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Abstract—Modeling of a dynamical system is an important 

research area to obtain mathematical models of real systems. 

There are several approaches to get mathematical models, one 

of them is utilizing the Lagrangian of holonomic systems. This 

paper introduces LagranTexPac, a package Matlab-based 

framework aimed at obtaining, and simulate the equations of 

motion of a mechanical system. LagranTexPac uses the 

Lagrangian function of a system to automatically generate the 

system equations of motion for numerically simulate and saves 

all phase portraits. Motion constraints can be included in 

Lagrangian, and a summary report can be generated. Utility of 

this software tool includes any engineer area, in which is used a 

Lagrangian function to obtain the equations of motion of a 

dynamic system, e.g., aerospace, biomedical, robotics and 

mechanical engineering. Three application examples are 

included to illustrate the usefulness of this software tool. 

 
Index Terms—Dynamical systems, contact dynamics, 

matlab®, code generation, LATEX report generation, 

simulation tool. 

 

I. INTRODUCTION 

Dynamical systems are studied in several areas of engi- 

neering, in which system modeling is necessary to study and 

analyze the system behaviors. Newton’s laws can be used to 

model dynamical systems and the development procedure 

may be complex. An alternative approach used to model 

systems is the Lagrangian function, wherewith the 

Lagrangian equations are obtained. Last approach can be less 

complex than the first one 

A few tool packages are available to obtain the Lagrangian 

equations in Matlab framework. Some years ago, there was 

no software package to help in the procedure to obtain the 

Lagrangian equations of dynamical systems. To derive 

equations of the dynamical system is a fatigued procedure. 

In [1], [2] were shown Matlab® toolboxes that resolve 

Euler- Lagrange equation and provide ODE equations for 

numerically simulation of a system. Those toolboxes do not 

interact with LATEX. In [3] was reported a package to generate 

some LATEX features to use with Matlab® , in [4] was viewed 

a similar technique used to create a simple LATEX files directly 

from Matlab® and in [5] was used a package to format the 

Matlab® code syntax inside a LATEX document. 

Lagrangian is a mathematical function, which is a function 

of the generalized coordinates. These coordinates and their 
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time derivatives contain information about the dynamics of 

the system. The dynamical model of a generic system can be 

described as follows: 

 fy y                                     (1) 

where y ∈ Rn is a vector state and f: U ⊆ Rn → Rn is a 

vector field and describes an autonomous system [6]-[8]. 

In [9]-[11] were introduced different approaches to 

determine differential equations of the system dynamics. 

Examples about robot manipulators can be found in [10], [12], 

in [7], [8] were shown examples about nonlinear dynamical 

systems, in [13], [14] were illustrated examples about triple- 

pendulum arm and constrain to the movement for a 

mechanical system, respectively. 

In the triple-pendulum context, [13], [15] show the 

fatigued work to obtain differential equations of dynamic 

system, and can be seen some development mistakes like the 

forgotten term m2 z2
2 , in [13] at the mass matrix. This was 

one of motivations to develop the this tool to avoid writing 

mistakes or forgetting mistakes, and another motivation was 

to provide a file with the differential equations to simulate in 

Matlab® framework. 

An important feature of the tool is to implement equations 

of the system dynamics taking into account constraints to the 

motion, which is part ot the contacts dynamics and this topic 

was not considered in [1], [2]. Studied system in [14] was 

considered as an application of this feature of tool. Another 

feature of tool is to produce a summarized report of all 

development steps to obtain the differential equations of the 

system dynamics, and the report is generated to be used in a 

LATEX framework. The command used to write a line in a 

LATEX file is reported in [4], in this tool it is created a 

function to write the whole report selecting the language 

between English, German, Spanish or Potuguese. 

Therefore, the aim of Matlab® tool is to make possible a 

fast analysis and simulation of dynamic equations with or 

without constraints to the motion, avoiding written mistake 

and forgotten mistakes and to make possible checking 

intermediate steps. 

This article is organized as follows: in Section II is shown 

a summary of the Euler-Lagrange’s equation of motion; in 

Section III is briefly designed the development of the tool; in 

Section IV is shown three application examples and finally in 

Section V is shown conclusions. 

