

Abstract—Virtual manufacturing environments need complex

and accurate 3D human-computer interactions. Current virtual

environments (VEs) suffer from one major issue which is the

heavy loads of the users both on cognitive aspect and motor

operational aspect. In order to solve this issue, the solution

presented aims to increase both machine’s cognitive capability

and the throughput of the system. This solution is mainly based

on techniques and methods of a well-established field known as

complex event processing (CEP). Our approach applies CEP to

input events in multimodal systems, the events (State vector)

which are produced in the system are received, filtered,

aggregated or transformed into higher-level intents using a

rule-based system. The experiments have shown that

intent-driven software construction method and CEP (Complex

Event Processing) have a great potential in both, enhancing the

naturalness and efficiency of human-computer interactions

(HCI) and increasing the throughput over low latency (increase

the responsiveness of a system). It also can be considered as an

effective analysis method for human-centered VE

developments.

Index Terms—Complex event processing (CEP),

human-computer-interaction (HCI), intent, multimodal input,

virtual environment, virtual assembly.

I. INTRODUCTION

Communication between humans is predicated on

multimodality, through both parallel and sequential

utilization of multiple perceptual modalities. We

communicate not only via verbal language, but additionally

through our utilization of intonation, gaze, hand gesture,

physical gesture and visages (facial expressions), which

ascertains high precision and simplicity. Research on

multimodal systems aim to analyze how human-computer

interaction can profit from multiple modalities in similar

ways.

Never less, the meaning of modality is ambiguous. Bellik

[1] defines it as ―a concrete form of a particular

communication mode‖ where ―mode‖ refers to the five

human senses: sight, touch, hearing, smell, and taste, and to

the human different ways of expression: gesture, speech

(producing information). L. Nigay [2] also defined modality

as: ―Multimodality is the capacity of the system to

communicate with a user along different types of

communication channels and to extract and convey meaning

Manuscript received August 9, 2016; revised December 12, 2016.
Both authors are with the Laboratory of Intelligent Information

Technology, School of Computer Science, Beijing Institute of Technology,

Beijing 100081 PRC (e-mail: moumou2788@yahoo.fr,

cc@bit.edu.cn/guoguocheng@vip.sina.com).

automatically‖. This means that a multimodal system uses

speech, gestures and other human input channels to allow the

user to interact with the system.

Based on the definition of Bellik and L. Nigay, we redefine

the modality as a ―concrete form of a particular mode

referring the human senses or their expression ways and

using the coupling of interaction language with input

devices‖. Modalities can also be classified as active or

passive: it considered active when it is used consciously by

the user otherwise it is considered as passive.

VE systems especially rely on multimodal interactions. In

this paradigm users use all kinds of input devices to

manipulate the virtual objects in VE. Using the eye and the

hands, the participants of VE express their interactive intents.

Researchers have invented many 3D input devices to

manipulate virtual objects in virtual space. We mention some

representative works in multimodal interaction. The

researches on data glove based gesture and image processing

based bare-hand motion capturing are the papers of [3], [4].

Virtual human and virtual hand can greatly enhance

immersion and interactive realism. Researchers investigate

virtual hand gestures to express every kind of interactive

intents [5], and use virtual hand to grab virtual parts to realize

accurate assembly operations [6]. Interests on eye-tracking

research have been growing rapidly since 2003, and many

researches about eye gazing, especially the ones using eye

movements as a means of interaction with a computer, have

been carried out [7], [8]. But there is not any research on eye

and hand modal coordination and integration. We have

investigated eye and hand coordination in order to find the

principle of this multimodal integration using devices below

shown in Fig. 1, those devices will be used later to help

capturing the user's intent..

Eye tribe [9] is a device equipped with an eye tracker

enables users to use their eye gaze as an input modality that

can be combined with other input devices like mouse,

keyboard, touch and gestures, referred as active applications.

Fig. 1. Input devices.

The Eye Tribe Tracker in Fig. 2 is an eye tracking system

that can calculate the location where a person is looking by

means of information extracted from person’s face and eyes.

Complex Event Processing for Intent Understanding in

Virtual Environments

Sebai Mounir and Cheng Cheng

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

185DOI: 10.7763/IJCTE.2017.V9.1135

mailto:moumou2788@yahoo.fr

The eye gaze coordinates are calculated with respect to a

screen the person is looking at, and are represented by a pair

of (x, y) coordinates given on the screen coordinate system.

