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Abstract—It is observed that the spontaneous action 

potentials (sAPs) observed in a urinary bladder smooth muscle 

cell are of different shapes. The biophysical mechanisms 

underlying this shape variety is not yet known. It is assumed 

that the syncytial properties of the smooth muscle tissue in 

urinary bladder affect the shape of the sAPs generated by the 

smooth muscle cell. Further investigation on the matter 

requires accurate identification of different types of sAPs 

observable from the detrusor smooth muscle cells. Since such a 

ground truth on the number of possible sAP classes is not 

available and the manual identification of the sAP classes from 

long intracellular recording is tedious and erroneous, it 

becomes necessary to use an unsupervised classification 

algorithm to classify the observed sAP signals. K-means 

clustering and hierarchical clustering algorithms (both 

agglomerative and divisive approaches) are some of such 

classical clustering algorithms available. Also considering the 

different ways in which the data can be presented (such as raw 

time domain data, Fourier transform, wavelet transform, and 

principal components), There are multiple approaches to do the 

signal classification. In this study, the clustering results of all 

these approaches are compared and the best performing 

methods are shortlisted. An internal measure called cluster 

balance was used to quantitatively evaluate the resulting 

clusters. 

 
Index Terms—Action potential, cluster balance, pattern 

recognition, smooth muscles, unsupervised signal classification, 

urinary bladder.  

 

I. INTRODUCTION 

The neuromuscular system in our body is made of special 

cells called the excitable cells [1]. They maintain a potential 

difference between inside and outside of the cell. This 

difference in potential is caused by the semi permeable nature 

of the cell membrane which has ion selective pores called ion 

channels, where each ion channel is specific to a single ion 

[2]. The potential difference between the intracellular fluid 

(ICF) and the extracellular fluid (ECF) is called the resting 

membrane potential (RMP). The ion channels can be in an 

‘open’ state when the ion movement through the channel is 

allowed, and otherwise in a closed state when no ion 

movement is possible. The way in which the ion channels 
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changes from one state to another, or the channel dynamics, 

are designed such that impulse-like signals called the action 

potentials (APs) could be generated by the excitable cells. 

The APs are the characteristic feature of excitable cells [1], 

[2].  

The excitable cells are categorized in to two major groups - 

Nerve cells and Muscle cells. The nerve cells are specialized 

in decision making and information transfer. They transmit 

information – transformed into a series of APs – from one 

part of the body to other. Muscle cells receive input from the 

neurons, causing APs to get generated in them which in turn 

results in their contraction. 

The muscle cells themselves could be classified into three 

subcategories [1]. They are (i) skeletal muscles, (ii) cardiac 

muscles, and (iii) Smooth muscles. The skeletal muscle cells 

are attached to the skeleton. They are innervated by motor 

neurons of central nervous system and could be controlled 

voluntarily. The individual skeletal muscle cells are 

electrically insulated from the neighboring cells and are 

controlled individually by a single motor neuron. The cardiac 

cells are muscle cells that are present in the heart. They form 

an electrically interconnected syncytium [3] so that the AP 

produced in one cardiac cell can travel to the neighboring 

cells. This electrical coupling is provided by special protein 

structures called the gap junctions. The third type of muscle 

cells, called the smooth muscle cells aid the involuntary 

movements of all the internal organs like the gut, urinary 

bladder, uterus, blood vessels, vas deferens, et al. They too 

make interconnected syncytium and are innervated by the 

sympathetic and parasympathetic nervous system [4], [5]. 

Smooth muscle cells are the smallest among the three 

muscle categories. Their width is about 2-6 µm which is 

around one tenth of that of the skeletal muscle cells [5]-[7]. 