II.  EULER-LAGRANGE’S EQUATIONS OF MOTION. 

Dynamical systems can be described by a set of simulta- 

neous differential equations known as Lagrange’s equations 

according to [6], [9] and the system dynamics can be defined 
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where i is the index for all generalized coordinates qi and τi 

are generalized forces; R is the Rayleigh dissipation function, 

and the Lagrangian function is defined as follows: 

L T V                                       (3) 

where T is the kinetic energy, and V is the potential for the 

free system, as well as for the constrained system [14]: 

L T V                                   (4) 

with  

1

·
P

i i

i

 


                                   (5) 

for the system with constraints, λi is the Lagrange multipli- 

cators and φi are the P constraint equations of the motion. In 

this context, when there are constraints motion the tool 

package analyze the free, the constraints and contact 

dynamics separately. The energy equations for a generic 

dynamical system are defined as follows: 

1 2

1

2

2

2 times rotation kinetic energy

2 times translation kinetic energy

All kinds of potential energy

All kinds of dissipation

T T T

T

T

V

R

 









     (6) 

To avoid the division by two at kinetics energies was 

chosen this form of these energies; and did not have division 

on potential energies, and the gravitational term have to be 

included. 

Applying Euler-Lagrange equation from Eq. (2) at 

Lagrangian function L from Eq. (3) results in a set of n 

second order differential equations [9], which can be 

rewritten in the matrix notation form [9], [10] and are given 

by: 

               (7) 

where M ∈ Rn×n ; C , G, τ ∈ Rn×1 . 

 

III. STRUCTURE AND FLOW DIAGRAM OF TOOLBOX 

Desired terms of kinetic energy must be entered as 

 ( ), 1,2T l l  , e.g., 2

1 12 ?T m q  is needed to enter “T(1) = 

m_1 * dq(1)^2”, with the variable, num_coord_gen_qq, 

which previously define for the correct dimension of q(1) 

and len T for the correct dimension for T (l). Two main 

functions are performed by the package, which are: 

1) Develops the dynamical system, the left side of Eq. (2). 

2) Performs the numerical integrator, ode45 from Matlab®. 

Fig. 1 shows the flow diagram of the main program called 

Base, which run all other functions. The Base is composed by 

severals sections, in the ‘Preparations” section are defined 

parameters. In def coord were created the co- ordinate 

variables as were defined at Base, and def_coord may not 

be edited. To create coordinates variables was used the 

variables num_coord_gen_qq to define dimesions of 

q∈Rnum_coord_ gen_ qq - and num_coord_gen_pp - 

p∈Rnum_coord_ gen_pp. In the script Energy are written the 

Lagrangian equations for energies 2T, V and R, separately 

for a better presentation of results. The script Barriers is used 

for the constraint equations. In the variable “strings_latex” 

are stored all the strings for exhibited text. The parameter 

exec is used to split the flow to generate equations for 

numerical integration or to initiate the simulation. First of all, 

the equations must be generated and so exec = 0. After that, 

the Lagrangian equations are applied and an expression for 

the generalized forces is generated, and finally the result is 

separated in M matrix, C and G vectors which are described 

in Eq. (7). 

In the case of a system with constraint, parameter restrito = 

1, the same procedure is done considering the constraints. 

The variable “eq_gen” is the core for the generation of the 

equations of the system dynamics. In this script, the equations 

are written as described in Eq. (1). Equations for the 

integrator are shown in the command window and stored on 

a .mat file and the “function dy = 

z_Dinamica_ode_dy_sel_000 (t,y)” is created, where 

“000” has the variable sel value. This is exactly the name of 

the function called by the integrator at eq_int script. 

Fig. 2 shows the definition of str_latex, which is useful 

and necessary to change some notations from Matlab® to 

LATEX e.g., “d2pp” to “\ddot p”. Thus, the correct LATEX 

notation is applied and the report is easier to read. To do 

this procedure is used the mega_loc_sub script. The program 

inserts a pre-defined header and footer as comments, then it 

searches specific terms in mega_loc_sub based on an 

alphabet defined at alfabeto. 

The size_alfabeto must be correctly set and every term to 

be searched must be named as alfabeto_in_000, changing 

“000” sequentially and the new value must be 

alfabeto_out_000, always with 3 digits. Finally the 

save_file_tex function receives the. tex file, which name was 

constructed with nome_arquivo as a base and adding some 

of the control variable to it, this file will be created at the path 

specified at caminho (path). 

