

Abstract—This paper proposes several timestamp ordering

mechanisms for controlling concurrency in which the

timestamps assigned to transactions can be modified

dynamically during execution. These timestamps are not stored

with the (database) variables and the process of modifying them

is simple. The proposed mechanisms achieve a higher level of

concurrency (than traditional timestamp ordering mechanisms)

for the following reasons. First, the operations of (certain classes

of) read-only transactions can always be accepted. Second, when

an operation by an update transaction arrives out of order, the

mechanism avoids rejecting it by modifying, if possible, the

timestamps of some transactions. The proposed mechanisms do

not require multiversion of each entity to be maintained.

Index Terms—Concurrency control, database, timestamps

ordering, transaction.

I. INTRODUCTION

In any multiuser database system, a concurrency control

mechanism is needed to resolve any conflicts that might arise

among transactions, and to ensure that their overall execution

is correct (i.e., cannot violate consistency). Many such

mechanisms have been previously proposed [1]-[13]; and

most of them utilize some form of locking as a mean to control

concurrency [4], [13]-[17]. That is, before a transaction can

access any entity, it must first obtain an (appropriate) lock on

it, and if this lock cannot be granted, the transaction will be

delayed. This reduces concurrency and can potentially lead to

deadlock. Resolving a deadlock requires aborting one or more

transactions.

Other approaches to controlling concurrency avoid

delaying the transactions by assigning each of them a unique

timestamp, and then requiring all conflicting operations to be

processed in a timestamp order (e.g., [9], [12], [14], [18],

[19]). In this case, when an operation arrives out of order, it

will be rejected, that is, the transaction that issued it will be

aborted. Abortion is a serious drawback, and can degrade

performance if it occurs frequently.

To avoid unnecessary abortions, we propose a dynamic

timestamps ordering method which allows the timestamps of

transactions to be modified during execution. The timestamps

are not stored with the entities in the proposed method, and

the process of modifying them is a simple operation. As will

be shown later, separating timestamps from entities will help

to solve issues that arise in other timestamp ordering

mechanisms. The proposed mechanisms do not require

multi-version of each entity to be stored, but it maintains a

Manuscript received June 5, 2015; revised November 14, 2015.

A. (Zizo) Farrag is with Dalhousie University, Canada (e-mail:

farrag@cs.dal.ca).

digraph that represents the "conflicts" among transactions.

The complexity is reduced by searching the digraph only

when an operation arrives out of order; otherwise, the

operation will be accepted without search.

The rest of the paper is organized as follows. The

formulation used throughout the paper is given in Section II.

The proposed mechanism is presented in Section III.

Generalizing this mechanism is examined in Section IV.

Section V presents conclusions.

II. FORMULATION

The database is modeled as a collection of entities or

variables denoted {x, y,…, z} and each transaction is modeled

as a sequence of read or write operations (O1, O2..., etc.) on

these variables. A read and a write operation by transaction Ti

on a variable x will be denoted Ri(x) and Wi(x); respectively.

When this read (or write) operation is accepted, it returns (or

modifies; respectively) the current value of x. A transaction is

assumed to represent a correct computation, i.e., it can only be

committed after all its operations have been accepted. Each

new transaction will be assigned a unique name such as T1, T2,

..., etc, when it starts.

Transactions are classified into two types, read-only (R)

and update (U) transactions. A transaction of type R does not

modify any database variables, whereas a transaction of type

U modifies at least one variable. The type of transaction Ti is

denoted TY(Ti).

Each update transaction Ti will be assigned a unique

timestamp, i.e., a number denoted TS(Ti). The timestamp of Ti

does not have to be fixed during its execution, that is, may

change from time to time by the concurrency control (to avoid

backing-up Ti). Timestamps are used to synchronize

"conflicts" among transactions as will be explained shortly.

Although timestamps are allowed to change, the current

timestamps of all transactions must be distinct. No timestamp

is required for a transaction of type R. (This assumption will

be relaxed later when we generalize type R transactions.)

For now we assume timestamps are assigned using a

counter named TS-count initialized originally as 1. When a

new update transaction starts, its timestamp will be calculated

as the current value of TS-Count, and then this value will then

be incremented by 1.

