

Abstract—As the recent improvement in information

technology, the role of software becomes more and more

important in computing environments. Software is generally

released as a form of binary information, such as instructions

and data for executing programs. Although such software is

protected by software licenses, it may be analyzed or

reverse-engineered to employ in developing other software

without permission. Code obfuscation is an approach to making

original code harder to analyze or understand by transforming

its original code into different form with preserving semantics or

execution results. Code obfuscation is helpful to protect against

reverse engineering of software. In this paper, we introduce

several approaches to obfuscating program code to make

software harder to analyze or understand. We introduce

measures for evaluating code obfuscation and compare the

performance of each code obfuscation methods according to the

measures.

Index Terms—Code obfuscation, program transformation,

binary code analysis, software protection.

I. INTRODUCTION

As the recent improvement in information technology, the

role of software becomes more and more important in

computing environments. The development cost of software

is also increasing. So, various open source software is good

references for developing new software. In other hand, many

of software is protected by software license or copyright law,

and they are not permitted to be used in developing other

software without permission.

Software is generally released as a form of binary

information, such as instructions and data for executing

programs. Although such software is protected by software

licenses, it may be analyzed or reverse-engineered to employ

in developing other software without permission. To cope

with such problems, many researches are in progress in

various areas, such as software theft detection, software

watermark, and software birthmark.

Code obfuscation is an approach to making original code

harder to analyze or understand by transforming its original

code into different form with preserving semantics or

execution results. So, after obfuscating a program, its

obfuscated version of program must have same output as its

original version.

The goal of code obfuscation is to prevent from being

illegally reused by making an original program more difficult

to analyze or decompile. So, this approach is helpful to

protect against reverse engineering of software. Obfuscation

Manuscript received May 30, 2015; revised November 10, 2015.

Hyun-Il Lim is with the Dept. of Computer Engineering, Kyungnam

University, Republic of Korea (e-mail: hilim@ kyungnam.ac.kr).

can be classified as several categories according to the kind of

information it targets [1]-[3]. In this paper, we introduce

several approaches to obfuscate program code to make

software harder to analyze or understand. We introduce

evaluation measures for code obfuscation and compare the

performance of each code obfuscation methods according to

the measures.

The remainder of this paper is organized as follows. In

Section II, we introduce several approaches to obfuscating

program code to make program difficult to analyze. In Section

III, we introduce measures for evaluating code obfuscation

methods, and show the comparison results of each method.

Finally, in Section IV, we conclude this paper.

II. CODE OBFUSCATION

A. Layout Obfuscation

Layout obfuscation is a method to modify the layout

structure of a program, such as identifier names, comments,

and debugging information. Layout structure has many

information, but it is unnecessary information in executing a

program. So, modification of such information does not affect

the semantics of a program. However, layout structure may

provide much information to reverse engineers. So,

modification of layout structure makes a program more

difficult to analyze.

This type of obfuscation is effective in protecting source

code of software, which has plenty of identifiers and

comments. For example, informative identifier names may be

renamed to meaningless ones, or debugging information may

be removed. Layout obfuscation is unlikely to prevent a

program from being reverse engineered, but it can make code

analysis or reverse engineering more time-consuming.

B. Data Obfuscation

Data obfuscation is a method to modify data structures used

in a program to make difficult to analyze. Data obfuscation is

classified into three groups according to the method of

modification [2]-[4].

1) Storage and encoding obfuscation

Storage obfuscation modifies the representation of storages

used in a program. This obfuscation can be applied in several

ways as following examples:

1) A local variable can be converted into a global one.

2) A variable can be split into more than one variable.

3) A scalar variable can be integrated into a more complex

object.

Encoding obfuscation is a way to change the access method

of variables in a program. For example, static data can be

converted to a procedure, which returns the data after

Comparative Analysis of Code Obfuscation Approaches to

Protect Software Products

Hyun-Il Lim

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

28DOI: 10.7763/IJCTE.2017.V9.1106

performing several operations to protect the software. For

example, a constant value 1 can be converted to a formula, f(a,

b)=(b+1-a)/cos(a+π-b) with assumption that a = b. logic

values true and false can be encoded into (x || 1) and (y && 0),

respectively [3].

TABLE I: AN EXAMPLE OF ENCODING OBFUSCATION

int i = 1;

while (i < 100) {

... A[i] ... ;

i++;

}

int i = 7;

while (i < 207) {

... A[(i-5)/2] ... ;

i += 2;

}

After analyzing data access patterns, an original program

can be obfuscated by modifying the access patterns of the data.

Table I Shows an example of encoding obfuscation that

changes access pattern of data in a program. In the left

program code, the array A[i] is accessed with the index ranges

between 1 and 99. By modifying the access pattern of the

array, the integer variable i is replaced by 2 × i + 5 in the right

program [4].

