
  

 

Abstract—In personal healthcare, blood pressure (BP) is an 

important vital sign to be monitored frequently. However, 

traditional BP measurement devices require cuff’s inflation and 

deflation that is very uncomfortable for many users. Cuffless 

noninvasive BP estimation methods are very attractive 

especially on using Photoplethysmography (PPG) approach for 

achieving continuous BP monitoring and minimal user’s 

inconvenience. From recent studies on the second derivative of 

PPG (SDPPG) for vascular aging, SDPPG contains the 

information about aortic compliance and stiffness, which is 

highly related to blood pressure. To making use of this new 

finding, 14 new SDPPG based features are proposed in this 

paper.  They are combined with conventional 21 time-scale PPG 

features to develop a Support Vector Regression based BP 

estimator. Experimental results demonstrated that the 

combined features based BP estimator could improve accuracy 

of the conventional time-scale PPG based BP estimation by 

40%. 

 
Index Terms—Blood pressure, photoplethysmography (PPG), 

second derivative wave, support vector regression. 

 

I. INTRODUCTION 

Blood pressure (BP) is one of the four vital signs of human 

body besides heart rate, respiratory rate, and body 

temperature. Recently, the risk of having hypertension is 

extending from older to younger groups of the population.  

This trend making the number of people who need daily 

monitoring of BP is significantly increased. In addition, the 

demand for public resources in the hospital is becoming more 

and more serious and the type of healthcare is tending to 

individual-centered rather than hospital-centered. The need 

of self-monitoring BP devices dramatically increases in the 

recent decades. However, most of the commercial BP 

measuring devices require to inflate and deflate a cuff for 

determining the BP values. This measurement has a high 

demand for the medical practitioner‟s operation skills. 

Self-monitoring BP devices using cuffless and 

noninvasive detective methods are very attractive for 

personal healthcare applications. It was reported that 
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cuff-less, noninvasive, and continuous measurement of BP 

could be achieved by photoplethysmography (PPG) [1]-[7]. 

PPG [8] is a simple, portable and low-cost optical pulse that 

can be used to detect blood volume changes. The waveform 

of PPG is formed by heartbeat and affected by the condition 

of cardiovascular system [9]. When BP increases, the 

volumetric elasticity of blood vessel increases. This makes 

vessel wall stiff and the pulse wave propagation velocity is 

increased. The pulse wave propagation velocity (PWV) is 

represented as the pulse wave propagation distance divided 

by Pulse transit time (PTT). PTT is the time for the pulse 

wave to travel between two arterial sites, which is highly 

related with PWV. Normally, PTT is calculated from the time 

distance between R wave of ECG signal and following peak 

of fingertip PPG signal [10]. PTT based methods [5]-[7], 

[11]-[13] have been demonstrated to achieve relatively high 

accuracy on BP estimation, but two devices are required for 

the measurement. This is inconvenient and requires high 

operation skill in practical usage. Moreover, synchronization 

between two devices is also a big challenge of PTT approach. 

Therefore, PPG waveform analysis approach using a single 

PPG signal is very attractive for continuous and noninvasive 

BP measurement. However, several reported PPG waveform 

analysis based BP estimation methods [14], [15] are still in 

the incremental development stage especially on achieving 

high accuracy of BP estimation. In these methods, the 

features for BP estimation are only defined in one domain 

especially the time domain.  In [15], 21 features are defined 

based on time and amplitude scales in time-domain of the 

PPG signal and Neural Network (NN) based machine 

learning algorithm is used as BP estimator that is trained by 

Multi-parameter Intelligent Monitoring in Intensive Care 

waveform database. Experimental results show that this 

method can achieve better accuracy than the linear regression 

estimator and satisfy the American National Standards of the 

Association for the Advancement of Medical Instrumentation. 

In order to further enhance the BP estimation accuracy of 

[15], additional 14 features in the second derivative of PPG 

signal are combined with time-scale 21 features of [15] for 

designing a new BP estimator. Moreover, the estimator is 

trained by Support Vector Regression (SVR) instead of NN, 

which can further enhance the performance of the trained 

estimator.  

The paper is organized as follows. In Section II, we first 

review the conventional 21 PPG features of [15] in the time 

domain and then the new 14 features in the second derivative 

of PPG signal are presented. For training the estimator, we 

choose Support Vector Regression as the training method, 

which will be introduced in Section III. The experimental 

setting and results are presented in Section IV. Finally, a 

conclusion is given in Section V. 