The extent of electrical coupling between the smooth muscle 

cells in the syncytium varies with the organ. For example, the 

gap junctional coupling of uterus smooth muscle cells (at the 

initial stage of the pregnancy) are less compared to that of the 

vas deferens smooth muscle tissue. The smooth muscle 

syncytium is not homogeneous – the interconnected cells 

form bundles [7], [8]. The smooth muscle cells in a single 

bundle are well coupled to each other and the coupling across 

bundles is poor. The innervation style of the smooth muscle is 

also different from the skeletal muscles. The axons of the 

nerve cells pass through the intercellular space of the smooth 

muscle cells and occasionally form swellings along the 

length called varicosities [6]. These varicosities act as the 

neurotransmitter release points. A single axon can form 

multiple varicosities and thus excite multiple smooth muscle 

cells. Also, a single smooth muscle cell can receive inputs 

from multiple nerve cells [6]. All the above mentioned 

attributes of the smooth muscle tissue system – the small size, 
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the non-homogeneous electrical syncytium, and the 

many-to-many mapping of the nerve and muscle cells make 

the comprehension of the smooth muscle tissue very difficult. 

The details of the electrical and mechanical activities of the 

smooth muscle tissues are still under exploration [9]. 

In the present work, the focus is on the smooth muscle cells 

in the urinary bladder. The urinary bladder is an organ which 

helps the mammals to store urine and micturate (or void) 

when needed. The layer of smooth muscle cells, called the 

detrusor, present in the bladder wall maintains the tone of the 

bladder during the storage phase and provides a coordinated 

contraction during the voiding phase [1]. The physiology of 

bladder is designed to match both these requirements. The 

detrusor tissue is made up of smooth muscle bundles which 

run in different directions [10]. The voiding process is 

initiated by the stimulation of the parasympathetic nerves. 

The varicosities present in the detrusor smooth muscle 

(DSM) tissue release neurotransmitter packets which 

depolarize the smooth muscle cells and thus generate action 

potentials in them, resulting in a coordinated contraction. 

During the storage phase, the varicosities spontaneously 

release neurotransmitter packets in a random manner [6]. 

These may cause APs (called the spontaneously generated 

action potentials, or spontaneous action potentials, or sAPs) 

in the smooth muscle cells. These sAPs, if generated, could 

travel to the nearby smooth muscle cells through the gap 

junctional coupling, resulting in the contraction of the 

corresponding smooth muscle bundle [9], [11]. These 

uncoordinated contractions of smooth muscle bundles caused 

by the spontaneous neurotransmitter release are believed to 

be the way by which the bladder maintains its tone during the 

storage phase. 
 

 
Fig. 1. Comparison between (a) an STD and (b) an sAP. Note the high 

amplitude and quick falling profile of the sAP. 

 

All spontaneous neurotransmitter release from the varico-

sities cannot produce an AP in the smooth muscle cell [7]. If 

the intercellular gap junctional coupling is strong and if the 

neighboring cells are at the resting potential, the depolarizing 

ionic current initiated by the neurotransmitters get distributed 

to the neighboring smooth muscle cells via gap junctions, 

thus reducing the depolarization induced in the receiving 

smooth muscle cell [7], [9]. If the depolarization did not 

reach the threshold to produce an AP, the passive signals 

called the spontaneous transient depolarizations (STDs) are 

observed. The STDs are identified by its characteristic shape, 

which is commonly represented by an alpha function. A 

comparison of an AP and an STD is shown in Fig. 1. While 

the AP exhibits “all or none” property, whose amplitude is 

restricted in a narrow range, the STDs display graded 

amplitude which vary from near zero to tens of millivolts. 

Apart from the sAPs and STDs, there are some other signals 

rarely observed in the DSM, the discussion about which are 

avoided in this paper. 

It is interesting to note that the sAPs seen in the 

intracellular recording from a single DSM cell (DSMC) are 

not identical in shape [12]. The shapes of APs generated by 

different type of excitable cells may vary, but generally a 

single excitable cell, including the smooth muscle cells of 

other organs, always exhibit a signature AP shape. The 

reason behind this inconsistency is not well understood so 

far. However, it is assumed that the DSM syncytial properties 

such as non-homogeneous arrangement of smooth muscle 

cells, the neurotransmitter release profile of the varicosities, 

the size of the smooth muscle bundle, and / or the intensity of 

the gap junctional coupling, could modulate the sAP shape 

exhibited by the DSMC and thus induce the varied shape. 

To explore the factors affecting the shape of the sAP, it is 

required to identify the different shapes that are observable 

from the DSMC recordings. There exist many clustering 

algorithms that are able to classify the signals into different 

clusters, such as K-means, hierarchical clustering methods, 

artificial neural networks, support vector machine, et al. 