On the other side, the dynamical system is copied into dy, 

which is accessed by odeXY inside the eq_int script and this 

script is accessed from the Base when exec = 1 is defined. If 

the constrains have been set, the user may choose to integrate 

step by step with int_passos = 1, so the eq_int keeps 

verifying the collision. 

The change at the free system behavior is updated as the 

user described at restri, this script must contain the first 

update of λ, part of this update is also given by eq_gen, and 

should be complemented by the user with the equations of 

conservation of momentum (linear and/or angular) at the 

collision instant using the correct notation outside the odeXY 

script. 

Finished integration, phase portrait graphs are printed and 

data is stored, which allows the user redo or create specific 
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1 

graphs, all figures are also stored and at the end the LATEX 

code for the stored figures are exhibited at the command 

window. 

This code is also saved in a .tex which may be directly 

inserted at the report .tex file at the correct folder. 

 

 
Fig. 1. Program flow diagram of the tool. 

 
Fig. 2. Program data flow - .tex file creation with correct notation. 

 

Although all automatic development and creation given by 

the program, the correct description of the constraints and 

how they interact with the free system, relationships and 

impact dynamics are not a concern of this package, and it 

should be correctly described by the project designer. A 

tutorial file describing the program and how to handle the 

generated code and report has also been developed. 

 

IV. APPLICATION EXAMPLES 

In this section are shown three application examples, 

which are based on references [12]-[14]. Only the line before 

the figure and figure itself have been written by us. All 

development and equations have been directly inserted by 

our package as it is shown (therefore some equations are a 

little bit misaligned) writing only the “\input{file}” 

command. 

A. Example in Aerospace: Constrained Mass-Spring 

System 

The constrained mass-spring system is shown at Fig. 3, it is 

detailed at [14] while investigation contacts dynamics of 

bodies. There is the object of mass m1 and the wall mw, they 

are separated for the distance d while at the equilibrium 

points. We reproduce the same result from [14] with the 

interaction force λ from Lagrangian multipliers. 

Fig. 4, Fig. 5 and Fig. 6 were created and inserted at the 

LATEX file automatically, LagranTexPac generates all 

combinations of coordinates of each system, coordinates q 

for free system and p for wall system. To avoid numerical 

errors, it is defined ε1. If the distance between the mass and 

the wall is smaller than ε1, then the system is defined 

“constrained” and changes to the constrained equations. It 

returns if the distance becomes greater than ε1or if the 

constrained force λ is smaller than ελ1. 

Fig. 4 shows the time dependent variables x1 to x4 , system 

oscillates until position x1 hits the wall and it starts to move as 

can be seen by the x3 and x4 appearing out of zero, x3 starts 

from zero of its own coordinates system and x4 starts with 

non-zero velocity after the collision momentum transfer. 

“Free System” line has value 1 when system is “free”, no 

contact, and 0 when it does. The impact instant is also shown 

as a thin line just after “Free System” line reaches 0. While 

system is constrained, there is the contact force λ1 , this force 

begins at its highest value and decrease to 0 when the system 

 
Fig. 3. Constrained mass-spring system, with q1 = x1 and q1 = xw . source: 

[14]. 

System energies 

Kinetics: 
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is free once again. Fig. 5 and Fig. 6 are the phase portraits x1

×x2 and x3 × x4 respectively, the impact instant is identified

by the abrupt chance in both phase portraits.



  

2

1 12?T q m                          (8) 

Potential: 

2

1 1

2

k q
V                                 (9) 

Rayleigh dissipation: 

R = 0                                  (10) 

Barriers system energies 

Kinetics: 

2

12? pp wT p m                      (11) 

Potential: 

2

1

2

wk p
V                               (12) 

Rayleigh dissipation: 

2

1

2

wc p
R                               (13) 

Free system Euler-Lagrange 

Euler-Lagrange term to T: 

 1 12 (1) 2tauT m q                      (14) 

Euler-Lagrange term to V: 

 1 1(1)tauV k q                        (15) 

Euler-Lagrange term to R: 

tauR(1) = 0                            (16) 

Results for  with kinetics, potential and dissipation 

energies: 

1 1 1 1(1)tau m q k q                     (17) 

Free system matrices 

Matrix M for the system: 

1(1,1)  M m                            (18) 

Vector C for the system: 

1 1C(1) = k q                            (19) 

Vector G(q) for the system: 

(1) ( )G g                            (20) 

