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Abstract—Conventionally in Cyber CLOUD and/or Power 

Grid modeling and simulation; failure and repair rates of 

servers or generators and of transmission lines or links, as well 

as load (demand) on the system are collected as deterministic 

input constants from field studies. CLOURAM mimics a Cyber- 

or Power generation (links assumed 100% reliable) system, 

where digital event simulation (DES) is applied to draw failure 

and repair times and load for production units. Their assigned 

failure and repair rates and load cycle remain constant across 

the simulation runs. In this “Stochastic” modified version of 

CLOURAM through Stochastic Simulation of a Grid or a 

CLOUD, i.e. the failure and repair rates and the load are not 

any longer constants, but random deviates simulated from 

selected probability distributions. The CLOUD metrics with the 

proposed Stochastic Simulation approach are compared very 

favorably to those of previously non-Stochastic Simulation 

benchmark cases with deterministic rates and load cycle. Then 

one can study the producer and link simulations with various 

probability density functions to mimic the grid operation of 

Power and Cyber systems. 

 

Index Terms—Bayesian Gamma, uniform, DES, LOLP. 

 

I. INTRODUCTION 

For a Power or Cyber Grid scenario, the following features 

are provided; that is, the analyst is expected to: 

1) Input failure and repair rates of power generator or cyber 

servers’ (producers) and transmission lines’ (links).  

2) Study the effect of different load distributions using 

stochastic simulation. We use Normal probability 

density.   

3) Examine the effect of different failure and repair 

distributions using stochastic simulation Times to failure 

and repair probability distributions to be supported are 

Gamma (Empirical Bayesian) and Uniform densities. 

 

II. METHODOLOGY 

In the following studies, the large power or cyber CLOUD 

system of 348 units (data95.txt) will be taken as an example as 

in Fig. 1 to follow up and compare in the rest of the article [1]. 

See Fig. 1 descriptions in Appendix. 

Stochastic Simulation (SS)’ is added to Simulation in 

CLOURAM (CLOUd Risk Assessment & Management) 

studied as in Fig. 1. NSS: Non-Stochastic Simulation. LOLP: 
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Loss of Load Probability = Loss of Load Expected/1 year or 

exposure period in years. 

 

User inputs normally collected grid data in one of the 

following ways: 

1. Input wizard in a dialog by dialog approach. 

2. Manual entry for each group filling out the cubicles. 

3. Import data that was saved earlier from data files. 

Next, we study the following steps in the article:  

A) Benchmarks to verify the SS software operation where 

inputs of averages default to NSS solutions as in Fig. 1. 

B) Non-benchmark cases that follow the Cyber CLOUD or 

Power Grids after the verification. Then, use different inputs 

unequal to those of benchmarks, either more or less, to see the 

effect of SS with links appended to the production only.  

 

III. NUMERICAL APPLICATIONS TO STOCHASTIC SIMULATION 

TO VERIFY THE NONSTOCHASTIC DEFAULT 

A. Times to Failure and Repair are Negative Exponential 

The following Fig. 3 displays the initial screen when the 

user clicks the Stochastic Simulation (SS) after importing   the 

CLOUD data such as data95.txt shown in Fig. 1 and Fig. 2. 

To activate the dialogue box, click on group 1 in the 

Update column above right that calls for the first group’s 

failure rate (28/1000) and repair rate (552/10000) that are 

defaulted input values in Fig. 1. Do the same for 2
nd

  to 24
th

  

groups. Note, this article will study various input data 

assumptions to run a Stochastic Simulation. For producer 

group 1 with failure rate = 0.028 and repair rate = 0.0552, flat 

(non-informative) parameters are c = ksi= d = eta = 0, a = 28, 

and XT = 1000, b = 552 and Yt = 10000 as field data inspired 

from a large CLOUD input, data95.txt [1]. To generate 

random failure and repair rates, an empirical Bayesian 

Gamma distribution is used [2]. The failure and repair dates 

are drawn from Gamma simulators: λ~ Gamma (a+c, 

(ksi+XT)
-1

) and µ~Gamma( b+d, (eta+yT)
-1

). Firstly, link 

distributions are ‘None’ (100% reliable) as no Grid exists. 

Load distribution is assumed Normal density with Mean and 

Std. Dev. computed from the given deterministic load cycle. 

When the 24
th

 updating action is done as in Fig. 4, click 

Simulate System as in Fig. 2. 