[13]-[15]. But most of the clustering techniques need a 

training data set to optimize various parameters needed for 

the classification operation [14]. As we do not have a ground 

truth available for the groups present in the DSMC 

recordings, such a training data is not available. Thus ANN 

and SVM techniques cannot be used here. The K-means 

algorithm does not need a training data [16], but it requires 

information about the number of classes present in the data, 

which is not available as well. The hierarchical clustering 

methods (both agglomerative and divisive strategies) do not 

have these requirements and return a clustering tree that 

includes all the data points into one class on one end and all 

the data points as individual classes at the other [16]. The 

optimal clustering usually lies somewhere in between these 

two extremes, which need to be identified using some 

evaluation criteria. 

The evaluation needed to identify the optimal clustering is 

based on the internal measurements on the clustered data, 

such as intracluster standard deviation and inter cluster 

spread. The Davies-Bouldin index and Dunn index are two 

widely used internal evaluation techniques [9], [17], [18]. But 

the values of those indices either monotonically increase or 

decrease with the number of clusters formed. Hence they 

cannot be used to find out the optimum number of clusters 

present in the data. Another such internal evaluation index is 

the clustering balance [13]. The clustering balance index is 

designed to assume a minimum value when the number of 

clusters formed is optimum. This minimum value obtained 

could also be used to compare the efficiency of different 

clustering algorithms as well. Hence the clustering balance is 

used also as the evaluation criteria for this work. 

The efficiency of the clustering procedure could depend on 

the way the input data is represented [14], [15], [19]. In the 

present study, the input data for classification are the isolated 

signals sampled at a certain frequency, pre-processed so that 

the baseline shifted to zero, peaks aligned, and all the signals 

trimmed to equal length. These signals could be represented 

in other domains as well. For example, they could be 

transformed into frequency domain using Fourier transform, 
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to the wavelet coefficients using wavelet transform, or to the 

Eigen vectors using principal component analysis (PCA). It 

would be worthwhile to evaluate which of the data 

representation yield the best classification results. 

In this paper, a preliminary work to investigate on the most 

efficient automatic classification procedure suitable for the 

intracellular recorded signals from the DSMCs is presented. 

The data used for the study is the intracellularly recordings 

from mouse detrusor tissue. The distances between signals 

pairs were measured as Euclidian distance measure. The 

clustering results were evaluated using the cluster balance 

index. The effect of different data representations such as 

wavelet transformation and PCA were also studied.  

 

II. METHOD 

A. Data Acquisition 

Mice of the BALB/c strain, of either sex, were sacrificed in 

accordance with the UK Animals (Scientific Procedures) Act 

1986 and European Communities Council Directive 

86/09/EEC. The urinary bladder was removed and the 

connective tissue surrounding the bladder removed, with the 

urothelium left intact. Tissue strips, which contained a few 

bundles of smooth muscle, 3 - 4 mm long and 1 - 2 mm wide, 

were cut. Strips were pinned out on a Sylgard-lined plate at 

the bottom of a shallow chamber (volume, approximately 1 

ml), which was mounted on the stage of an upright 

microscope. Preparations were superfused with warmed 

(35
◦
C) physiological saline solution (PSS) (composition, mM: 

NaCl, 120; KCl, 5.9; MgCl2, 1.2; CaCl2, 2.5; NaHCO3, 15.5; 

NaH2PO4, 1.2 and glucose, 11.5; gassed with 95% O2 and 5% 

CO2) at a constant flow rate (100 ml/h), maintaining a pH of 

7.2 - 7.3 [20]. 

Preparations, when pinned, were allowed to equilibrate for 

at least 30 min before electrophysiological recording. 

Individual bladder smooth muscle cells in muscle bundles 

were impaled with glass capillary microelectrodes, filled 

with 0.5 M KCl (tip resistance, 100-300 MΩ). Membrane 

potential changes were recorded using a high input 

impedance amplifier (Axoclamp-2B, Axon Instruments, Inc., 

Sunnyvale, CA, USA). Membrane potential changes were 

digitized using PowerLab/4SP (ADInstruments, Chalgrove, 

UK) at either 1 kHz or 4 kHz, and stored on computer for 

later analysis. 