Cuffless Blood Pressure Estimation Based on 

Photoplethysmography Signal and Its Second Derivative 

Mengyang Liu, Lai-Man Po, and Hong Fu 

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

202DOI: 10.7763/IJCTE.2017.V9.1138



  

II. PPG FEATURES EXTRACTION 

A. Time-Scale PPG Features 

In [15], 21 time-scale PPG features are defined from the 

amplitude of the PPG signal and duration of specific 

components of the cardiac cycle as shown in the upper part of 

Fig. 1. Several of these features are based on [14], [16] for 

characterizing the PPG pulsatile component such as Cardiac 

Period (CP), Systolic Upstroke Time (SUT), Diastolic Time 

(DT), pulse width at 10%, 50% and 66% of the pulse 

amplitude in Systolic and Diastolic intervals. Additional 

features added in [15] are pulse width at 25%, 33% and 75% 

of the pulse amplitude in Systolic and Diastolic intervals as 

shown in Fig. 1. These 21 features can be summarized as 

below:  

CP, SUT, DT 

10%: DT10, ST10+DT10, DT10/ST10 

25%: DT25, ST25+DT25, DT25/ST25 

33%: DT33, ST33+DT33, DT33/ST33 

50%: DT50, ST50+DT50, DT50/ST50 

66%: DT66, ST66+DT66, DT66/ST66 

75%: DT75, ST75+DT75, DT75/ST75 

B. Second Derivative PPG Features 
 

 
Fig. 1. Features‟ definition. 

 

From the recent studies [17], [18] of vascular aging 

through the second derivative of PPG (SDPPG), Pulse Wave 

Velocity (PWV) and SDPPG contain the information about 

aortic compliance and stiffness. These factors highly 

correlated with blood pressure. Basically, SDPPG is the 

acceleration of PPG and its waveform is in “W” shape with 

five sequential waves normally, as shown in the lower part of 

Fig. 1. These five waves are named as Initial Positive Wave 

(IPW), Early Negative Wave (ENW), Late Upsloping Wave 

(LUW), Late Downsloping Wave (LDW), and Diastolic 

Positive Wave (DPW). The positions of „a‟, „b‟, „c‟, „d‟, and 

„e‟ are peaks of these waves as defined in [17]-[19]. One of 

their findings is that the ratio of late systolic peak to early 

systolic peak is influenced by age and systolic blood pressure 

(SBP).  Moreover, Jeong et al. [20] investigated the 

applicability of SDPPG for blood pressure measurement 

through analysis of the relationship between blood pressure 

and SDPPG features. They find that diastolic blood pressure 

(DBP) has a good relationship with the amplitude ratios of 

peak “b” to peak “a” and peak “e” to peak “a”.  

Based on these recent findings, we combine SDPPG 

features with the conventional 21 time-scale PPG features 

[15] to develop a better BP estimator. We assume that the 

ratio of amplitudes and the amplitudes of corresponding PPG 

points (A_a, A_b, A_c, A_d, A_e, AP_a, AP_b, AP_c, AP_d, 

and AP_e), as shown in lower part of Fig. 1, are good features 

for BP estimation. These ratios of five characteristic points‟ 

amplitude in SDPPG could reveal the condition of the 

cardiovascular system, such as the vascular aging, 

atherosclerosis, and the vasoactive [17], [18]. Moreover, we 

believe that the shape of PPG signal or the changes of PPG‟s 

acceleration is highly related with vessel condition. To 

further reveal the shape of PPG signal, we define four new 

features which combine PPG and SDPPG signal. Using the 

location of five points on SDPPG, we can get the 

corresponding five points on PPG signal and then, we can get 

the amplitude of these five points. Their ratios are the four 

new features. Thus, we propose to define four features based 

on SDPPG amplitude ratio and another four features based on 

PPG amplitude ratio as: 

 A_b/A_a 

 A_c/A_a 

 A_d/A_a 

 A_e/A_a 

 AP_b/AP_a 

 AP_c/AP_a 

 AP_d/AP_a 

 AP_e/AP_a 

Those five characteristic points can be considered as the 

end point of a stage in heartbeat cycle. So the time interval of 

those special points represents the time of duration of each 

stage. Thus, we propose other five features based on time 

interval between two consecutive points as: 

 T_a 

 T_c 

 T_e 

 T_b 

 T_d 

 

Finally, Aging Index (AI) has been proved to have good 

relation with vascular aging and our SDPPG‟s AI feature is 

defined as: 

 AI = (A_b - A_c - A_d - A_e) / A_a 

Thus, there are 14 SDPPG and 21 PPG features for the 

proposed BP estimation. The extraction of those features is 

following this step. Firstly, we filter the noise and find the 

local peaks of each PPG cycle. Secondly, we separate PPG 

signal into each cycle based on the local peaks. In the next, 

we compute the second derivative waveform. For each cycle, 

we identify the five SDPPG peaks based on the 

characteristics of IPW, ENW, LUW, LDW, and DPW. The 

peak „a‟ is always the maximum point in one cycle of an 

SDPPG waveform, while the peak „b‟ is the minimum point. 