2) Aggregation obfuscation

Aggregation obfuscation modifies grouping methods of

data, such as merging independent data or splitting dependent

data. This obfuscation can be applied in several ways as

following examples:

1) A two-dimensional array can be converted into one or

two one-dimensional arrays.

2) Several dependent scalar variables can be merged in a

single array.

3) Several data structures can be modified by adding some

redundant objects [3], [4].

3) Ordering obfuscation

Ordering obfuscation is a method for modifying order of

data by restructuring the layout of the data. The examples are

as follows [3], [4].

1) Variables or methods in a program can be reordered.

2) Array elements can be reordered in a different order. The

reordered position of the i-th array element can be

retrieved via an index function f(i), which returns the i-th

element of the original array.

C. Control Flow Obfuscation

Control flow obfuscation [5]-[7] changes control flows of a

program to have different control structures. Control flow

obfuscation can be applied in several ways according to the

method of modifying the control flows of programs.

1) Aggregation obfuscation

Aggregation obfuscation modifies grouping methods of

program statements by splitting or merging fragments of

codes. The examples are as follows [3].

1) Method inlining can replace every method calls in a

program with the statements in the called method after

obfuscating the statements.

2) Outlining statements can replace a sequence of

statements with a call to an intentionally created method

that performs the sequence of statements.

3) Loop unrolling can change statements in loop body or

replace loop with a sequence of repeated statements in

the loop body.

2) Ordering obfuscation

Ordering obfuscation is a method of modifying the

execution order of statements in a program with maintaining

their dependence relations. The examples are as follows [3],

[4].

1) Basic block reordering can modify the order of basic

blocks by using branch instructions.

2) Loop reordering can change the order of loops in a nested

loop.

3) Expression reordering can change the order of statements

by introducing some additional statements.

4) Loop evaluation order can be reversed by iterating

backwards instead of forwards.

3) Computation obfuscation

Computation obfuscation modifies the main structures of a

program to hide its real control flows. The examples are as

follows [4].

1) Smoke and mirrors obfuscation hides real control flow by

introducing bogus instructions. For example, dead code

can be inserted between real control flows.

2) High-level language breaking obfuscation (reducible to

nonreducible flow graphs) introduces features that are

supported by object code level but not supported by

source code level. For example, Java language has no

goto statement, but Java bytecode supports goto

instruction. So, inserting a jump into the middle of loop

makes the program code awkward, and the program

cannot be transformed back to the original loop.

3) Control flow abstraction modifies statements of a

program into more abstract ones. Conceptually, it is the

inverse of transformation that can be done by compiler

optimizations. Table II shows an example of control flow

abstraction. In the right program, redundant condition is

inserted in the while loop to the original one without

changing the results.

TABLE II: AN EXAMPLE OF CONTROL FLOW ABSTRACTION

int i = 1;

while (i < 1000) {

...

i++;

}

int i = 1;

while ((i < 1000)

|| (i%1000 == 0)) {

...

i++;

}

4) Obfuscation via Opaque Predicates

An opaque predicate [8] means a predicate that is always

evaluated to either true or false regardless of its run-time

environments. A predicate P is opaque at program point t if its

outcome is known at obfuscation time. We write an opaque

predicate as P
T
 or P

F
 if the opaque predicate P always

evaluates to true or false at program point t, respectively. The

property is that although the outcome of a predicate is known

at obfuscation time, the evaluation of the predicate is not easy

without executing the program. From this property several

bogus instructions or methods can be inserted via opaque

predicates to make a program difficult to analyze.

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

29

Table III shows an example of control obfuscation via

insertions of opaque predicates. A sequence of instructions

are split into two parts by inserting conditional branch with an

opaque predicate P
F
. In the right program, the opaque

predicate is evaluated to be false. So, the else body is

executed, but the control flow of the right program is more

complex than that of the left program. Because an opaque

predicate is not evaluated easily by static analysis, it will

confuse reverse engineers in analyzing modified programs.

TABLE III: AN EXAMPLE OF OBFUSCATION VIA OPAQUE PREDICATE

int i = 1;

int j = f(i);

j++;

return j;

int i = 1;

int j = f(i);

if(PF) {

i++;

return i;

}

else {

j++;

return j;

}

III. PERFORMANCE COMPARISON

A. Evaluation Measures

The performance of code obfuscation methods can be

evaluated via several criteria according to specific measures.

The criteria presented in [8] is effective in measuring the

performances of obfuscators of software. The performance

evaluation measures for code obfuscation are as follows:

1) Potency: How much obscurity it adds to the program [8].

Because the goal of code obfuscation is to make an

original program difficult to analyze, a good obfuscation

method can make an original programs more complex.

2) Resilience: How difficult it is to break an automatic

deobfuscator [8]. If an obfuscated program can be easily

reverse-engineered by automatic static analysis, the

method cannot be used in practice.

3) Stealth: How well the obfuscated code blends in with the

rest of a program [8]. The obfuscated code should not be

noticed by reverse engineers to protect software safely.