B. Data Pre-processing 

The data files were resampled to 1 kHz sampling rate. In 

order to isolate the sAPs from the continuous intracellular 

recordings, the data file was accessed as segments of 

one-minute duration. The baseline, or the resting membrane 

potential (RMP), is determined in each of the segments and 

the activities with amplitude above a predefined threshold 

(set as 35 mV) from the RMP were identified and isolated. 

Those activities were manually verified to be sAPs and false 

detections were eliminated. The starting locations and span of 

identified sAPs were indexed in an associate file 

corresponding to the data file for later use. The associate files 

were prepared for all the data files used in this study. 

To present the sAP signals to a classification algorithm, the 

segments of data file which contain the sAP signals - indexed 

in the associate files - were extracted first. These extracted 

sAP signals are peak aligned, and are trimmed to have equal 

lengths (or equal number of samples). The RMP is subtracted 

from all the signals so that the baselines of the signals are set 

to zero. After these pre-processing steps, the signals were 

stored in an array where each column represents the 

corresponding samples, and each row represents a sAP signal. 

This array is given as an input to the clustering algorithms. 

C. Feature Extraction Techniques 

The sAP signals digitized and recorded in time domain, 

could be transformed into different domains such as 

frequency domain (using Fourier transform), wavelet domain 

(using wavelet transform) or could be represented as 

eigenvectors (using PCA). The signal features, not very 

visible in time domain might get more prominence in other 

domains. Hence the signals in other domains were also used 

for the clustering operation. The details of the possible 

transformations are given below.  

The wavelet allows the signals to be seen in a time-fre-

quency domain. The time domain signals are converted to 

wavelet coefficients. A template wave segment (called 

mother wavelet) is used to obtain the wavelet coefficients. 

There are different mother wavelet functions are available, 

which are sometimes categorized into different families. It is 

generally assumed that the wavelet which has the maximum 

similarity with the signal of interest is preferred for the 

wavelet analysis. However due the variety of sAP signals, it 

is not possible to identify a single wavelet function which 

could be used for the classification application. As the 

discrete Meyer wavelet (dmey), the Daubechies family 

wavelets (db), Discrete Meyer wavelet and the symlet family 

wavelets (sym) were commonly used for biosignal 

applications, they were chosen to be used as the basis for the 

wavelet transformation incorporated to aid the signal classi-

fication operation. Out of these wavelet options, the best 

wavelets are to be shortlisted based on the quantitative 

evaluation of the clustering results.  

Using principal component analysis (PCA) [19], it would 

be possible to convert the time domain data into a set of 

eigenvectors, the sum of which would represent the signals in 

a set of transformed axes such that the maximum signal 

variance is captured in the eigenvector corresponding to the 

highest eigenvalue. It had been shown that PCA based 

classification is useful for sound classification which has 

most of the important information stored below 500 Hz [21]. 

As the maximum frequency content of the intracellular 

recordings in the present study is below 500 HZ (as the 

sampling rate is 1 kHz), it is expected that the PCA would be 

helpful in the classification of the sAP signals as well. 

D. Classification Techniques 

One of the most frequently used clustering technique is the 

vector quantization using the K-means algorithm. In this 

algorithm, it is assumed that the number of clusters present in 

the data is known and is given as the value of K. The 

algorithm then randomly chooses K data points as the cluster 

seeds. All the data points are then separated into K groups 

based on the smallest Euclidean distance from the seeds. The 

centroid of each of the groups thus formed are calculated and 

called cluster centers. All the data points are then regrouped, 

keeping the cluster centers as new seeds. This procedure is 

iterated until the cluster centers are stabilized and remain the 
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same for two consecutive iterations. The drawback of this 

method is that the final cluster result depends on the 

allotment of initial seeds. Another limitation, specific to our 

application, is that the number of sAP signal classes present 

in a data pool is unknown. Hence it would be required to run 

the K-means clustering procedure repeatedly with value of K 

ranging from 1 to 20 (It is assumed that the number of sAP 

classes observed in a single cell recording is less than 20). 

The quantification of the clustering result corresponding to 

each value of K is evaluated and the best result is assumed as 

the optimal classification. 