A. Definition II.1 (Schedule)

An interleaved sequence of the operations of a set of

transactions is called a schedule. Consider, for example, the

following three transactions:

T1= R1(x)W1(x)R1(y)

A. (Zizo) Farrag

Dynamic Timestamps Ordering for Controlling

Concurrency

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

20DOI: 10.7763/IJCTE.2017.V9.1104

T2= W2(x)W2(y)

T3= R3(x)

An example of a schedule S of {T1, T2, T3} is

S=R1(x)R3(x)W1(x)W2(x)R1(y)W2(y).

The order of operations in the schedule (and in the

transactions) increases from left to right. The order of

operations of the same transaction must be preserved in S. A

read operation Ri(x) returns the value of x written by Wj(x), if

Wj(x) precedes Ri(x) in the schedule and no other write

operation on x appears between Ri(x) and Wj(x). If no write

operation on x precedes Ri(x), Ri(x) will return the initial value

of x (that existed in the database before executing the

schedule).

When the operations of each transaction appear in the

schedule consecutively (i.e., without interleaving), the

schedule is said to be serial.

B. Definition II.2 (Conflicting Operations)

Two operations belonging to two different transactions are

said to be conflicting operations iff both operations access the

same variable and at least one of them is a write operation.

C. Definition II.3 (Schedule Equivalence)

Two schedules S1 and S2 for the same set of transactions are

said to be equivalent iff for each pair of conflicting operations

Oi and Oj, these operations must have the same relative order

in S1 and S2; i.e., Oi precedes Oj in S1 iff Oi precedes Oj in S2.

The above definition guarantees that each transaction sees

the same database in both schedules. For example, it is not

hard to see that the following two schedules are equivalent

S1= W2(x)W1(x)R3(x)R1(z)W2(y)R3(y)R3(z)R2(z)W4(z)

S2= W2(x)W2(y)R2(z)W1(x)R1(z)R3(x)R3(y)R3(z)W4(z).

D. Definition II.4 (Serializable Schedule)

A schedule S is said to be serializable iff it is equivalent to a

serial schedule. For instance, the schedule S1 in the above

example is serializable since it is equivalent to the given serial

schedule S2.

E. Definition II.5 (Dependency Digraph)

For any schedule S, the dependency digraph of S, denoted

DD(S), is a directed graph whose nodes correspond to the set

of transactions in S, and contains an arc (Ti, Tj) iff there is an

operation by Ti in S which precedes and conflicts with an

operation by Tj.

To prove the correctness of a concurrency control

algorithm, it suffices to show that for each schedule S

produced by it, DD(S) is acyclic or that S is equivalent to a

serial schedule of the same set of transactions.

III. DYNAMIC TIMESTAMPS ORDERING

This section presents a dynamic timestamp ordering

mechanism in which the timestamps previously assigned to

transactions can be changed during execution. In this

mechanism, the operations of a read-only transaction will

always be accepted. The mechanism maintains a dependency

digraph (according to the rules defined earlier). This digraph

is not used to check for a cycle, since it is always kept acyclic;

rather, it is used for re-modifying the timestamps of

transactions to avoid rejecting an operation (as will be shown

later). A generalization of this mechanism will be discussed in

the next section.

A. Values Maintained

The mechanism uses the following values in processing the

operations.

TR(x) and TW(x): These denote the names of the

transactions with the largest timestamps that has read and

written x; respectively. The name will be recorded when the

operation is accepted. These values may not necessarily be for

currently running transactions. Initially, before x is read or

written by any transaction, TR(x) and TW(x) denote a special

transaction named T0 whose timestamp is set as 0 and will

never be modified by the mechanism. Further, T0 will not be

represented by a node in the dependency graph.

Flag(x): This flag is used to accept the operations by

read-only transactions on x. It is initialized as 0, will be

incremented by 1 when a read-only transaction Ti reads x, and

will be decremented by 1 when Ti is terminated.

Active-Set: This contains the names of all currently active

transactions. When a new transaction starts, its name will be

added to the set and when it is terminated, its name will be

removed.

TS(Ti): The mechanism maintains the timestamp TS(Ti) for

each update transaction Ti that is currently active, or its name

is still recorded in the variable TR(x) or TW(x) (Notice

timestamps are not stored with the database variables).