Magellan/SPACE MOUSE [10] is a 3D input device that is

used to control the position and orientation of 3D graphical

objects in virtual space. The device controls three

translational degrees of freedom (X, Y and Z) and three

rotational degrees of freedom (A, B and C).

Fig. 2. USERS in front of an eye tracker [10].

II. COMPLEX EVENT PROCESSING AND MULTIMODAL INPUT

SYSTEMS

Interactive and Reactive systems respond to the occurrence

of events of interest e.g., user interaction or changes in the

state of components by performing some computation, which

may in turn, trigger new events.

Complex Event Processing (CEP) systems analyze large

flows of primitive events received from a monitored

environment to timely detect situations of interest, or

composite events. In CEP, the processing takes place

according to user-defined rules, which specify the relations

between the observed events and the phenomena to be

detected.

 Due to a growing amount of different input devices as

well as multimodal interaction techniques, multimodal

interactive systems such as interactive surfaces and VE

systems, they have seen a fast development in recent years.

However, many of those systems tend to use low-level

interfaces to deal with user input, leading to systems hard to

extend or reuse. CEP can be applied to several domains:

sensor networks for environmental monitoring [11]; payment

analysis for fraud detection [12]; financial applications for

trend discovery [13]; RFID-based inventory management for

anomaly detection [14]. The general subject of our work – the

application of CEP to interactive systems (Intent

Understanding) – has not received much attention so far. The

CEP research community does not consider it as a potential

application area [15], Complex event processing (CEP) refers

to resources that collect different kinds of data from different

parts of an IT system, or other sources, to look for meaningful

results that can be reported to decision makers.

The term Complex Event Processing was popularized in

[16]; however, CEP has many independent roots in different

research fields, including discrete event simulation, active

databases, network management, and temporal reasoning. It

refers to the representation process of events by computer.

David Luckham [17] gave definition of complex events in the

2001 book ―The Power of Events‖: complex event detection

is a pre-defined collection of tools and techniques designed

for analysis and control of a series of interrelated events. And

he gives two meanings to the word event. The first meaning

refers to an actual occurrence (the something that has

happened) in the real world or in some other system. The

second meaning takes us into the realm of computerized

event processing, where the word event is used to mean a

programming entity that represents this occurrence. In the

followings, we show the definitions and synonyms of some

event processing concepts according to this glossary and the

examined articles:

1) Event: Anything that happens, or is contemplated as

happening, also used to mean a programming entity that

represents such an occurrence in a computing system.

2) Complex event: An event that is an abstraction of other

events, (constructed event, high-level event; sometimes

it means a composite and a derived event as well).

3) Event stream: a linearly ordered sequence of events.

4) Event attribute: A component of the structure of an

event; (event property).

5) Event channel: A conduit in which events are

transmitted from event sources (emitters) to event sinks

(consumers). (Event connection).

6) Situation: A specific sequence of events.

7) Raw event: An event object that records a real-world

event.

8) Detection time: The timestamp when the event was

detected.

9) Event Processing Engine: A set of event processing

agents and a set of event channels connecting them.

To facilitate a common understanding, we represent the

analogs between the mind and CEP in Table I:

TABLE I: HUMAN COGNITIVE FUNCTIONS AND CEP FUNCTIONALITY

Human

Body

Complex Event Processing Functionality

Senses Transactions, sensors, input

output devices.

Direct interaction with

environment, provides

information about environment

Nervous

System

Chanel, information bus,

digital nervous system

Transmits information between

sensors and processors

Brain Rules engines Processes sensory information,

―makes sense‖ of environment,

formulates situational context,

relates current situation to

historical information and past

experiences, formulates

responses and actions

Only in recent years, CEP has emerged as a discipline in its

own right and an important trend in industry. The founding of

the Event Processing Technical Society [18] in 2008

underlines this development. CEP is a powerful technology,

it offers several benefits:

1) Permit very high event throughput with low latency, as

the CEP engine is specially designed for continuous

event stream processing. It uses well tested and

implemented algorithms and improvement methods

with optimization techniques, beside any future

improvement will be immediately available to our

System. Latency: How long does it take until the effects

of an input event appear in the output?

