D 117/
115

C4 PM,3D 117/
124/
124

C5 PM,4D 131/122/
130/122

C6 PM,5D 120/138/141/
126/132

Table VI shows the reported matrices of NL. The delay

time increased in the experiment of first way and second way

according to the measured results. The Fig. 5 shows the result

of second way.

Fig. 5. Network Latency in each docker.

The flow of NL has increase during the extended of

Docker level and UL. But the increase level was little low in

the first way as compare to second way. Each gateway

creating the traffic is one of the causes of High NL.

VI. CONCLUSION

This paper mainly focuses the significant performance of

the OES in the Docker. The experiment conducted in two

ways which are extended the UL and extended the Docker

level. PM resources and the processing time take by

processor are the main basic measurement aid in this research.

We had compare the three stage which are real execution of

PM and its extended UL, real execution of PM with One

docker and extended UL, real execution of PM with extended

level of Docker. Through that found the three innovative

concepts. 1. The performance impact observed to the OES

between native execution and Docker based execution, but it

is near-native performance. 2. The measures matrixes have

not varied constantly it’s varied in terms of the usage of

Docker and the usage of OES. 3. Performance degradation of

OES is higher in the extended level of Docker as compare to

extended level of user in single Docker. Further in the both

ways noticed the minute performance loss in the all variables

during the extended level. But as compare to the benefits of

Docker, this performance loss is nothing. Through the

experiment, we recommended to implement Docker

technology into OES and allow access the OES by more users

in single Docker.

REFERENCES

[1] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C.

A. F. De Rose, “Performance evaluation of container-based

virtualization for high performance computing environments,” 2013

21st Euromicro International Conference on Parallel Distributed and

Netowrk-Based Processing, Belfast, 2013, IEEE, pp. 233-240.

[2] X. Skin. (July 2014). New linux container virtualization technology

from docker. HowToForge. [Online]. Available:

https://www.howtoforge. com/docker-linux-container-virtualization.

[3] , A. Ghosh. (July 2014). What is container based virtualization?

Computer and Internet. [Online]. Available:

https://thecustomizewindows.

com/2014/07/container-based-virtualization/.

[4] A. M. Joy, "Performance comparison between Linux containers and

virtual machines," 2015 International Conference on Advances in

Computer Engineering and Applications (ICACEA), Ghaziabad, 2015,

pp. 342-346.

[5] I. Paul, S. Yalamanchili, and L. K. John, Performance impact of virtual

machine placement in a datacenter, 2012 IEEE 31st International

Performance Computing and Communications Conference (IPCCC),

Austin, TX, 2012, pp. 424-431.

[6] Linux. (Nov. 2013). The precise meaning of I/O wait time in Linux.

Veithen.Github.io. [Online]. Available:

http://veithen.github.io/2013/11/18/ iowait-linux.html.

[7] S. Anne. (May 2013). Understanding free command in Linux/Unix.

The Linux Juggernaut. [Online] Available: http://www.linuxnix.com

/find-ram-size-in-linuxunix

[8] A. Tikotekar, H. Ong, S. Alam, G. Vallée,T. Naughton, C. Engelmann,

and S. L. Scott, “Performance comparison of two virtual machine

scenarios using an hpc application”, 2009. 3rd Workshop on

System-level Virtualization for High Performance Computing, ACM,

pp. 33-40.

Science and Technology Wuhan, P.R. China.

Basheer Riskhan joined National College of Education in Sri Lanka as a

Lecture in 2005 and working as a Sri Lanka Teacher Educator Service

(SLTES) officer in Sri Lanka. Before that he served as Software Engineer in

several private companies. His research interests are in the field of

Virtualization, Cloud Computing, Kernel Programming and Big Data. He

had published several research papers and participated in various

In his academic career he worked as lecturer and visiting lecturer in

various universities and government institutes. He also contributed in

research papers as main author and as second author. His area of interests are

conferences as an oral Presenter. His main concern is integrating education

and information technology together.

Raza Muhammad was born in 1981 in Kharpur,

Sindh, Pakistan. He completed his bachelor degree

BS(CS) for Shah Abdul Latif University Kharipur

Pakistan in computer science in 2004 and move to

Karachi for higher studies. In 2007 he completed his

master degree MS (CS) in computer science from

Pakistan Air Force-Karachi Institute of Economics

and Technology Karachi Pakistan. Now he is pursuing

his PhD in computer science from Huazhong

University of Science and Technology Wuhan P.R. China.

Basheer Riskhan was born on July 13th, 1977 in

Jaffna, Sri Lanka. He received primary and secondary

education at St. John’s College, Jaffna and Zahira

National College, Puttalam. He earned his bachelor

degree in computer science from Bharathidasan

University, India in 2002 and master degree in

education from National Institute of Education, Sri

Lanka in 2012. At present he is pursuing his Ph.D in

computer science from Huazhong University of

big data, Linux Kernel programming, wireless network and security system

of computation.