Timestamps are generated using the counter TS-Count as

described previously.

R-Set(Ti) and W-Set(Ti): These sets contain the database

variables to be read and written by Ti; respectively. These sets

are initialized as empty when Ti starts and will be removed

when Ti is terminated.

TY(Ti): This denotes the type of each transaction Ti which is

either R or U for read-only and update transactions;

respectively.

B. Processing Operations

The procedures for processing operations and checking the

dependency digraph are summarized below.

a) Procedure process-read

A read operation Ri(x) will be accepted without searching

the dependency digraph if Ti is a read-only transaction, or Ti is

an update transaction and the condition TS(TW(x)) < TS(Ti) is

satisfied. Otherwise, the mechanism will first check the

dependency digraph to see if timestamps can be modified in

such a way that permits the acceptance of the operation, and if

so, it will be accepted after modifying timestamps as

described in Procedure Check_Digraph. (Notice after

modifying these timestamps, the above condition will become

satisfied.) Otherwise, if timestamps cannot be modified, the

read operation will be rejected.

b) Procedure process-write

A write operation Wi(x) will be accepted if Flag(x) = 0 and

the condition Maximum[TS(TR(x)), TS(TW(x))] ≤ TS(Ti) is

satisfied. However, if Flag(x)= 0 but the latter condition is not

true, the mechanism will first check the dependency digraph

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

21

to see whether timestamps can be modified in such a way that

permits the acceptance of the operation, and if so, Wi(x) will

be accepted after modifying timestamps as described in

Procedure Check-digraph. Otherwise, Wi(x) will be rejected

(if Flag(x)! = 0; or Flag(x) = 0 but the timestamps cannot be

modified).

c) Procedure check-digraph

The procedure to check the digraph (DD) to see if

timestamps can be modified so as to avoid rejecting a read or

write operation by a transaction Ti is as follows. First, we find

the set of all transactions Tk reachable from Ti in DD. (This set

will include Ti). If the operation is a read Ri(x) and this set

does not contain any transaction that wrote x, or if the

operation is a write Wi(x) and the set does not contain any

other transaction that read or wrote x, the operation will be

accepted after modifying timestamps as follows: for each

transaction Tk in this set, its timestamp will be modified by

adding TS-Count to its value, and following this we change

TS-Count to become 2*TS-Count.

C. Committing Transactions

When a transaction Ti is committed, its updates will be

become permanent, its node will be removed from the

dependency digraph, and the user who submitted it will be

notified of its successful completion. However, the time to

commit a transaction depends primarily on the transaction

model used. For now, we assume the same (general) model for

a transaction defined in the preceding section (We shall

discuss other models later [20]).

By the assumed model, a transaction Ti cannot be

committed until the dependency digraph has no directed

edges Tj→Ti as a result of Ti reading a value written by Tj.

This condition implies that in any schedule S produced by the

mechanism, if S has an operation by an update transaction Tu

which precedes and conflicts with an operation by a read-only

transaction Tr, then Tu was committed before Tr in S.

Conversely, by (the conditions given in) the above procedures

used for processing read and write operations, if the

conflicting operation of Tr precedes that of the conflicting

operation of Tu, this will imply Tr was committed prior to Tu.

These two statements prove the following result.

Lemma III.1: Let S be a schedule produced by the

mechanism, and let Or and Ou denote two conflicting

operations in S belonging to a read-only and update

transactions Tr and Tu, respectively. Then, Or precedes Ou in

S iff Tr is committed before Tu.

D. Correctness of the Mechanism

Let S be a schedule of a set of transactions produced by the

mechanism, we show below that the mechanism works

correctly by proving S to be serializable. This also proves our

earlier claim that the dependency digraph maintained will

always be acyclic.

Theorem III.1:

Every schedule S produced by the mechanism is equivalent

to a serial schedule H in which all update transactions are

arranged according to their final timestamps, and a read-only

transaction Tr precedes an update transaction Tu (in H) iff Tr is

committed before Tu.

