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Abstract—In this paper, we propose to optimize a data 

transformation matrix and study its impact on binary 

classification. Based on the area above the receiver operating 

characteristics curve (AAC) minimization with data 

transformation, we optimize alternatingly between the data 

transformation matrix and the weighting parameter vector. 

Some experimental results on 16 binary data sets acquired from 

the UCI machine learning repository are observed and discussed. 

Classification accuracy and ranking value averaged from 10 

runs of stratified 10-fold cross-validation are adopted as 

performance indicators. The proposed method shows 

encouraging results based on these two performance indicators. 

In addition, it is shown that most of the performance 

comparisons are statistically significant. 

 
Index Terms—Data transformation, machine learning, 

pattern classification, receiver operating characteristics curve.  

 

I. INTRODUCTION 

The receiver operating characteristics (ROC) curve is a 

plot of true positive rates over false positive rates with respect 

to various operating threshold values. Since the ROC curve 

provides an overall performance of a pattern classifier, it has 

been widely utilized as a performance measure for pattern 

classification tasks [1]-[5]. In a qualitative manner, a 

classifier is considered to perform well when its ROC curve is 

drawn close to the upper-left corner. Apart from this 

qualitative measure, the area under the ROC curve (AUC) 

provides a quantitative measure regarding the ROC 

performance [6].  

According to [6], the AUC can be computed based on the 

sum of entire pairwise comparisons between data features of 

opposite categories. The value of the AUC is identical to that 

of the Wilcoxon-Mann-Whitney statistic [7] which uses a 

zero-one step loss function for the comparison. In [8], it has 

been shown that a quadratic approximation to the zero-one 

step loss function can be effectively adopted for analytic AUC 

maximization. Furthermore, it has been shown in [9] that 

several existing classifiers such as least squares estimation 

(LSE) [10], Fishers’ linear discriminants [11], total error rate 

(TER) minimization [12] can be linked together under a 

transformed AUC (called TAUC) framework based on the 

quadratic approximation and a data transformation.    

Based on this interesting link among the classifiers which 
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hinges on a data transformation matrix, our motivations for 

this work can be enumerated as follows: 

1)     The TAUC formulation [9] utilizes only diagonal 

components of the data transformation (scaling) matrix. 

An investigation into data transformation using a full 

matrix would verify whether such additional 

transformation can help classification generalization. 

2)     The novel classifier [9] utilizes an ad-hoc and random 

settings to go beyond existing classifier platform. 

Relevant classifier setting adopting an optimization 

process is apparently more appealing than the ad-hoc 

and random setup. 

Particularly, we aim to optimize the data transformation 

under AUC criterion and study its impact on binary 

classification. The contribution of this work can be 

summarized as follows: 

1)     We provide an optimal data transformation matrix under 

AUC maximization (AAC minimization) criterion. 

2)     We show the impact of such optimal solution on binary 

classification via experimentation on 16 data sets from 

the UCI machine learning repository. 

The paper is organized as follows. In Section II, 

background information on a linear parametric model and the 

AAC minimization criterion is presented. An alternating AAC 

minimization methodology is proposed in Section III. 

Experimental results and analysis are provided in Section IV. 

Finally, some concluding remarks are given in Section V. 
 

II. PRELIMINARIES 

A. Linear Parametric Model 

Given a feature vector
1Dx , a linear parametric model 

adopting nonlinear feature expansion can be written as 
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where   1Kp x  denotes a nonlinear feature expansion 

vector (such as polynomial expansion) and 1Kα  denotes 

a parameter vector consisting of feature weighting 

coefficients. 

B. AAC Minimization Criterion 

An equivalent way to maximize the AUC is to minimize the 

AAC which is the area above the ROC curve. In other words, 

AAC = 1-AUC since they are normalized quantities. The 

quadratic approximated AAC criterion function with weight 

decay regularization from [8] can be expressed as 
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between each sample in positive class and each sample in 

negative class, 1Kα  is a weighting coefficient vector to 

be estimated, 
 
is an offset value, and M 

 and M 
 are the 

number of samples in positive and negative samples, 

respectively.  