2) High data rates. Data rate is how many input events per

second can the system process

3) Detection, aggregation, fusion and selection of input

events are based on a declarative specification (using

the Event Processing Language (EPL)). This declarative

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

186

approach allow to specify interactions like gestures

more abstractly and lets the CEP engine perform the

actual processing and maintenance of current and past

events. This abstraction also makes it possible to profit

from optimizations and other improvements carried by

the engine without having to change the applications

code.

4) As CEP solutions are also used in non-interactive

scenarios such as context event processing in ambient

assisted living environment [19].

III. INTENTS EXPRESSION IN VIRTUAL ENVIRONMENTS

Definition 1: (intent) is a mental activity which helps the

VE reaches a given state in a short term during a stage of an

interactive process. It depends on user’s intellectual state and

current working scenario, and it is delivered through

multimodal temporal hybrid events.

Intent is concrete both in reality and virtual reality. Intent

expression is very natural in our life, but nearly all the intents

are ignored in everyday life, we have never paid any attention

to them, and some intent were only investigated by the

cognitive psychologists for other goals. The reason of

explicitly defining intent is that, only the fine and elaborate

meanings can satisfy the requirement of design and planning

in virtual environments. Intent capturing and understanding

will not be an easy thing except the case where the intent is

delivered by dictation or other predefined explicit manners.

The amount of intents in everyday life is big. For software

construction we don’t need to realize all these intents. Only

the significant intents which are normally used in designing

and planning will be investigated here. So the amount of

types of intent and the total amount of intents will not be in

big numbers.

Definition 2(perception): Is the real-time computation

and relevant feedback representation of an active virtual

object. It relates with every kind of spatial relationship

among the virtual objects. Virtual object communicates with

others and computes to recognize a spatio-temporal

relationship with other objects in the scene.

Definition 3 (interactive mode): Is spatio-temporal

abstract of user's operation behavior in a specific mission

within a virtual environment. It includes a specific timing of

multimodal cooperation or a temporal sequence of interactive

manipulations.

Based on the concepts defined above, we can set up a

cognitive model for virtual environments. The cognitive

model here means a paradigm of human-computer interaction

in VEs. Here we use a virtual assembly application as an

example to illustrate the cognitive model. In order to explain

the model we will explain the concept of work flow. Work

flow is an activity sequence in virtual environments to fulfill

the whole mission of assembly. Every activity is made up of a

short sequence of tasks, where a task is composed of a set of

primitive operations. Every task is formalized by an intent,

interactive modes and perceptions. In other words, once an

intent of a task occur, the multimodal operations will follow

up and normally play several definite interactive modes, and

then at a time point an interactive mode will trigger a specific

perception. In general, the task sequence in an activity will be

completed before entering the next activity. In this situation,

intent of next task will bring the VE into the next activity, and

so on. But in some exception situation, the user intent will

break away from the current activity and transit VE into

another activity which is not in the specified work flow when

a user’ thinking jumping occurs.

Both intent and interactive mode need to be captured in

real-time. Intents guide virtual environments to transit from

task to task and deduce object's behaviors. They will trigger

activity transitions in a work flow, and trigger the jumping

among the tasks in an individual activity node. How to get the

rules of judging intents is a problem which must be solved. It

is impossible to find the solution from computer science and

software engineering; instead we can find it from cognitive

psychology. We analyze human thoughts and behaviors from

experiments and observations.

According to behavior theory [20], human’s cognitive

activity and motor behavior are connected with each other.

Cognitive activities are cooperated with external behaviors;

meanwhile, human external behaviors reflect the inner

thinking activities. User intents are expressed by their

interactive behaviors in virtual environments. Because there

are different virtual environment configurations, we should

give a clear definition to the situation where intents are

expressed. Here the authors mainly analyze intent

expressions in a virtual assembly system Interaction3D

which is a desktop virtual environment. The main input

devices used are space mouse and a non-intrusive eye

tracking instrument.

Definition 4(state vector): State vector is a

multi-dimensional vector structure which depicts a state of

multimodal inputs at a time point, which is expressed as: <t,

Sce, Obj1, Obj2, Obj3, Aty, Tsk, Mod1, Mod2, Mod3>.

Where ' t' represents the time point of the state,' Sce'

represents for a current scene, 'Obji' represents for the related

virtual objects, 'Aty' represents for system’s current activity,

'Tsk' is a user’s current interactive task, 'Modi' represents for

the state of input channel i.