They can use this characteristic to identify the IPW and ENW. 

After the ENW is identified, the DPW is the positive 

maximum value from ENW to the end, which can be used for 

peak „e‟ detection. LUW is the local peak point in the area 

between ENW and DPW. The peak „c‟ is determined by the 

maximum after peak „b‟. LDW can be simply considered as 
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the minimum point in the period that between the LUW and 

DPW, which can be used to detect the peak „d‟.  

In addition, this SDPPG feature point detection method is 

also used to remove bad cycle. It is because errors generate at 

the LUW and LDW detection for some SDPPG signals 

without local maximum peaks between ENW and DPW or 

have more than one peak. These kinds of pulse cycle are 

removed after peak detection. We define some conditions to 

determine which cycle is bad cycle, which will be discussed 

in the following section.  

 

III. SUPPORT VECTOR REGRESSION 

In [15], Linear Regression (LR) and Neural Networks (NN) 

are used to train the BP estimation module from the 21 

time-scale PPG features. To further improve the BP 

estimation accuracy using the proposed combined features in 

PPG and SDPPG domains, we adopt Support Vector 

Regression (SVR) algorithm to train the estimation module. 

Basically, SVR is an extension algorithm of the well-known 

Support Vector Machine (SVM) with use of loss function 

such as Vapnik‟s-insensitive loss function and Huber‟s loss 

function for solving regression estimation problems. It is well 

known that SVR can minimize the over-fitting problem as 

compared with LR and NN.  

The basic idea of SVR is to map the input space into a 

high-dimension space by a non-linear mapping achieved 

implicitly by the trick of kernel function and to do a linear 

regression in the new feature space. Given a time series 

samples {xi, yi} xi ∈ R
l
, yi ∈ R, i=1, 2, 3…, N, where xi is the 

input feature variable, yi is the target value. Firstly, SVR 

algorithm maps the data to a high-dimension feature space 

and then a linear function is found in the condition of 

minimizing the sum of empirical risk and the complexity 

term that enforce flatness in feature space. The linear 

function in the high dimensional feature space corresponds to 

the non-linear function in the original lower dimensional 

feature space.  

In order to train the BP estimation module using SVR, we 

employed the LIBSVM [21] developed by Lin and his group. 

This library is very popular in Support Vector Machine which 

support many different platform include MATLAB. We 

choose their library to do the regression job, so we use 

epsilon-SVR to train the estimation module. During the 

training, we also design the cross-validation set in order to set 

the best parameters of the epsilon-SVR – gamma and epsilon. 

Epsilon-SVR is a regression method whose parameters – 

epsilon, can control the final accuracy of this model.  Even if 

the number of support vector may become many or the 

complexity of the module may become high, the first priority 

of blood pressure estimation is accuracy. So we choose 

epsilon-SVR as our model.  

 

IV. EXPERIMENTS 

A. Dataset 

In order to evaluate the performance of the proposed 

combined features using SVR based BP estimation, we 

employed the dataset from the Multiparameter Intelligent 

Monitoring in Intensive Care II (MIMIC II) database [22]. 

This dataset provides a wide representation of PPG signals 

with correspondent beat-to-beat BP values. However, not all 

the PPG pulse cycles can provide the second derivative 

waveform with clear “W” shape. Thus, we developed a 

method to remove some of the pulse cycles with bad SDPPG 

waveform. Though observation, we found that if the typical 

“W” shape is required, the position and amplitude of the five 

SDPPG characteristic points (a, b, c, d and e) should satisfy 

the following conditions: 

1) The results of characteristic point detection must have 

five points.  

2) The amplitude of „a‟ points should be the largest one and 

the amplitude of „b‟ points should be the smallest one.  

3) The order of these five points should be disturbed in 

order such that “a” have to be before “b” and “b” have to 

before “c”, etc. 

4) The time interval between two successive points should 

larger than a predefined threshold, such as 3% of the 

length of that pulse cycle.  

5) The amplitude distance between two successive points 

should larger than a predefined threshold. This threshold 

is about 5% of the amplitude distance between “a” and 

“b”. 

With use of these screening conditions, 910 good PPG 

pules cycles are detected from MIMI II dataset for our 

experiments. These good PPG cycles cover the population of 

normal, hypertension, and hypotension. In which, 648 pulse 

cycles (around 70%) are randomly selected as training data 

and 262 cycles (around 30%) are used as test data. Fig. 2 

shows one example PPG waveform with its corresponding 

BP waveform that extracted from MIMIC II database. The 

x-axis is just the sample number. The website of this dataset 

give the information of sample rate. The sample rate is 125/s, 

so 125 scales in x-axis represents a second. The y-axis is the 

amplitude of PPG signal which is meaningless, because the 

absolute value of PPG amplitude can change a lot under 

different lighting situation and operation. However, for the 

blood pressure signal, we consider that the y-axis value 

represents the value of blood pressure. We found that most of 

the good pulse cycles are extracted from mimic2wdb/35, 

which is a sub-database of MIMIC II. Most of PPG and BP 

signals in this sub-database are relatively clean without noise 

and distortion. Fig. 3 shows one of the SDPPG waveform 

after low-pass filter with the five detected SDPPG points. 