Proof: Let Oi and Ok denote two conflicting operations in S

belonging to transactions Ti and Tk; respectively. Suppose

first Ti and Tk are both update transactions. Then, since

conflicting operations are processed in timestamps order,

therefore, the order of these two conflicting operations in S

must be the same as the order of (the final) timestamps of their

corresponding transactions; and by the arrangement of

transactions in H, this also implies that these two conflicting

operations have the same order in H. Similarly, suppose

instead Ti and Tk are update and read-only transactions;

respectively. Then, by Lemma III.1, the order of committing

these two transactions in S is the same as that of their

conflicting operations; and since read-only and update

transactions are arranged in H in the order they were

committed, this in-turn implies Oi and Ok have the same order

in both S and H.

Thus, every pair of conflicting operations have the same

order in S and H, which means S is equivalent to H, i.e., S is

serializable.

IV. GENERALIZATION

The proposed mechanism can be generalized in some

useful ways as explained below.

A. Read-Only Transactions

The proposed mechanism has only one kind of read-only

transactions with a higher precedence over update

transactions, i.e., the former cannot be backed-up due to

conflicts (with the latter). This can be generalized by allowing

three kinds of read-only transactions as explained below.

Type R
1
: This is identical to read-only transactions

assumed before. That is, the operations of this transaction will

always be accepted, and the values returned by these

operations must satisfy any consistency constraints.

Type R
2
: This has the same precedence as an update

transaction (and lower precedence than that of R
1
). That is, its

operations will be processed in the same way as a read

operation by an update transaction, and the values returned

must also satisfy the consistency constraints of the database).

Type R
3
: This has a lower precedence than the other 2 types

of read-only transactions, since the values read by this

transaction need not necessarily satisfy the database

constraints; but its operations will always be accepted. (In

other words, the operations of this transaction will not

necessarily be serialized.)

To see the justification behind the above classification,

consider a banking system in which the manager would like to

know the total balance in all accounts combined. If an

accurate amount is needed, the manager can run a transaction

of type R
1
 or R

2
. However, since the balances of accounts

change continuously, an absolute accuracy of the amount

returned may not be essential and is not even guaranteed once

the transaction is completed. In this case, the manager may

run a transaction of type R
3
 instead (to increase concurrency).

Choosing between types R
1
 or R

2
 will depend on the

transaction's priority and duration, i.e., R
1
 can be used when

the priority is high and execution time is relatively short.

B. Transaction Model

As mentioned earlier, the time to commit a transaction

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

22

depends primarily on the transaction-model used. Thus, for

the (general) model defined before in Section II, a transaction

Ti cannot be committed until every other transaction Tj that

updated a (database) value read by Ti is committed first. Other

restricted models might allow a transaction to be committed

once its last operation is accepted as explained below.

One approach would be to group all write operations at the

end of each transaction and to process them atomically, i.e., as

an indivisible action. Another method, which is less

restrictive, is to structure each update transaction as two

phases [20], the first consists of all its read operations

followed by the second phase that consists of all its write

operations. With this model, we can prevent an update

transaction say Tj from reading a value written by another

update transaction say Tu until all write operations of Tu are

processed successfully. This, however, would not prevent

backing-up a read-only transaction (of type R
1
 or R

2
) as a

result of backing-up an update transaction. However,

backing-up a read-only transaction is simple, and cannot lead

to backing-up any other transaction.

V. CONCLUSIONS

We have proposed several timestamp ordering mechanisms

in which the timestamps of transactions can be modified

dynamically during execution. In these mechanisms, the

operations of (some classes of) read-only transactions can

always be accepted, and moreover, when an operation by an

update transaction arrives out of order, the mechanisms check

first if timestamps can be modified in such a way that allows

the acceptance of the operation. For these reasons, the

mechanisms achieve a higher level of concurrency.

In comparison with other concurrency control algorithms

that allow the operations of read-only transactions to be

accepted, our mechanisms do not require multiversion of each

database variable to be maintained (as in [2,12]), and the

dependency digraph need not be searched every time an

operation is processed (as in [2]).

REFERENCES

[1] R. Agrawal and D. Dewitt, “Integrated concurrency control and

recovery mechanisms: design and performance evaluation,” ACM

Trans. Database Systems, vol. 4, pp. 529-564, December 1985.