Based on a long term observations, we discovered that

intents can be well expressed within 5 successive state

vectors (multimodal event slices). So in the later part of this

paper we will analyze no more than 5 state vectors for intent.

 (a) FeaMatching (b) Coincidence (c) FaceMating

Fig. 3. The scenes of main intents and relevant perceptive representations.

Fig. 3 shows some perceptive representations in virtual

assembly 3D Interaction. In Fig. 3(a), when the round washer

approaches the case and the feature matching relationship has

been perceived, the matched feature will be lighted with the

red cylinder. This representation of FeaMatching perception

will be the condition of collect the input data and create a new

state vector. In Fig. 3(b), the Major axis of cylinder feature of

the current part bolt and the Major axis of the feature hole of

the target part case is lighted with red color. This is the

representation of Coincidence perception. After a feature pair

matching has been found, user rotate the current part and

make the axis of the current feature on the current part

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

187

coincident with the axis of the target feature on the target part

will make the Coincidence perceptive representation occur.

In Fig. 3(c), a green square plane is used to mention the user

that a feature pair surface mating is discovered, the green

plane also displays the place where this mating will occur.

IV. USING COMPLEX EVENTS PROCESSING IN INTENT

UNDERSTANDING

CEP engines manage event-driven information systems by

employing techniques such as detecting complex patterns,

building correlations, and relationships such as causality and

timing between many events. Events are represented as

objects which have different attributes depending on the type

of the event. The event processing is responsible for

receiving input events produced by the input devices,

applying any processing rules registered with the middleware

and providing all events (raw or processed) to the interaction

layer.

Fig. 4. Architecture of Intent understanding.

In our case as shown in Fig. 4 the inputs of event engine are

a state vectors which will be issue from all function of event

processing, state vectors enter the engine one by one and are

matched against the stream specifications of all queries

(Queries are written using the EPL). If an event matches a

specification, the query is evaluated and, might generate

intent as output and this one will trigger an action. The

schema shows the architecture of using CEP in intent

understanding.

A. Event Pattern Matching

Event patterns match when multiple events occurs that

match the pattern's definition. Patterns can also be temporal

(time-based). Pattern matching is implemented via state

machines. Pattern expressions can consist of filter

expressions combined with pattern operators. Expressions

can contain further nested pattern expressions by including

the nested expression(s) in round brackets.

There are 5 types of operators:

1) every: Operators that control pattern finder creation and

termination.

2) and, or, not : Logical operators.

3) -> (followed-by): Temporal operators that operate on

event order.

4) within: Guards are where-conditions that filter out

events and cause termination of the pattern finder.

5) at: Observers observe time events as well as other

events, such as timer.

The event processing language (EPL) is as follows:

 [INSERT INTOinsert_into_def] SELECTselect_list

 { FROMstream_source_list /

MATCHINGpattern_expression }

 [WHEREsearch_conditions]

 [GROUP BYgrouping_expression_list]

 [HAVINGgrouping_search_conditions]

 [ORDER BYorder_by_expression_list]

 [OUTPUToutput_specification]

We show Some Intents represented by temporal logic in

[21] as (1), (2) and we give the equivalence of those

descriptions using Event Processing Language.

 (Sce==Stock) ∧ (Sce==Asm) (1)

N is true at time t, iff N was true at time t-1;

The equivalence using Event Processing Language is in

Fig. 5:

select * from SV[] match_recognize (

measures e1 as SV[1], e2 as SV[2] pattern (e1 e2) define

e1 as (e1.sce==stock),
e2 as (e2.sce == Asm))

Fig. 5. Intent in (1) represented with event processing language.

e1 describe a state Vector at time t-1 with attribute

sce=stock following by e2 a state at time t with attribute

sce=Asm, means the interaction space transferred from stock

scene to assembling scene,

O (Stt==Pick) ∧ O O (Stt==Apprch) (2)

O N is true at time t, iff N is true at next time t+1;

The equivalence using Event Processing Language is in

Fig. 6:

select * from SV[] match_recognize (
measures e1 as SV[1], e2 as SV[2] pattern (e1 e2) define

e1 as (e1.Tsk == Pick),

e2 as (e2.Tsk== Apprch).
Fig. 6. Intent in (2) represented with event processing language.

e1 describe a state Vector at time t with attribute

TSK=Pick following by e2 a state at time t+1 with attribute

TSK=Apprch, means the The system state transit from the

pickup task object approach task.