4) Cost: How much computational overhead it adds to the

obfuscated application [8]. If the cost of execution time

or space is too high, the method cannot be applied in

practical application.

The four evaluation criteria are proper combination for

measuring performance of obfuscation methods in various

aspects of quality of code obfuscation.

B. Comparison Results

In this section, we will compare the performance of several

code obfuscation methods according to criteria presented in

the previous section.

Table IV shows the results of performance comparison

according to the evaluation criteria. In the evaluation of

potency measure, obfuscation methods make original

program complex to add much obscurity. The complexity of

software is measured in several software complexity metrics,

such as McCabe and Harrison metrics [8]. The complexity

measures are closely related to this question. “Is it difficult to

understand the control structures or data structures of

software as compared to its original version?” So, aggregation

obfuscation and computation obfuscation have high potency,

because they heavily modify the structures of data or control

flows of programs.

TABLE IV: THE ARRANGEMENT OF CHANNELS

Obfuscation

Methods

Evaluation Criteria

Potency Resilience Stealth Cost

Layout obf. Med Low Low Low

Storage &

encoding obf.
Med Med Med High

Agreggation obf. High Med High Med

Ordering obf. Med Med High Med

Computation obf. High High High High

Opaque predicate Med High High Low

In the evaluation of resilience measure, computation

obfuscation and opaque predicate obfuscation have highly

ranked. Because computation obfuscation hides the original

control flows of programs, it is difficult to understand the

original control flow by static analysis.

In the evaluation of stealth measure, it should be difficult to

find the fact that software is whether obfuscated or not. In

other hand, layout obfuscation and storage obfuscation may

be noticed the fact of obfuscation because of abnormal format

or instruction patterns in obfuscated programs.

In the evaluation of cost measure, storage obfuscation and

computation obfuscation have high cost. The two methods

must change wide ranges of a program to transform structures

of storage or control flows of programs. Such modifications

of wide ranges of program make the obfuscation

transformation expensive in cost.

The evaluation results may be different according to

development environments or individual obfuscation

algorithms. In this paper, the comparison results consider

general performance characteristics of each obfuscation

method.

IV. CONCLUSION

In the recent computing environments, software is widely

used in various application. An enormous number of software

is developed in many companies. Software is intellectual

property of its author, so it is protected by software license or

copyright law. Although software is protected by software

licenses, software can be analyzed or reverse-engineered to

employ in developing other software without permission. To

cope with such problems, many researches are in progress to

protect software products.

Code obfuscation is an approach to making original code

harder to analyze or understand by transforming its original

code into different form with preserving semantics or

execution results. The goal of code obfuscation is to prevent

from being illegally reused by making an original program

more difficult to analyze or decompile. So, this approach is

helpful to protect against reverse engineering of software.

In this paper, we introduced approaches to obfuscating

program code to make software harder to analyze or

understand. We introduced measures for evaluating code

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

30

obfuscation, and showed comparison results of code

obfuscation methods.

In the future, software will play an increasing role in the

most of computing environments. Code obfuscation method is

expected to be applied in various applications to protect

software from being reused or reverse-engineered illegally.

ACKNOWLEDGMENT

This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Education, Science and

Technology (NRF-2010-0024658).

REFERENCES

[1] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating

transformations,” Technical Report 148, Department of Computer

Science, University of Auckland, July 1997.

[2] D. Low, “Java control flow obfuscation,” MS Thesis, Department of

Computer Science, University of Auckland, 1998.

[3] G. Wroblewski. (2002). General method of program code obfuscation.

[Online]. Available: http://www.mysz.org/papers/147sp.pdf

[4] D. Low, “Protecting java code via code obfuscation,” Crossroads, vol.

4, no. 3, pp. 21-23, Apr. 1998.

[5] T. W. Hou, H. Y. Chen, and M. H. Tsai, “Three control flow

obfuscation methods for java software,” IEE Proceedings-Software,

vol. 153, no. 2, pp. 80-86, April 2006.

[6] J.-T. Chan and W. Yang, “Advanced obfuscation techniques for java

bytecode,” Journal of Systems and Software, vol. 71, no. 1-2, pp. 1-10,

Apr 2004.

[7] A. Majumdar, C. Thomborson, and S. Drape, “A survey of

control-flow obfuscations,” in Proc. International Conference on

Information Systems Security, LNCS 4332, 2006, pp. 353-356.

[8] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,

resilient, and stealthy opaque constructs,” in Proc. Symposium

Principles of Programming Languages (POPL), San Diego, CA,

January 1998, pp. 184-196.

Hyun-Il Lim received his BS, MS and PhD degrees in

computer science from KAIST, Republic of Korea, in

1995, 1997, 2009, respectively. He is currently an

assistant professor in the Department of Computer

Science and Engineering, Kyungnam University,

Republic of Korea. His current research interests include

software security, software protection, watermarking,

and program analysis.

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

31