[2] R. Bayer, H. Heller, and A. Reiser, “Parallelism and recovery in

database systems,” ACM Trans. Database Systems, vol. 5, pp.

139-156, June 1980.

[3] N. Conway, W. Marczak, P. Alvaro, J. Hellerstein, and D. Maier,

“Logic and lattices for distributed programming,” in Proc. the Third

ACM Symposium on Cloud Computing, San Jose, CA, USA, October

2012, pp. 1-10.

[4] K. Eswaran, J. Gray, R. Lorie, and I. Traiger, “The notions of

consistency and predicate locks in a database system,” Comm. ACM,

vol. 19, no. 11, pp. 624-633, November 1976.

[5] A. Farrag and T. Kameda, “On concurrency control using multiple

versions,” Technical Report TR 82-13, Dept. Computing Science,

Simon Fraser University, BC, Canada, 1982.

[6] H. Garcia-Molina and G. Wiederhold, “Read-only transactions in

distributed database,” ACM Trans. Database Systems, vol. 7, pp.

209-234, June 1982.

[7] J. Gray, “Notes on database operating systems,” Operating Systems:

An Advanced Course, Lecture Notes in Computer Science,

Springer-Verlag, New York, pp. 393-481, 1978.

[8] H. Kung and J. Robinson, “On optimistic methods for concurrency

control,” ACM Trans. Database Systems, vol. 6, no. 2, Jun 1981, pp.

213-226, June 1981.

[9] L. Lamport, “Towards a theory of correctness of multi-user database

Systems,” Tech. Rep. CA 764-0712, Massachusetts Computer

Associates, October 1976.

[10] F. Laux and T. Lessner, “Escrow serializability and reconciliation in

mobile computing using semantic properties,” International Journal

on Advances in Telecommunications, vol. 2, no. 2&3, pp. 72-87,

March 2009.

[11] T. Lessner, F. Laux, T. Connolly, and M. Crowe, “Transactional

composition and concurrency control in disconnected computing,”

International Journal on Advances in Software, vol. 4, no. 3&4, pp.

442-460, 2011.

[12] D. Reed, “Naming and synchronization in decentralized computer

systems,” Tech. Rep.-205 Dept. Electrical Engineering and Computer

Science, MIT, September 1978.

[13] D. Rosenkrantz, R. Stearns, and P. Lewis, “System Level Concurrency

Control for Distributed Database Systems,” ACM Trans. Database

Systems, vol. 3, no. 2, pp. 178-198, June 1978.

[14] A. Farrag and M. Ozsu, “Towards a general concurrency control

algorithm for database systems,” IEEE Trans. on Soft. Eng, vol. SE-13,

no. 10, pp. 1073-1079, October 1987.

[15] J. Gray, R. Lorie, G. Putzolu and L. Traiger, “Granularity of locks and

degrees of consistency in a shared database,” in Proc. IFIP Working

Conf. on Modeling of Database, January 1976, pp. 695-723.

[16] Z. Kedem and A. Silberschatz, “Controlling concurrency using

locking,” in Proc. the 20th International Conference on Foundation of

Computer, October 1979, pp. 274-285.

[17] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis, “Adaptive locks:

combining transactions and locks for efficient concurrency,” J. of

Parallel and Distributed Computing, vol. 70, no. 10, pp. 1009-1023,

October 2010.

[18] R. Thomas, “A solution to the concurrency control problem for

multiple copy databases,” in Proc. the Compcon Conference, New

York, USA, 1978.

[19] A. Umar and D. Teichroew, “Pragmatic issues in conversions of

database applications,” Information & Management, vol. 19, no. 3, pp.

149-166, October 1990.

[20] C. Papadimitriou, “The serializability of concurrent database updates,”

J. ACM, vol. 26, no. 4, pp. 631-653, October 1979.

A. (Zizo) Farrag is currently with the Faculty of

Computer Science, at Dalhousie University, Halifax, NS,

Canada, B3L4R2. His research areas include fault

tolerance, theoretical computer science and databases.

He has published in many important journals such as

ACM-TODS, IEEE-TSE, IEEE-TPDS, networks,

parallel computing (among others).

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

23