B. Algorithm of Intent Capture

The EPL offers an INSERT INTO clause, which allows

creating new events or passing existing events back into an

event stream, which results in the following structure for

rules:

1) INSERT INTO name of new event type

2) SELECT list of new event attributes

3) FROM stream specification

The EPL globally allows using many SQL like constructs

and expressions, and also event stream processing specific

treatment clauses and operators. We will explain a few

aspects in order to make the algorithms easier to understand.

In general, the EPL permits accessing all attributes of event

objects by specifying their name (e.g., accessing the

attribute ’pos’ on the object ’Mouse’ would be written as

Mouse .pos) and the same for calling any methods defined on

it.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

188

https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016889
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016509
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016544
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016712
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016776
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016784
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016819
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016856
https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/clauses.html#wp1016865

Within the FROM clause, it is possible to use different

event stream specifications: filter-based, pattern-based or

window/view-based. The first (filter-based) is used for

directly matching events based on their type/stream name

with optional filter expressions to further narrow down the

amount of events it applies to. The second(pattern-based)

allows more complex matching of event patterns, which

might consist of different types of events from different

streams and thus also allows expressing temporal relations

using the followed-by operator (->). The last (window-based)

is used in combination with the first specification method and

allows operating on a window of events collected over time

or depending on user defined conditions.

An event is a special kind of a message generated by input

devices. Analyzing event data is difficult if the data is not

normalized into a common, complete, and consistent model.

Therein lay the challenges for modeling — to allow virtually

any type of event to be defined and to provide maximum

infrastructure for supporting event handling. We define the

structure of event which is a same with state of vector

StateVec V

{

t, represents the time.

Sce, represents for a current scene.

Obj[], represents for the related virtual objects.

Aty, represents for system’s current activity.

Tsk, user’s current interactive task.

Mod[].represents for the state of input channel i.

getGaze(), getRot(), getTrans().

}

𝐠𝐞𝐭𝐆𝐚𝐳𝐞 =
 Focus −CurFearCenter

 Focus −CurFearCenter + Focus −TarFearCenter
× 10 (3)

𝐠𝐞𝐭𝐑𝐨𝐭 =

𝟏𝟎 𝑴𝒂𝒙 θ1 ,θ2 ,θ3 ≥
𝝅
𝟐

 𝑴𝒂𝒙 θ1 ,θ2 ,θ3 𝑴𝒐𝒅 𝝅 𝟐

𝝅
𝟐

× 𝟏𝟎 𝑴𝒂𝒙 θ1, θ2, θ3 < 𝝅
𝟐
 (4)

𝐠𝐞𝐭𝐓𝐫𝐚𝐧𝐬 =
 Origin cf−Origin tf

DMax
 (5)

We explain those equations in experiments and analysis

section.

Each input device is wrapped by a collector, contains all

the modules and operations necessary to collect the devices

specific events from the available devices, convert them into

state vector and send them the CEP Engine.

We constructed the algorithm based on the results shown

in the figure below (Fig. 7) which were acquired by observing

the intents experiments. The metrics was calculated using (3),

(4), (5).

First, as shown in Fig. 7, the algorithm will collect the

vectors state using the script: ―Select (*) from SV-Repository

Retain batch 5 Events‖. This means the moment when five

vectors state are collected, they will be sent immediately to

the engine to be treated. We will create a vector state

whenever an interaction occurs between a human and the

input device.

Second, we create statements; A statement is a continuous

query registered with an Esper engine instance that provides

results to listeners in real-time when the stream of event

matches a specification. In our case we have three intents

therefore we should define three statements, a statement for

each intent.

The query corresponding to Feamatch intent means

whenever we get a high Gaze metric (greater than threshold

defined by experiments) and a decrease of Translation Metric,

the statement will invoke FeaMatchStatListener.

Algorithm : Complex Event Processing to Intent Capture

Input: State Vector

Output: Intent
Begin :

1. SV is an array representing vectors state, SV-Repository is a storage

 capacity for the vectors state; n is the number of vectors with a read

 state; Select (*) from SV-Repository Retain batch 5 Events.