 

III. PROPOSED METHOD 

A. Problem Formulation 

Consider a data transformation defined as 

   p x Ap x ,                            (3) 

where   1Kp x  is a nonlinear feature expansion vector 

(such as polynomial expansion), 
K KA  is a data 

transformation matrix to be optimized,   1Kp x  is a 

transformed feature vector, and K  is the feature dimension. 

This data transformation can be applied to the quadratic 

approximated AAC criterion function with weight decay 

regularization [8] as 
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In order to rewrite the double summations in (4) into a 

single summation form for ease of algebraic manipulation, a 

new index k  is defined such that  1k M i j    for 

1, ,i M   and 1, ,j M  . Then, each pair of i , j  

index corresponds to a single value of k  which falls in the 

range  1,2, , N  where N M M   . By representing 

,j ip  as kq , (4) can be re-written as 
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Next, by stacking the kq  vectors into a matrix Q , a matrix 

form of (5) can be re-written as 
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where  1, , K N

N

 Q q q , and   11, ,1
T N 1  is a 

vector consisting of only ‘1’ values. We will use (6) as the 

objective function. 

B. Proposed Alternating AAC Minimization 

In this section, we propose to minimize the AAC criterion 

function with weight decay regularization and data 

transformation (6), with respect to α  and A  alternatingly. 

The optimality condition for A  which minimizes (6) is to 

solve for A  when 
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Which is equivalent to solving 

1
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To solve (8) with respect to A , two matrix inverse 

operations are required. Here, we utilize a small 

regularization constant (such as 410 ) in order to prevent 

singularity condition for the inverse operations as 
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where 
K KI  denotes an identity matrix. 

In (9), the matrix inverse operation  
1

Tb


I αα  includes a 

singular matrix. In order to calculate the inverse operation 

under smaller dimension among the two, we adopt a matrix 

identity    
1 1
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The optimality condition for α  which minimizes (6) is 

 , ,
0

J




α A Q

α
,                             (11) 

and this implies 

1
0T Tb
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The solution for α  in (12) is 

 
1

1 T Tb
N N




  
  

 
α I AQQ A AQ1 .                (13) 

The proposed minimization optimizes both data transform 

matrix A  and coefficient vector α . This is different from the 

AAC minimization in [8], and the TAAC minimization in [9]. 

The proposed alternating minimization algorithm is 

summarized as a pseudocode in Algorithm 1. When t  is 

equal to 1, the solution for α  to (11) is exactly same as the 

AAC solution. 

 
Algorithm 1 Pseudocode for the proposed alternating AAC 

minimization method 

Input: A matrix Q  consisting of pre-defined feature vectors 

Number of iterations T  

Output: A weighting coefficient vector α  

A data transformation matrix A  
 

1: for 1t   to T  do 

2:     if 1t   then 

3:         A I                                                                  {Initialization} 

4:     else 

5:            
1 1

T T T Tb b
 

  A α α α 1 Q I QQ              {Optimal A } 

6:     end if 

7:          
1

1 T Tb
N N




  
  

 
α I AQQ A AQ1                   {Optimal α } 

8: end for 

 

At testing stage, the class label of a nonlinearly expanded 
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test feature vector   1K

t

p x  can be estimated using 
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where   is an optimal threshold based on TER minimization 

[9], and     ,
T

t tg α p x p x α . 

 

IV. EXPERIMENTS 

A. Database and Preprocessing 

The databases utilized in our experiments consist of 16 

binary data sets obtained from the UCI machine learning 

repository [14]. The data has categorical, integer, and real 

attributes. The categorical attributes are changed to values 

between 0 and 1 with equal spacing except for Monk-1 

database. For Monk-1 database, the first two attributes are 

represented within the range  0,10  according to [10]. The 

real and integer values are scaled to the range within  0,1 . 

For samples with don’t care attributes in shuttle database, 

every possible values are generated. Samples with missing 

values are excluded in WBC, credit, mushroom, and WPBC 

databases. Table I shows a summary of the utilized databases. 

B. Experimental Setups 

In order to assess the classification performance of the 

proposed AAAC minimization, several well-known 

classifiers such as LSE [10], TER minimization [12], Fisher’s 

linear discriminant (FLD) [11], AAC minimization [8], and 

novel classifier [9] are adopted for comparison. For TER 

minimization, two different settings, namely TERa and TERb, 

are applied according to [12]. A reduced multivariate 

polynomial (RM) model [10] is adopted as a nonlinear feature 

expansion function for LSE, TERa, TERb, AAC, novel 

classifier, and AAAC minimization. For order of RM model, 

we select from a set of integer values within the set  1, ,10  

based on cross-validation using only training data. 