The SS with n = 100 years of simulation outputs the Fig. 5’s 

LOLP = 5.50%, nearly the same as NSS’s benchmark of 

5.51% in Fig. 1 as clarified in the Appendix. Therefore, the 

benchmark is verified. Then any combinations of a, c, ksi, XT 

for λ (failure rate), and b, d, eta, yT for µ (repair rate) can be 

input as data for the 24 production groups totaling to 348 units 

of data95.txt example, in regarding the negative exponential 

for the failure and repair times. 
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Fig. 1. LOLE=5.51% benchmark index used for Fig. 2 to 12 for a large CLOUD system of 348 units (data95.txt).  

 

B. Times to Failure and Repair Are Weibull Distributed 

Now it’s time for assuming the times to failure and repair 

are Weibull distributed. For group1 with failure scale = 35.72 

= (0.028)
-1

 and repair scale = 18.12 = (0.0552)
-1

, where both 

shapes=1 (special case) defaulting to negative exponential, 

parameters are c = ksi = d = eta = 0 (flat priors), a = 28, Xt 

=1000, b = 552 and Yt = 10000 in Fig. 6. Fig. 2. Appending Stochastic Simulation to CLOURAM in Fig. 1. 

 

 
Fig. 3. The dialogue box to start the Stochastic Simulation (time to failure and repair data are in Neg. Exponential, not Weibull). 

 

 
Fig. 4. The Fig. 3 screen above to end the SS at the 24th update (time to 

failure and repair data are in Negative Exponential). 

 

Then we update from 1
st
 group up to the 24

th
 and as in 

Section III-A, with ‘None’ for links and Normal assumption 

for the load with the same Mean and Std, Dev. Then, we click 

Simulate button at the bottom of Fig. 6. After 1.5 minute run 

time for n = 100 years, we get in Fig. 7, LOLP = 5.89% ≈ 

5.51% of Fig. 1. LOLP benchmark for Weibull assumption 

has been met. Another n = 10000 (30 min) study with Weibull 

produced LOLP = 6%. Any Weibull input of failure and 

repair times can be entered. 

C. Link Distributions (Failure and Repair Times from 

Negative Exponential or Weibull) with Uniform Density 

First, transmission failures and repair times are computed 

when the producer or generator data are from Negative 

Exponential or Weibull. One marks the producers’ failure and 

repair rates as ‘None’, meaning remaining the same, not to be 

updated. Then, the link failure rate= ±10% of the producers’ 

failure and repair rates to do a benchmark analysis will be 

conducted as in Fig. 8, where Update SS input  from 1
st
 to 24

th
 

groups. 

We simulate for n = 1000 runs in 4 min 18 sec and we 

achieve LOLP = 5.7% in Fig. 9, similar to 5.55% in Fig. 1 

benchmark. This shows the benchmark study is validated for 

the links. Namely, ±10% increase of failure rates of links has 

been offset or neutralized by an equal increase in the repair 

rates. A similar analysis can be conducted using the Weibull 

assumption as conducted for Neg. Exponential in Fig. 9. 

Weibull input data in Fig. 10 for n = 1000 after 3 min led to a 

favorable LOLP = 5.66%. One may enter lower and upper 

values for Uniform density at will from a field search for the 

most general input case. 

D. Link Distributions (Failure and Repair Data Are from 

Negative Exponential or Weibull) with Bayesian Gamma  

So far, benchmarks were validated in A, B and C. Now for 

D, we can use the Bayesian Gamma for links when Negative 

Exponential is assumed. We activate symmetric data 

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

44



  

increases by upping the failure and repair rates each for 10% 

to counterbalance and offset each other’s rise toward the Fig. 

1’s NSS benchmark results. The LOLP = 5.43% is nearly 

5.51% with with links activated having ±10% less/more 

failure and ±10% less/more repair rates of the production 

units for n = 1000. We will do the same for Weibull link 

distribution with Bayesian Gamma to validate the benchmark 

results. We will update similar to those of Negative 

Exponential We achieve almost the same where LOLP = 

5.55% not budging much from the benchmark of LOLP = 

5.51% of Fig. 1 since the 10% rises for both failure and repair 

rates did not alter the benchmark LOLP by offsetting each 

other to verify the case study for Weibull. Output boxes are 

not shown for D due to space limitations. 

 

 
Fig. 5. LOLP = 5.5% for benchmark Fig. 3, Fig. 4 after SS. 