2. Continuous query statements can then be created and registered at

 runtime. We have 3 intents that need an event pattern each

 EPStatementFaceMate ← getQueryFaceMate().

 EPStatementCoincidence← getQueryCoincidence().
 EPStatementFeaMatch← getQueryFeaMatch().

3. Create a listener and attach it to the statement Receiving Statement

 Results

 FeaMatchStatListener()← execute Intent FeaMatch;

 CoincidenceStatListener ()← execute Intent Coincidence;
 FaceMateStatListener ()← execute Intent FaceMate;

End

getQueryFeaMatch()

― select * from SV[] match_recognize

(measures V1 as SV[1], V2 as SV[2], V3 as SV[3], V4 as SV[4],
V5

 as SV[5] pattern (V1 V2 V3 V4 V5) define

 V1 as V1.getGaze() is > threshold,
 V2 as (V1.getTran() >V2.getTran()) & V2.getGaze () > threshold,

 V3 as (V2.getTran() >V3.getTran()) &V3.getGaze () > threshold,

 V4 as (V3.getTran() >V4.getTran())&V4.getGaze() > threshold,
 V5 as (V4.getTran () >V5.getTran ()) &(V1.getTran () <10*

 V5.getTran ()) & V5.getGaze () > threshold‖.

getQueryFaceMate()

―select * from SV[] match_recognize
 (measures V1 as SV[1], V2 as SV[2], V3 as SV[3], V4 as SV[4],

 V5 as

SV[5] pattern (V1 V2 V3 V4 V5) define
 V1 as V1.getGaze () < threshold,

 V2 as (V1.getTran () >V2.getTran ()) & V2.getGaze () < threshold,

 V3 as (V2.getTran () >V3.getTran ()) &V3.getGaze () < threshold,
 V4 as (V3.getTran () >V4.getTran ())&V4.getGaze() < threshold,

 V5 as (V4.getTran () >V5.getTran ()) & (V1.getTran () <10*

 V5.getTran ()) & V5.getGaze () < threshold‖.

getQueryCoincidence()
 ― select * from SV[] match_recognize

(measures V1 as
SV[1], V2 as SV[2], V3 as SV[3], V4 as

SV[4], V5 as

 SV[5] pattern (V1 V2 V3 V4 V5) define
 V2 as (-0.5 <V1.getTran () –V2.getTran () <0.5),

 V3 as (-0.5 <V2.getTran () –V3.getTran () <0.5),

 V4 as (-0.5 <V3.getTran () –V4.getTran () <0.5),
V5 as (-0.5 <V4.getTran () –V5.getTran () <0.5)‖.

Fig. 7. The algorithm schema of CEP intent understanding.

The script of concidence mate means whenever we get a

stable Translation Metric (small change) for five state vectors,

the statement will invoke CoincidenceStatListener.

The statement corresponding to the faceMate intent is

whenever we get a low Gaze metric (less than threshold

defined by experiment) and a decrease of Translation Metric,

the statement will invoke FaceMateStatListener.

Third, adding a Listener. When attaching a listener to the

statement provided by the engine, it will be invoked by the

engine in response to one or more events that change a

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

189

statement's result set. Listeners contain what intent will be

executing (triggering) as actions.

V. EXPERIMENTS AND ANALYSIS

The goal of experiment is to demonstrate how we designed

the Fig. 6 from observation. It can be described as below: The

task of the participants is to assemble a cover washer onto a

transmission case. When a participant carries out the work,

he/she first should pick the washer part and translate it

facilitated with approaching perception, then continue to

translate it in a company of FeaMatch perception, later, rotate

the washer part in the company of Coincidence perception;

finally continue to translate the part in a company of

FaceMate perception. At every point when a perceptive

representation emerges the participant will release an

affirmation, which is a discrete event. The scenes of three

main intents, FeaMatch, Coincidence and FaceMate, are

shown in Fig. 8.

Fig. 8. Understanding the intent experiment results.

To compare and analyze the experiment data of distinct

intents from state vectors, the experiment conductors gave

three normalized metrics for three modalities, which are hand

rotation metric, hand translation metric and eye movement

metric. The maximal metric value is set to 10 units. First the

eye movement parameter is normalized. In virtual

environment two important parts are assigned when assembly

is going on in the scene, one of which is the part called

current part which the user is manipulating, and the other is

called target part which is the part that current part is being

assembled on. The feature on the current part which has

relevant semantics with the current assembly operation is

called current feature, while the feature on the target part

which has corresponding semantics with the current

assembly operation is called target feature. The eye focus

during the interactive process in VE can be classified in three

types, i.e., focusing on current feature, focusing on target

feature, and focusing on any other where. The first type and

second type are the most important ones thus the normalized

eye movement metric will distinguish these two gaze types.