Barriers system Euler-Lagrange 

Euler-Lagrange term to T: 

  12 (1) 2pp wtauT m p                      (21) 

Euler-Lagrange term to V: 

1(1)pp wtauV k p                             (22) 

Euler-Lagrange term to R: 

1(1)pp wtauR c p
                           

 (23) 

Results for τ with barriers kinetics, potential and 

dissipation energies: 

1 1 1(1)pp w w wtau m p c p k p                 (24) 

Barriers system matrices 

Matrix M for the barrier system: 

(1,1) wM m                              (25) 

Vector C for the barrier system: 

1 1(1) w wC c p k p                        (26) 

Vector G(q) for the barrier system: 

(1) ( )G g 
                         

 (27) 

Additional Euler-Lagrange with constraints Λ 

Development to τλ: 

1 1(1) 1tau q p dist                     (28) 

Development to τΛ : 

1(1)tau                              (29) 

Development to τppΛ
: 

1(1)pptau                           (30) 

Matrices with constraints λ 

To generalized coordinates q: 

Matrix M for the system: 

1(1,1)M m                               (31) 

Vector C for the system: 

1 1 1(1)C k q                            (32) 

Vector G(q) for the system: 

(1) ( )G g                             (33) 

To barriers coordinates p: 

Matrix M for the barrier system: 

(1,1) wM m                               (34) 

Vector C for the barrier system: 

1 1 1(1) w wC c p k p                        (35) 

Vector G(q) for the barrier system: 

(1) ( )G g                             (36) 

Equations to λ: 

Definition of p and derivatives as functions of q and 

derivatives: 
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1 1

1 1

1 1

1p q dist

p q

p q

 





                       (37) 

Isolating λi : 

 

  

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

1

1

w w w

w w w

w w w

w w w w

m p c p k p

m p c p k dist q

m p c q k dist q

m q c q k q dist k









  

   

   

   

   (38) 

Numerical simulation 

Program with fixed integration step ode45. 

Selected options: coef_restitui = 0, restrito = 1, int_passos 

= 1, tspan(end) = 3.500, dt = 0.010.  

Parameters of this batch: m1 = 10.00 ; k1 = 7.00; mw = 5.00; 

cw = 20.29; kw = 7.00; dist1 = 0.005 ; ε1 = 0.0001; ελ1 = 

0.0001. 

 
Fig. 4. Coordinates q and derivatives q. 

 
Fig. 5. Phase portrait x1 × x2. 

 
Fig. 6. Phase portrait x3 × x4. 

B. Example in Biomedical: Triple Pendulum Arm 

 
Fig. 7. Triple pendulum arm, with qi = θi , ∀ i = 1, 2, 3. source: [13]. 

 

Fig. 7 shows the triple pendulum arm system. In [13] 

treated about concepts in physiology and mechanics applied 

to rehabilitation studies. The system studied in [13] is an 

excellent application example how the extended equations 

may become complex and how the proposed package handles 

this problem writing the LATEX summarized report as clear as 

possible directly from Matlab® and this package tries to avoid 

writing mistakes and forgetting mistakes. 

System energies 

Kinetics: 

         

        

        

     

2 2 2 2 2 2

1 1 2 1 1 3 2 2 3

2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

1 2 1 2 3 1 2 1 2

1 1 2 2 2 1 2 1 2

1 1 3 3 3 1 3 1 3

2 2 3 3 3 2 3 2

2?

2 cos cos sin sin

2 cos cos sin sin

2 cos cos sin sin

2 cos cos sin si

T L q m L q m L q m

q m z q m z q m z

L L q q m q q q q

L q q m z q q q q

L q q m z q q q q

L q q m z q q q

  

  

 

 

 

    3n q

 (39) 

Potential: 

     

     

1 1 1 2 2 2 3 3 3

1 2 1 1 3 1 2 3 2

cos cos cos

cos cos cos

m z q m z q m z q
V g

L m q L m q L m q

   
  

   

 (40)

 

Rayleigh dissipation: 

 R = 0  (41) 

Free system Euler-Lagrange 

Euler-Lagrange term to T: 
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 

        

        

        

        

     