 

 
Fig. 6. Input box when failure and repair times are from Weibull. 

 

 
Fig. 7. LOLP = 5.89% for Weibull Fig. 6 data as benchmark. 

 

IV. STOCHASTIC SIMULATION APPLIED TO REAL-LIFE CYBER 

OR POWER GRIDS WHERE LINKS AND PRODUCERS’ 

(GENERATORS) INPUT DATA CHANGES ARE ASYMMETRIC  

After the validation and verification processes in Section 

III, we need to work on asymmetric Cyber CLOUD or Power 

Grid scenarios for the system performance with generation 

and transmission components merged. We will use the same 

as in Fig. 1 benchmark, i.e. CLOUD system of 348 units 

(data95.txt) to compare or contrast new results.  

 
Fig. 8. If uniform is used, default values are ± 10% of the rates for lower and 

upper limits for producers with Neg. Exponential. 
 

 
Fig. 9. Output of LOLP = 5.7% with Neg. Exp. of Fig. 7. applied. 

 

A. With the Neg. Exponential Input for Failure and Repair 

Rates Using Uniform Distribution for Links 

Non-Benchmark SS Analyses will constitute those such as 

in a real life grid scenario where the non-equally (λ ≥ µ) added 

link failure and repair data to the existing generation or 

production will likely increase the LOLP. We expect the 

composite link to transmit the production to consumers. 

Assume that each cyber production or power generating unit 

has its links’ failure and repair rates as composite values, 

either inspired by the producer’s data given for each group or 
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hard-coded new. We assume that each production unit is 

linked to its entire perimeter for supplying the generated 

energy or production, and transmitting it to its peripheral. We 

will in the same order as above take up the data1995.txt and 

add link data assumed to be of both Uniform and Bayesian 

Gamma where 30% (lower limit = 15%, upper limit = 45%) 

rise in the failure rate and 10% (lower limit = 5%, upper limit 

= 15%) rise in the repair rate are entered. All data are first 

related to Negative Exponential for both production and 

transmission in Fig. 11. LOLP has deteriorated to 8.92% from 

a benchmark of 5.5% in Fig. 1. Since all other factors are 

controlled, links are failing faster than repaired in an example 

we have selected.  

B. With the Neg. Exponential Input for Failure and Repair 

Rates Using Bayesian Gamma Distribution for Links 

This time, although the product failure and repair time 

distributions are still simulated from the Negative 

Exponential, the links are assumed to carry Bayesian Gamma 

with unequal percentage rises to the disfavor of the links’ 

repair activity. We observe in Fig. 12, the Bayesian Gamma 

used for the links with +30% for the failure, and +10% for the 

repair unfavorably gave LOLP = 13.7% as expected. Due to 

space limitations, we will not display the Weibull versions of 

A and B, however they do not show any different trends as 

before. 
 

 
Fig. 10. Dialog box when the producer probability distribution is Weibull 

and  link probability distribution in 10% Uniform. 

 

 
Fig. 11. Uniform distribution for the links’ failure and repair rates, LOLP=8.92% worse than the benchmark LOLP = 5.5% for n = 1000 years with 8 min 

runtime. 
 

 
Fig. 12. Bayesian Gamma used for the links where 30% for the failure and 10% for the repair gave LOLP  13.7%. 

 

V. CONCLUSION AND DISCUSSIONS, AND HOW TO APPLY 

STOCHASTIC SIMULATION TO A CYBER OR POWER GRIDS 

Traditionally, in Cyber CLOUD or Power Grid modeling, 

data regarding failure and repair rates, as well as the servers’ 

or generators’ transmission lines or links, and load (demand) 

cycle are supplied as deterministic inputs through field data 

collection sources. CLOURAM is a risk assessment and 

management tool that simulates and manages the entire cyber- 

or generation grid. Through what is termed as Stochastic 

Simulation of Grid or CLOUD parameters such as failure and 

repair rates of power generators or cyber servers, and the 

client-demanded load cycle, we validate and verify for the 

non-stochastic CLOURAM software  through benchmarks 

such as in Fig. 1 so that SS runs are deemed accurate.  