The requirement of the knowledge of the number of 

clusters demanded by the centroid models such as k-means 

clustering mentioned above is not present in the connectivity 

models such as the hierarchical clustering algorithm. This 

makes them more suitable for our current requirement. In the 

divisive approach, all the signals present in the input data 

pool are considered to be the part of one single cluster to 

begin with. This cluster then divided into two so that the 

average distance between the signals belonging to the same 

cluster is minimized. Each of these new clusters formed are 

then further divided into two each following the same 

procedure. This procedure is continued until the number of 

clusters formed is equal to the number of signals present in 

the data pool, or in other words all clusters formed have only 

one member in it. The optimal number of clusters formed lies 

between the starting state and the ending state, which is 

identified either by visual inspection or by quantitative 

evaluation of the clustering result at after each stage.  

The other approach to hierarchical clustering, called the 

agglomerative approach, follows the above procedure in 

reverse direction. Here, every signal is initialized as separate 

clusters. Then signals with smallest distance between them 

are combined to make a new bigger cluster. This process is 

continued until all the signals end up as a part of one single 

cluster. The Euclidean distance is used as a measure of 

distance between two signals. However the distance between 

two clusters, called the cluster linkage, could be evaluated in 

multiple ways. The following are the commonly used 

linkages in agglomerative clustering: 

Single Linkage: The distance between two clusters is 

calculated as the closest distance between two clusters.  

Complete Linkage: The distance between the two farthest 

points in the two clusters. 

Average Linkage: The average of the distances measured 

between all pair of signals taken between two clusters.  

Weighted Linkage: The weighted linkage is similar to the 

average linkage but the distances are also based on the 

number of elements in the cluster and this is important when 

the clusters that are being compared are not of equal sizes. 

Ward’s Linkage: In this method, the increment in the total 

intra-cluster variance after merging the two clusters together 

is taken as the linkage between those clusters. The cluster pair 

with minimum linkage, i.e., the pair when combined causes 

the minimum increment in intra-cluster variance is combined 

in the next level of agglomerative clustering.  

The clustering techniques mentioned above, including the 

different possibilities of the cluster linkage, are the available 

options for the unsupervised classification for the sAP 

signals. To find out the optimum number of clusters present 

in the data pool, and to quantify the quality of clusters 

produced by different approaches, a robust index need to be 

defined. We propose to use the cluster balance as such an 

internal measure of cluster quality. The cluster balance index 

is described below in detail. 

E. Evaluation of Classification Results 

For developing an unsupervised Classification algorithm it 

is necessary to quantitatively evaluate different classification 

techniques to help determine the best algorithm by iterating 

and getting the best combination using the evaluation 

technique. External evaluation is unsuitable for this study 

because there are no training data available with the ground 

truth to evaluate the efficiency of the clustering techniques 

(Fig. 2). 

In the case of internal evaluation Davies–Bouldin index 

and Dunn index have been commonly used in literature [22]. 

Davies–Bouldin index is ratio of intra-cluster distances and 

inter-cluster distances [17]. When the cluster has been 

formed with the minimum ratio, it is said to have the best 

classification. However this method would be useful only 

when the number of clusters in a data pool is predefined. As 

the number of clusters is increased, the ratio keeps on 

decreasing monotonously and hence makes it impossible to 

determine the optimum number of clusters present in the data 

pool. A similar situation exists in the case of Dunn index 

which is a ratio of inter-cluster distance and intra-cluster 

distance. Here the value keeps on increasing monotonously 

[18]. 

The clustering balance as proposed in [10] offers a 

technique that quantifies the balance between the 

intra-cluster variance and the inter-cluster variance of the 

data. The intra cluster variance is to be minimum and the inter 

cluster variance should be maximum. As the number of 

clusters increased, the intra cluster variance decreases 

monotonously and the inter cluster variance increases 

monotonously. Mathematically, the intra cluster variance (or 

intra cluster error sum of squares,  ) is defined as 
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where 
0

q is the centroid of the entire data pool. The cluster 

balance index ( ) is then designed as the weighted sum of 

the intra cluster error sum and the inter cluster error sum as 

given below. 