The normalized metric GazeValue is shown in (3). Focus is a

user’s gaze point on screen; CurFeaCenter is the geometric

center of current feature on current part, and TarFeaCenter is

the geometric center of target feature on target part.

Secondly, the hand rotation parameter is normalized. For

every geometric feature we give names of Major, Minor and

the 3thAxis to the three local coordinate axes respectively.

Suppose that the angle between the two Major axes of current

feature and target feature is θ1, the angle between the two

Minor axes is θ2, and the angle between the two the 3th Axis

axes is θ3. The normalized metric of rotation is given by (4).

Thirdly, the hand translation parameter is normalized. The

geometric centers of the current feature and the target feature

are Origincf and Origintf respectively. Suppose the maximal

assembly operational distance is DMax which is the possible

longest translation distance in the virtual space. The

normalized two handed translation metric TranValue is as

shown in (5). In order to facilitate the intent analysis, the

authors used a kind of line chart to visualize the multimodal

metrics. In experiment, three distinct key intents, namely

FeaMatch, Coincidence, Facemate, are verified. The

experiment results are shown in Fig. 9. The curves labeled

with signs Gaze, Rot and Tran represent the statistical data of

metric GazeValue, RotValue and TranValue of the

interactive assembly process respectively. For intent

FeaMatch, the normalized value Gaze and Rot nearly has no

change, the normalized value Tran drops linearly. For intent

Coincidence, the characteristic of the figure is that, the

normalized value of Tran almost has no change, meanwhile,

the value of Rot decreases linearly and the value of Gaze

shows a distinct jumping. While for intent FaceMate, the

value of Tran decreases and the values of Gaze and Rot keep

unchanged. The experiment results demonstrate the

distinctions among the three main intents we used in

assembly process.

In order to verify what we designed and ran our own

performance evaluation in real time. We used assembly

system, we define rules and patterns. Those rules were actual

implementations of intents. As we only wanted to measure

the impact of the CEP in intent capturing. For each state

vector passed into the CEP Engine, the time was measured it

took the Engine to accept the next event. This time (shown in

Table II) includes all query evaluations as well as calling all

registered event listeners.

TABLE II: EXPERIMENTS RESULT

Total (state Vector) transmitted Average time
 response (ms)

Intent Capture

500 80.2 98.3%

1000 114 99.1%

1500 143.6 98.8%

2000 153.6 98.5%

4000 241.2 98.7%

Fig. 9. Throughputs results.

The Fig. 9 shows the throughput (ms) plotted as a function

of total state vector transmitted; we can see clearly after

looking to the graph (scales roughly linearly) the high

throughput and the scalability given by CEP engine (real time

processing in intent capturing), after used a recording of

different quantity raw input and configuring 3 rules (each rule

for each intent). And we see also from the result (Table II)

most of intent is capturing (98.5 % average) in our

experiments, the accuracy is depending how we define our

rules and patterns.

VI. CONCLUSIONS

We introduce the established principles and methods of

0

1

2
3

4

5

6

7
8

9

10

1 2 3 4 5

Tran

Gaze

Rot

3

0

1

2
3

4

5

6

7
8

9

10

1 2 3 4 5

Gaze

Tran

Rot

0

1

2
3

4

5

6

7
8

9

10

1 2 3 4 5

Tran

Gaze

Rot

(a) FeaMatching (b)Coincidence (c)FaceMating

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

190

complex event processing into the domain of interactive

systems especially for intent understanding. The architecture

presented in this paper tailored to bring several benefits over

the currently used approaches in this field. It allows for a

more extensible and scalable system and increase the

throughputs, which is especially important to those systems,

as more and more different input modalities are added to

these systems.

ACKNOWLEDGMENTS

This paper is funded by the National Natural Science

Foundation of China (Grant No.61370135), and partially

supported by Beijing Key Discipline Program.