The blue line in Fig. 3 is the PPG signal and the red line is the 

coordinate SDPPG waveform. The five detected SDPPG 

points are marked by red “X” marker. The x-axis is still the 

sample number which indicates 1/125 second per scale and 

the y-axis doesn‟t have physical meaning. We only consider 

the relative value of these signal amplitude. 

 

 
(a) PPG signal 

 
(b) Blood Pressure signal 

Fig. 2. (a) Extracted PPG signal, and (b) its corresponding BP signal. 
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Fig. 3. Example of detected five SDPPG points. 

 
 

B. BP Estimation Results 

In order to compare the performance of the proposed 

method with the conventional NN based 21 features method 

[15], we also used our training set to train a NN based BP 

estimator with 32 neurons in hidden layer. The proposed BP 

estimator uses both 21 time-scale PPG features and 14 

SDPPG features to train a SVR based BP estimator. In the 

training set, we randomly select 20% samples in training set 

as cross validation set. To get best parameters, we select cross 

validation (CV) set five times every training stage and for 

each training we try many different parameters combination 

and using CV set to find the one with best performance. To 

compare the proposed method with the 21 features NN based 

BP estimator, we use Mean Absolut Error (MAE) and 

Relative-Mean-Square-Deviation (RMSD) as the basic 

performance metric. In addition, Bland-Altman plot is also 

used, as it is commonly used for medical parameter 

measurement method comparison [23]. The MAE and 

RMSD are defined as:  
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where the 𝑦 𝑡  means the prediction result of t
th

 sample and 𝑦𝑡  

is the true value of that sample. Table I shows the MAE and 

RMSD in form of (MAE±RMSD) on SBP and DBP 

estimations using conventional method [15] and the proposed 

method for the testing set. Lower MAE means that average 

error between the estimated BP and true value is small. 

RMSD reveals the fluctuation of the error. From Table I, we 

find that the combined features can always achieve better 

performance as compared with use of only 21 time-scale 

features on using both NN and SVR estimation methods. 

Moreover, the proposed BP estimator with use of combined 

features and SVR can achieve lowest MAE and RMSD for 

both SBP and DBP estimations. The improvement of the 

proposed method is up to 40% as compared with the 

conventional method using NN and 21 features. To further 

prove the results improvement is significant, we calculate 

p-value to check the significance of this improvement. For 

SBP, the p-value between referenced method and proposed 

method is 0.001 and for DBP, p-value is 2.19E-09. The 

p-values are smaller than 0.01, which means the 

improvement of proposed method is significant. 

 
TABLE I: THE MAE AND RMSD OF THE ESTIMATED SBP AND DBP USING METHOD [15] AND PROPOSED METHOD 

 NN SVR 

 SBP DBP SBP DBP 

Kurvlyak [15] 

21 features 
(15.1±13.3) (7.7±6.6) (13.6±13.6) (7.7±7.9) 

Proposed method 

35 features 
(13.4±11.6) (6.9±5.9) (8.54±10.9) (4.34±5.8) 

 

 
Fig. 1. BA-plot of referenced method (left) and proposed method (right). 

 

Bland-Altman plot (BA-plot) is a special performance 

evaluation method, which is used to compare the agreement 

between two methods. BA-plot can visualize the distance 

between predicted value and true value. The confidence 

interval also can indicate the performance is better or not. If 

the length of confidence interval is small, the errors 

concentrate in small area, which means better performance. 

Fig. 4 is the BA-plot for method [15] and proposed method.  

The left side of Fig. 4 represents BA plot of method [15] 

and the right side is for proposed method. It is clear that the 

confidential interval of proposed method is smaller and the 

mean line that is the middle of three lines is more fitting the 

identity line (error = 0). 

 

V. CONCLUSION 

Based on the recent findings of blood pressure is related to 

the second derivative of PPG signal, we proposed 14 new 

features based on the five characteristic points of SDPPG. 

Moreover, PPG cycle screen method is proposed to make 

sure that the pulse cycles used for training and estimation are 

having good “W” shape SDPPG waveform.  To enhance the 

accuracy of the PPG signal based blood pressure estimation, 

we combined the proposed 14 SDPPG features with the 

conventional 21 time-scale PPG features to training an SVR 

based blood pressure estimator. Experimental results show 

that the proposed blood pressure estimator can achieve 40% 
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accuracy improvement as compared with a conventional 

neural network and 21-feature based method. 
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