( ) (1 )                               (3) 

where  is a constant which vary between 0 and 1. IN this 

paper, the value of  is kept as 0.5, giving equal weightage 

to   and  . Cluster balance value is high when the number 

of clusters is very low, owing to the high value of intra cluster 
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error sum. If the number of clusters is too large, the inter 

cluster error sum becomes very large and influence the   

value. When the number of clusters is optimum, a balance is 

reached and the value of  attains a minimum value.  

 

 
Fig. 2. Schematic diagram explaining the procedure for the selection of the 

best performing wavelet functions for classification procedure. 

 

The clustering balance index is mainly designed to obtain 

the optimum number of clusters present in the data. However, 

it can be used to quantitatively evaluate the quality of the 

clusters. The lower value of the cluster balance would 

indicate the better clustering, irrespective of the number of 

clusters. This principle is used to compare the efficiency of 

different clustering algorithms for a common data pool.   

F. Shortlisting the Optimum Clustering Procedure 

If there are N feature-selection methods and M clustering 

methods available, there would be N×M ways in which the 

signal classification be done for each of the data files. Hence 

to minimize the number of options in hand, the low 

performing options are to be eliminated.  

There is a large number of wavelet options (db1 to db20, 

sym1 to sym20, and dmey) available for the feature selection 

operation. The performance of each of the wavelet function is 

studied by fixing all other parameters like the classification 

algorithm and the input data file. The best performing 

wavelets would be shortlisted for further analysis and the rest 

are discarded.  

The options available for classification algorithms are 

K-means, divisive hierarchical clustering, agglomerative 

hierarchical clustering with five possible linkage 

options-single, complete, average, weighted, and Ward’s. 

Out of these seven available options, the approaches which 

perform consistently bad in classifying sAPs are to be 

ignored as well. This is done by fixing the input data format 

as the time domain signals, and executing the available 

classification algorithms on each of the data file. The 

algorithm(s) which performs consistently poor for all data 

files are rejected.  

After eliminating the less performing options in the feature 

selection stage and the classification stage, the performance 

of different combinations of the feature selection and 

clustering methods are studied. Combinations that 

consistently perform worse for all the data files are rejected, 

and the combinations that give good clustering balance value 

for majority of the data files are retained. These shortlisted 

combinations of feature detection and classification 

algorithms were used for unsupervised signal classification 

of sAP signals recorded intracellularly from detrusor smooth 

muscle cells. 

 

III. RESULTS 

The data files in which the intracellular recordings were 

stored were resampled to 1 kHz and inspected. Each of the 

data file represented recording taken from a single tissue 

preparation. It was observed that some of the long-duration 

data files contained recordings from more than one cells. In 

such cases, the sections of data which represented the 

recording from individual cell were isolated and treated as 

separate files, called cell recordings. 11 such cell recordings 

were chosen for the classification study presented in this 

paper. In this paper, these cell recordings are addressed as 

File 1, File 2 ...  and File 11 respectively for convenience. The 

sAP signals present in each of the cell recordings were 

identified using a threshold of 35 mV above the baseline (see 

Section methods) and their locations were indexed in 

corresponding associate files. The sAP signals indexed in the 

associate files were manually verified and the erroneous 

detections, if present (< 2%) were eliminated.  

The time domain sAP signal array for the classification 

purpose was prepared by extracting the data segments where 

sAP signals were present, peak aligning them, subtracting the 

baseline (RMP) value from the signals, and fixing the 

duration of the sAP signals so that the entire time span of all 

the sAP signals were contained. The pre-processed signals 

were then arranged in an array such that the rows represented 

individual signals. This signal array was then given to the 

feature-extraction stage, the output of which is then given as 

an input to the classification algorithm. 

A. Shortlisting the Wavelet Functions for Feature 

Detection 

The wavelet functions under considerations were 

Daubechies (db1-db10), Symlets (sym4-sym10), and discrete 

Meyer (dmey). These wavelet functions, one after another, 

used to take wavelet transforms of the signals in the sAP 

signal array and the transformed signals were given as input 

to the agglomerative clustering procedure with Ward’s 

linkage. The resulting clusters were evaluated using cluster 

balance index. For each cell recording (or file), the wavelet 

functions were arranged in the ascending order of the cluster 

balance value. The wavelet functions consistently placed in 

the first 4 places are db1, dmey, db2, and sym8 respectively. 