2 2 2

1 2 1 3 1 1 1

1 2 2 1 2 1 2

2

1 2 3 1 2 1 2

1 2 2 1 2 2 1 2

2

1 2 3 1 2 2 1

1 3 3 1 3 1

2 (1) 2 2 2

2 cos cos sin sin

2 cos cos sin sin

2 cos sin cos sin

2 cos sin cos sin

2 cos cos sin si

tauT L m L m m z q

L m z q q q q
q

L L m q q q q

L m z q q q q
q

L L m q q q q

L m z q q q

  

 
  
   

  
 
   

     

         

3 3

2

1 3 3 1 3 3 1 3

n

2 cos sin cos sin

q q

L m z q q q q q



 

(42)
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        

        

        

        

 

         

1 2 2 1 2 1 2

1

1 2 3 1 2 1 2

1 2 2 1 2 2 1 2

1

1 2 3 1 2 2 1

2 2

3 2 2 2 2

2 3 3 2 3 2 3 3

2 cos cos sin sin
2 (2)

2 cos cos sin sin

2 cos sin cos sin

2 cos sin cos sin

2 2

2 cos cos sin sin

L m z q q q q
tauT q

L L m q q q q

L m z q q q q
q

L L m q q q q

m L m z q

L m z q q q q q

 
 
   

 
 
   

 

 

           2

2 3 3 2 3 3 2 32 cos sin cos sinL m z q q q q q 

(43)

         

         

         

         

 

1 3 3 1 3 1 3 1

2

1 3 3 1 3 3 1 1

2 3 3 2 3 2 3 2

2

2 3 3 2 3 3 2 2

2

3 3 3

2 (3) 2 cos cos sin sin

2 cos sin cos sin

2 cos cos sin sin

2 cos sin cos sin

2

tauT L m z q q q q q

L m z q q q q q

L m z q q q q q

L m z q q q q q

m z q

 

 

 

 



(44)

Euler-Lagrange term to V:

  1 1 2 1 3 1 1(1) sintauV g q L m L m m z   (45)

  2 2 3 2 2(2) sintauV g q L m m z  (46)

 3 3 3(3) sintauV gm z q (47)

Euler-Lagrange term to R:

tauR(1) = 0 (48)

tauR(2) = 0 (49)

tauR(3) = 0 (50)

Results for  with kinetics, potential and dissipation 

energies:

 

    

    

  

  

      

2 2 2

1 2 1 3 1 1 1

1 2 3 1 2 1 2 2 1 2 2

2

1 2 3 1 2 1 2 2 1 2 2

1 3 3 1 3 3

2

1 3 3 1 3 3

1 2 1 1 3 1 1 1 1

(1)

cos cos

sin sin

cos

sin

sin sin sin

tau L m L m m z q

L L m q q L m z q q q

L L m q q L m z q q q

L m z q q q

L m z q q q

L gm q L gm q gm z q

  

   

   

 

 

  

(51)

    

    

    

  

    

1 2 3 1 2 1 2 2 1 2 1

2

1 2 3 1 2 1 2 2 1 2 1

2 2

3 2 2 2 2 2 3 3 2 3 3

2

2 3 3 2 3 3

2 3 2 2 2 2

(2) cos cos

sin sin

cos

sin

sin sin

tau L L m q q L m z q q q

L L m q q L m z q q q

m L m z q L m z q q q

L m z q q q

L gm q gm z q

   

    

   

 

 

(52)

  

  

  

  

   

1 3 3 1 3 1

2

1 3 3 1 3 1

2 3 3 2 3 2

2

2 3 3 2 3 2

2

3 3 3 3 3 3

(3) cos

sin

cos

sin

sin

tau L m z q q q

L m z q q q

L m z q q q

L m z q q q

m z q gm z q

 

  

 

  

 
(53)

Free system matrices

Matrix M for the system:

2 2 2

1 2 1 3 1 1(1,1)M L m L m m z   (54)

  1 1 2 2 3 2 2(1,2) cosM L q q L m m z   (55)

 1 3 3 1 3(1,3) cosM L m z q q  (56)

  1 1 2 2 3 2 2(2,1) cosM L q q L m m z   (57)

2 2

3 2 2 2(2,2)M m L m z  (58)

 2 3 3 2 3(2,3) cosM L m z q q  (59)

 1 3 3 1 3(3,1) cosM L m z q q  (60)

 2 3 3 2 3(3,2) cosM L m z q q  (61)

2

3 3(3,3)M m z (62)

Vector C for the system:

    

  