TABLE I: SUMMARY OF THE 16 BINARY DATA SETS OBTAINED FROM UCI MACINE LEARNING REPOSITORY 

Database Data Type 
Data 

Dimension 

Number 

of 

Classes 

Number 

of Given 

Samples 

Number of 

Utilized 

Samples 

(m20/M21)22 Note 

Shuttle1 C17 6 2 15 278 0.9172 
Samples with ‘don’t care’ values are manipulated 

by considering every possible values 

Liver2 C, I18, R19 6 2 345 345 0.7250 - 

Monk-13 C 6 2 124 124 1.0000 
The first two attributes are scaled within the range 

[0,10] 

Monk-24 C 6 2 169 169 0.6095 - 

Monk-35 C 6 2 122 122 0.9677 - 

Pima6 I, R 8 2 768 768 0.5360 - 

Tic-Tac-Toe7 C 9 2 958 958 0.5304 - 

WBC8 I 9 2 699 683 0.5383 16 samples with missing values are excluded 

Heart9 C, R 13 2 270 270 0.8000 - 

Credit10 C, I, R 15 2 690 653 0.8291 37 samples with missing values are excluded 

Voting11 C 16 2 435 435 0.6292 - 

Mushroom12 C 22 2 8124 5644 0.6181 2480 samples with missing values are excluded 

WDBC13 R 30 2 569 569 0.5938 - 

WPBC14 R 30 2 198 194 0.3108 4 samples with missing values are excluded 

Ionosphere15 I, R 34 2 351 351 0.5600 - 

Sonar16 R 60 2 208 208 0.8739 - 
1Shuttle: Shuttle Landing Control Data Set    2Liver: Liver Disorders Data Set    3Monk-1: MONK’s Problems Data Set (Monk-1 Subset) 

 4Monk-2: MONK’s Problems Data Set (Monk-2 Subset)    5Monk-3: MONK’s Problems Data Set (Monk-3 Subset) 

6Pima: Pima Diabetes Database    7Tic-Tac-Toe: Tic-Tac-Toe Endgame Data Set     8WBC: Breast Cancer Wisconsin (Original) Data Set 
9Heart: Statlog (Heart) Data Set    10Credit: Credit Approval Data Set    11Voting: Congressional Voting Records Data Set  

12Mushroom: Mushroom Data Set    13WDBC: Breast Cancer Wisconsin (Diagnostic) Data Set     
14WPBC: Breast Cancer Wisconsin (Prognostic) Data Set  15Ionosphere: Ionosphere Data Set 

16Sonar: Connectionist Bench (Sonar, Mines vs. Rocks) Data Set  17C: Categorical 18I: Integer  19R: Real 
20m: Number of samples in a class with smaller number of samples  21M: Number of samples in a class with larger number of samples 

22m/M: the value is regarding class data distribution. A larger value of m/M corresponds to more balanced data distribution 
 

For regularization, a constant value of 410  is adopted for 

all compared classifiers except for TERb. For TERb, a tuning 

choice within  1 2 3 410 ,10 ,10 ,10   
 is adopted according to 

[12]. We set 0.5 as the threshold value for LSE, TERa, and 

TERb, and an optimal threshold minimizing TER [9] is 

adopted for FLD, novel classifier, AAC minimization, and the 

proposed AAAC minimization as in [9]. The number of 

iterations ( T ) of the proposed AAAC minimization is set to 3. 

For the novel classifier, we utilized six different settings 

based on translation vector type and random value ranges. 

The parameters of the proposed AAAC minimization and 

other classifiers utilized for performance comparisons are 

summarized in Table II. 

The classification accuracy given by 

   tp tn M M    is adopted as the performance measure 

in the experiments where tp  and tn  denote true positive and 

true negative respectively. The accuracy performance is 

reported in terms of the average accuracy value obtained from 

10 runs of stratified 10-fold cross validation tests. The hyper 

parameter values are selected based on a single run of 

stratified 10-fold cross-validation using only the training set. 