Once the verification process was carried out successfully, 

i.e. the Grid or CLOUD non-SS (NSS) metrics using the 

earlier constants such as mean (expected) values were 

compared favorably to those employing deterministic input 

data. Subsequently, the producer (or generator) and link 

scenarios were studied such as in the event of the appended 

links no more being perfectly reliable, but operating with 

specified values through Uniform, or Bayesian Gamma input 

data assumptions. These were executed in the A and B 

subsections of Section IV. This innovative research illustrates 

that we can include, in lump-sum, the grid transmission (link) 

data as an averaging composite effect to estimate cyber or 

power CLOUD performance through a dynamic discrete 

event simulation algorithm. Additionally, this algorithm can 

be used for any other stochastic input assumptions, including 

the hard-coding of the desired input data, for the producers 

and the links. The versatility of the algorithm stems from a 

wide area of usage by leveraging the Weibull distribution, 

whose default is Negative Exponential and used extensively 

for electronic failure and repair histories. In the event of the 

non-existence of sophisticated data such as Weibull or 

similar, the analyst may use simple uniform deviations. For 
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further research, the authors will seek the Power Grid or 

Cyber CLOUD data from industry to compare results 

[3]-[10].  

This article also serves as a valuable reference to apply 

CLOUD computing simulation to Cyber CLOUD or Power 

Grids rather than to those with generation or production 

systems (without the transmission components or links) that 

comprised solely producers. Therefore it falls upon the 

analyst to use this innovative Stochastic Simulation algorithm 

to obtain dependable transmission input data from large 

Electric Power enterprises or ISPs (Internet Service 

Providers) for Cyber links by enhanced field research studies. 

APPENDIX (ALSO APPLICABLE SIMILARLY TO FIGS. 5, 7, 9, 11 

AND 12) 

For Fig. 1, the production for 24 groups and load data for 

8760 hours are entered. The system was interrupted f = 314 

times each of which lasted on the average d ≈ 1.54 hours (or 

cycles), overall of which led to LOLE (Loss of Load 

Expected, or Mean Number of Loss of Service Hours) = f x d 

= 483 hours of Loss of Load or Service after n = 1000 runs or 

years.  On the right hand side (rhs) column, the unreliability or 

LOLP=LOLE/8760hr are presented. The standard deviation 

of LOLE is 126.26 hours. However the LOLE (Loss of Load 

Expected) hours is not a perfect normal distribution but it is 

overly right skewed Compound Poisson ≈ NB (Negative 

Binomial) with M (mean) = 483 and q = Variance/Mean = 

126.26
2
/483≈33. Note, it is purely Poisson (not Compound) if 

q = 1. A static index LOLP (Loss of Load Probability) = 

483/8760=0.0551 or 5.5 %. A dynamic index, EUPU 

(Expected Unserved Production Units) = 666,424 

Gigabyte-Hours (Gigaflops for Cyber) or Mega-Watt hours 

(Mega-joules for Power) is recorded. 

On the middle column, the reliability (versus unreliability 

on the right hand side) metrics are presented. The system 

operation was interrupted f = 314 times, each of which the 

uninterrupted operation lasted on the average d = 26.37 hours 

(or cycles), overall which led to LSE (Load Surplus Expected, 

or Mean Number of Operational Service Hours) = n x d = 

8277 or 8760 – LOLE= 8760 - 483 = 8277 hours of 

Operational Service. The standard deviation is 126.26 hours, 

the same as that of LOLE. However the LSE (Load Surplus 

Expected) hours is not a normal distribution but it is an only 

slightly right skewed Compound Poisson; rather NB 

(Negative Binomial) with M (mean) = 8277 and q = 

Variance/Mean = 126.26
2
/8277 ≈ 1.92. Further, a static index 

LSP (Load Surplus Probability) = 8277/8760 = 0.9449 or 

94.5%. A dynamic index, ESPU (Expected Surplus 

Production Units) = 42,543,641 Gigabyte-Hours (Gigaflops 

for Cyber) or Mega-Watt hours (Mega-joules for Power) is 

recorded.   

On the left hand side (lhs), system input parameters are 

listed such as number of production groups: 24, total number 

of components: 348, and total installed capacity: 20950 

Gigabytes (Cyber) or Megawatts (Power). Note that 

production: capacity*cycle (Cyber) and generation (Power) 

are interchangeably used, so are the producers and generators. 

Grid and CLOUD, Transmission and Link are two pairs of 

terms interchangeably used. The grid is used for Electric 

Power and CLOUD is used for the Cyber systems. However, 

there exist grids in Cyber ISPs [7], [8]. Power is one of five 

recognized CLOUDS in the literature; Cyber, Power, Water 

(Sewage), Telecom (Phone, TV), and Gas.  
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