REFERENCES

[1] Y. Bellik and D. Teil, ―Definitions Terminologiques pour la
Communication Multimodale,‖ presented at Interface

Homme-Machine (IHM), Paris, Nov. 30-Dec. 2, 1992.
[2] L. Ligay and J. Coutaz. Multifeature systems: The CARE properties

and their impact on software design. [Online]. Available:

http://iihm.imag.fr/publs/1995/immichapnigay95.pdf
[3] S. Andrew, K. Dinesh, and K. Pai, ―Musculotendon simulation for

hand animation,‖ ACM Transactions on Graphics, vol. 27, no. 3,

August 2008.
[4] M. Weber, G. Heumer, H. B. Amor, and B. Jung, ―An animation

system for imitation of object grasping in virtual reality,‖ ICAT 2006,

pp. 65-76, 2006.
[5] H. G. Wan, S. M. Gao, and Q. S. Peng, ―Virtual grasping for virtual

assembly tasks,‖ presented at the Third International Conference on

Image and Graphics (ICIG’04), Hong Kong, China, Dec. 18-20, 2004.
[6] B. F. Yi, C. Frederick, J. Harris, L. Wang, and Y. S. Yan, ―Real-time

natural hand gestures,‖ Computing in Science & Engineering,

May/June 2005, pp. 92-97.
[7] Z. W Zhu and Q. Ji, ―Eye gaze tracking under natural head

movements,‖ presented at 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05), San Diego,

CA, USA, June 20-25, 2005.

[8] M. Kumar, J. Klingner, R. Puranik, T. Winograd, and A. Paepcke,

―Improving the Accuracy of Gaze Input for Interaction,‖ in Proc. the
Eye Tracking Research and Application Symposium, 2008, pp. 65-68.

[9] Digital image. [Online]. Available:

http://dev.theeyetribe.com/general/
[10] K. Broda, K. Clark, R. Miller, and A. Russo, ―SAGE: A logical

agent-based environment monitoring and control system,‖ in Proc.

European Conference on Ambient Intelligence, Springer-Verlag, 2009,

pp. 112-117.

[11] User’s manual Logitech Edited 01/2001 by LogiCad3D.
[12] S. Møller, N. Poul, M. Migliavacca, and P. Pietzuch, ―Distributed

complex event processing with query rewriting,‖ in Proc. ACM

International Conference on Distributed Event-Based Systems, 2009,
pp. 1-12.

[13] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. M. White,

―Towards expressive publish/subscribe systems,‖ in Proc. 10th
International Conference on Extending Database Technology, 2006,

pp. 627-644.

[14] F. S. Wang and P. Liu, ―Temporal management of RFID data,‖ in
Proc. International Conference on Very Large Data Bases VLDB

Endowment, 2005, pp. 1128-1139.

[15] A. Hinze, K. Sachs, and A. Buchmann, ―Event-based applications and
enabling technologies,‖ in Proc. the Third ACM International

Conference on Distributed Event-Based Systems, 2009, pp. 1-15.

[16] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems, Addison-Wesley,

2002.

[17] D. Luckham, The Power of Events, Addison-Wesley Professional,
May 8, 2002.

[18] Event Processing Technical Society (EPTS). [Online]. Available:

http://www.ep-ts.com
[19] S. Lehmann, J. Schäfer, R. Dörner, and U. Schwanecke, ―Towards

integration of user interaction and context event processing in

intelligent living environments,‖ in Proc. ARCS Workshops, vol. 200
of LNI, 2012, pp. 111-122.

[20] G. Bedny, W. Karwowski, and M. Bedny, ―The principle of unity

cognition and behavior: Implications of activity theory for the study of
human work,‖ International Journal of Cognitive Ergonomics, vol. 5,

no. 4, pp. 401-420, 2001.

Sebai Mounir was born in Batna, Algeria on August 27,

1988. He received engineering of computer science in

polytechnic school, Algeria in 2013, and M.S. in 2016 in

computer science and technologie in Beijing institute of
technology, china. His research interest is human

computer interaction.

Cheng Cheng was born in China in 1966. He is

Associate professor, master tutor of Beijing institute of

technology. His research interests include virtual
assembly and virtual manufacturing technology,

Human-computer Interaction and virtual environments.

International Journal of Computer Theory and Engineering, Vol. 9, No. 3, June 2017

191

http://www.awprofessional.com/
http://www.ep-ts.com/