Two best performing wavelet functions - db1 and dmey - 

were shortlisted for feature selection application and the rest 

of the wavelets were discarded. 

B. Shortlisting the Clustering Techniques 

As described in the Section II, the sAP signal array, 

without any transformations, were given as the input to 

different classification algorithms and their performance 

were measured using the cluster balance index. As the 

K-means clustering algorithm followed a centroid based 

model which is different from the connective model followed 

by the hierarchical algorithms, the evaluation for the former 

was done separately (Fig. 3). 

 

 
Fig. 3. Schematic diagram showing the evaluation of optimal cluster number 

using K-means algorithm. 
 

While evaluating the K-Means classification algorithm it 

was observed that every iteration of the algorithm on the 

same signal data resulted in different results, including the 
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optimum number of clusters. This was caused by the random 

initialization of the cluster seeds which during iterations 

would then influence the final result. An attempt was made to 

tackle this problem by using the multiple runs of K-means 

algorithm on the same data file and finalize the clustering 

result with the minimum cluster balance index as the best 

result obtainable from the K-means procedure. A file was run 

60 times through the K-Means clustering algorithm, and the 

optimum number of clusters obtained are shown in the Table 

I. It could be observed that the method do not conclusively 

suggest a single number for the clusters present in the data 

pool. Also considering the huge amount of computational 

requirement to follow this procedure, it is concluded that the 

K-means algorithm cannot be used for the purpose of 

unsupervised sAP signal classification. 

 
TABLE I: OCCURRENCE OF OPTIMAL CLUSTER NUMBER IN 60 ITERATIONS 

OF K-MEANS ALGORITHM ON FILE 1  

# of clusters 16 9 8 7 6 5 3 

count 1 5 13 16 20 3 2 

 

Combined evaluation procedure was followed for 

shortlisting the set of clustering methods from AGNES with 

different linkages (single, complete, average, weighted, and 

Ward’s) and DIANA. The signal data was passed on to the 

clustering algorithm and each method was ranked as per its 

performance which was determined by the ascending order of 

the Cluster Balance value. This process was repeated on all 

the eleven files used for the study and the results are shown in 

Table II. From the table, it could be observed that the AGNES 

procedure with the ‘single’ linkage consistently performed 

poor for all the data files analysed. Other methods exhibit 

mixed performances for different files. Hence the AGNES 

technique with ‘single’ linkage was removed (along with the 

K-means clustering) from the study and the rest were 

accepted. 

 
TABLE II: PERFORMANCE EVALUATION OF HIERARCHICAL CLUSTERING 

ALGORITHMS (AGNES AND DIANA) FOR EACH OF THE DATA FILES. ‘D’ 

STANDS FOR DIANA. THE ENTRIES OTHER THAN DIANA REPRESENT 

DIFFERENT LINKAGES USED IN AGNES CLUSTERING 

File Best → → → → Worst 

File1 war. com. avg. avg. D sin. 

File2 war. com. wei. D avg. sin. 

File3 war. com. D avg. wei. sin. 

File4 war. wei. com. D avg. sin. 

File5 war. D com. wei. avg. sin. 

File6 war. com. D avg. avg. sin. 

File7 war. com. D wei. avg. sin. 

File8 war. com. D wei. avg. sin. 

File9 war. com. D wei. avg. sin. 

File10 com. ward wei. D avg. sin. 

File11 war. wei. com. D avg. sin. 

 
 

 
Fig. 4. The clustering result obtained for File 1 using the proposed combination of wavelet (db1) feature extraction and AGNES-ward clustering algorithm.  