2

1 2 3 1 2 1 2 2 1 2 2

2

1 3 3 1 3 3

(1) sin sin

sin

C L L m q q L m z q q q

L m z q q q

   

 
(63)

    

  

2

1 2 3 1 2 1 2 2 1 2 1

2

2 3 3 2 3 3

(2) sin sin

sin

C L L m q q L m z q q q

L m z q q q

    

 
(64)

  

  

2

1 3 3 1 3 1

2

2 3 3 2 3 2

(3) sin

sin

C L m z q q q

L m z q q q

  

  
(65)

Vector G(q) for the system:



  

   1 1 2 1 3 1 1(1) ( )sinG g q L m L m m z     (66) 

   2 2 3 2 2(2) ( )sinG g q L m m z    (67) 

  3 3 3(3) ( ) sinG g m z q   (68) 

 

C. Example in Robotics: Polar Telescopic Robot 

Manipulator 

Fig. 8 shows the polar telescopic robot manipulator system 

and is an example studied in [12], which presents the 

Lagrangian approach as a method to obtain the equations of 

motion of a robot. 

 
Fig. 8. Polar Telescopic Robotic, with q1 = r, q2 = θ. Source: [12]. 

1) System energies 

Kinetics: 

  
2 2 2 2

2 2 22 1 1 2 2 2

2 1 2 12?
3 12

q l m q l m
T m q q q     (69) 

Potential: 

   1 1

2 2 1sin
2

l m
V g q m q

 
  

 
 (70) 

Rayleigh dissipation: 

 R = 0  (71) 

2) Free system Euler-Lagrange 

Euler-Lagrange term to T: 

     2

2 1 2 1 22 (1) 2 2tauT m q m q q    (72) 

 

    2

2 1 1 2 2 1 2

2 2

1 1 2 2

2

2 (2) 4 2

2

3 6

tauT m q q q m q q

m l m l
q

 

 
  
 

 (73) 

Euler-Lagrange term to V: 

  2 2(1) sintauV gm q   (74) 

   
 1 1 2

2 2 1

cos
(2) cos

2

gl m q
tauV gm q q    (75) 

Euler-Lagrange term to R: 

 tauR(1) = 0  (76) 

 tauR(2) = 0  (77) 

Results for  with kinetics, potential and dissipation 

energies: 

 
   2

2 1 2 1 2 2 2(1) sintau m q m q q gm q   
 (78) 

 

 

  

2 2

21 1 2 2

2 1 1 2 2 1 2

2 1 1 2 1

(2) 2
3 12

cos 2

2

m l m l
tau m q q q m q q

g q l m m q

 
    

 




 (79) 

3) Free system matrices 

Matrix M for the system: 

 2(1,1)  M m  (80) 

 (1, 2)  0M   (81) 

 (2,1)  0M   (82) 

 

2 2

21 1 2 2

2 1(2,2)
3 12

m l m l
M m q    (83) 

Vector C for the system: 

   2

2 1 2(1)C m q q   (84) 

  2 1 1 2(2) 2C m q q q  (85) 

Vector G(q) for the system: 

  2 2(1) ( ) sin( )G g m q    (86) 

 
  2 1 1 2 1cos 2

(2) ( )
2

q l m m q
G g

 
   

 

 (87) 

V. CONCLUSIONS 

This paper has showed a software tool to obtain and 

simulate the equations of motion of holonomic mechanical 

systems. The tool provides a fast and precise development of 

the differential equations of holonomic dynamical systems 

and simulation of the system models of any dimension that 

can be modeled with Euler-Lagrange’s equations [12]-[15]. 

This tool is particular useful for great order systems, which 

give many terms to differentiate and even have great 

dimension matrices 

An important feature of this tool is to give an option to 

analyze all steps by looking at the summary report, otherwise, 

the user should manually write it in LATEX, which demands 

some effort, time and is susceptible to errors. Others features 
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are: (i) Write the differential equation in a .m file for a 

numerical simulation and run it; (ii) Save all portrait phase 

graph and all time evolution of variables; (iii) For system 

with constraints, save and plot the contact force on time 

dependent graph; and finally (iv) Write a summarized report 

in LATEX. 

This tool seems to apply in different engineering areas as 

shown in Section IV, as a start this tool proved useful in 

aerospace, biomedical and robotics and mechanical 

engineering. Reader is invited to access and test the tool. 

Files will be sent by authors’ e-mails. 
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