 

C. The Best Combination of the Feature and the 

Clustering Technique 

Five types of data representation techniques - (i) time 

domain, (ii) Fourier transform, (iii) wavelet transform - db1, 

(iv) wavelet transform - dmey, and (v) PCA and five types of 

classification algorithms - (i - iv) AGNES with linkages 

‘complete’, ‘average’, ‘weighted’, and Ward’s, and (v) 

DIANA were shortlisted after eliminating the low performing 

options. It means that there exists 25 ways in which the 

clustering operation can be carried out for every data file. In 

order to identify the right combination of data representation 

and clustering algorithm which gives rise to the best 

clustering result all the combinations were tried out on each 

of the data files. The clustering balance was obtained for 

every clustering results thus generated. Based on the value of 

the clustering balance, each of the combinations were ranked 

from best to worst. The combination which gave the best 

clustering result for each of the data file is tabulated in Table 

III. From the table, it could be observed that the best 

unsupervised classification of sAP signals were obtained 

using AGNES with Ward’s or complete linkage when the 

data was presented in time domain or wavelet domain (db1). 

As an example of the output obtained from the procedure, 

the classification of sAP signals in the File 1 is given in Fig. 

4. By visual inspection it could be qualitatively rated that the 

resulting clusters were indeed satisfactory. 
 

TABLE III: OPTIMAL COMBINATION OF FEATURE EXTRACTION AND 

CLUSTERING TECHNIQUE FOR EACH DATA FILE 

File Name Feature extraction Cluster Method 

File 1 Wavelet - db1 AGNES-ward 

File 2 Time domain AGNES-ward 

File 3 Wavelet - db1 AGNES-ward 

File 4 Time domain AGNES-ward 

File 5 Wavelet - db1 AGNES-ward 

File 6 Time domain AGNES-ward 

File 7 Time domain AGNES-ward 

File 8 Time domain AGNES-ward 

File 9 Time domain AGNES-ward 

File 10 Time domain AGNES-complete 

File 11 Wavelet - db1 AGNES-ward 

 

IV. DISCUSSION 

The study presented here shortlists a handful of approaches 

that could be taken for the unsupervised classification of 

intracellularly recorded sAP signals from a mouse detrusor. It 
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is to be noted that different data files preferred different 

approaches to get the maximum clustering efficiency. This 

could be due to the fact that the properties of sAP signals 

present in different data files are different in nature, and the 

efficiency of a clustering technique depends on the properties 

such as type of signals, the extent of dissimilarity between the 

clusters, et al. This means that for the unsupervised 

classification of sAP signals in a new data file, the 4 different 

clustering approaches shortlisted in the study had to be 

carried out, and the best among the clustering results thus 

produced is to be finalized. 

The efficiency of the clustering algorithm could be further 

improved by combining the signal features of multiple 

domains. For example, the time domain signal and its 

wavelets transform could be combined with appropriate 

weights to form a composite-feature vectors which could 

help the classification algorithm to discriminate between the 

different clusters better. The aspects of the features in other 

domains such as the frequency spectrum, PCA components et 

al. could also be included in the composite vector. The 

biophysical details about the signals such as the amplitude, 

time course et al. could also be used. 

The major challenge faced in the study was the evaluation 

of the clusters produced. The most efficient way to evaluate a 

clustering procedure is to test it against a known result. 

Unfortunately, such a ground truth is currently not available 

for the signals of interest. Hence it was required to restrict 

ourselves to the internal measures of cluster evaluation. The 

cluster balance index, on which the results of the proposed 

work depend heavily, is not a widely used mea-sure for the 

quantitative evaluation of the clustering result. However the 

index gave satisfactory results in the present work. 

The unsupervised classification of the spontaneous action 

potentials would be very helpful in exploring the syncytial 

arrangement, the nature of innervation and the electrical 

properties of the detrusor smooth muscle tissue. The different 

signal groups obtained from the clustering results could be 

used to prepare a comprehensive list of the templates 

corresponding to various signal types observable from the 

detrusor tissue of a mouse bladder. As these templates are 

related to the biophysical environment in which the cell is 

present, they could be used to predict the biophysical 

environment of the cell from which the recording is taken. 

Such investigations would be carried forward in the future. 

 

V. CONCLUSION 

It could be concluded that AGNES classification technique 

with Ward’s linkage is most efficient for the unsupervised 

classification for the spontaneous APs of the detrusor smooth 

muscle cells. The preprocessing of the signals using wavelet 

(db1 or Haar) transform increases the clustering efficiency in 

some of the data files. The entity called clustering balance 

could be used to estimate the optimal number of clusters and 

also as a criterion for the internal evaluation of the clustering 

algorithm.  
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