Additionally, we report results from statistical tests such as 

Friedman and Nemenyi tests [15] to see if the difference in 

performance is of statistical significance. 

C. Results 

Table III shows the average classification accuracy and 

ranking values based on 10 runs of stratified 10-fold 
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cross-validation tests. Novel classifier shows the best average 

classification accuracy due to its adoption of the best among 

several solutions which is analogous to running of several 

existing classifiers. TERa shows the second best average 

classification accuracy attributed to its capability for 

class-specific normalization. TERb shows worse average 

classification accuracy than TERa due to over-training. The 

proposed AAAC minimization shows the third best average 

classification accuracy. Comparing with the original AAC 

minimization, AAAC minimization shows minor 

improvement in terms of average classification accuracy. The 

AAC based classifiers such as AAC and AAAC minimization 

and novel classifier show better average classification 

accuracy than LSE and FLD. 
 

TABLE II: PARAMETER SETTINGS FOR THE CLASSIFIERS 

Parameter Meaning 
Classifier 

LSE FLD TERa TERb AAC Novel Proposed 

r  RM order  1,2, ,10r  

b  Regularization constant 410
 

410
 

410
 B2 410

 
410

 
410

 

  Threshold 0.5 opt1 0.5 0.5 opt opt opt 
  Offset - - 0.5 0.5 0.5 0.5 0.5 

 ,l u  
l  = the lower bound for random value 

u  = the upper bound for random value 
- - - - - 

0 

 1,10,1000  - 

rand  Translation parameter vector type - - - - -  3 4same ,diff  - 

L  The number of repetitions for random setting - - - - - 10 - 

T  The number of iterations - - - - - - 3 
1opt: optimal threshold  2B:  1 2 3 4B= 10 ,10 ,10 ,10      3same: translation vector consisting of the same random value 

4diff: translation vector consisting of different random value 

 

TABLE III: CLASSIFICATION ACCURACY AND RANKING
1
 AVERAGED FROM 10 RUNS OF STRATIFIED 10-FOLD CROSS-VALIDATION 

Database 
Classifier 

LSE FLD TERa TERb AAC Novel AAAC 

Shuttle 0.9605(3) 0.9563(4) 0.9696(1.5) 0.9540(7) 0.9556(5.5) 0.9696(1.5) 0.9556(5.5) 

Liver 0.7150(4) 0.7172(2) 0.7150(4) 0.7186(1) 0.7145(6.5) 0.7150(4) 0.7145(6.5) 

Monk-1 0.9467(6) 0.9774(5) 0.9874(4) 0.8751(7) 0.9983(2) 0.9983(2) 0.9983(2) 

Monk-2 0.7603(3) 0.7491(6) 0.7623(1.5) 0.7302(7)  0.7522(5) 0.7623(1.5) 0.7523(4) 

Monk-3 0.9096(5.5) 0.9096(7) 0.9096(5.5) 0.9118(4) 0.9141(2) 0.9141(2) 0.9141(2) 

Pima 0.7716(2)2 0.7619(5) 0.7716(2) 0.7702(4) 0.7575(6.5) 0.7716(2) 0.7575(6.5) 

Tic-Tac-Toe 0.9833(3.5) 0.9833(3.5) 0.9833(3.5) 0.9833(1) 0.9833(6.5) 0.9833(3.5) 0.9833(6.5) 

WBC 0.9693(6) 0.9703(5) 0.9732(1.5) 0.9677(7) 0.9731(3.5) 0.9732(1.5) 0.9731(3.5) 

Heart 0.8407(2) 0.8393(3) 0.8356(7) 0.8415(1) 0.8381(5) 0.8381(5) 0.8381(5) 

Credit 0.8653(2) 0.8650(5) 0.8650(3.5) 0.8677(1) 0.8647(6.5) 0.8650(3.5) 0.8647(6.5) 

Voting 0.9544(4) 0.9541(6) 0.9544(1.5) 0.9385(7) 0.9544(4) 0.9544(1.5) 0.9544(4) 

Mushroom 1.0000(2.5) 1.0000(2.5) 1.0000(2.5) 0.9925(7) 0.9986(5.5) 1.0000(2.5) 0.9986(5.5) 

WDBC 0.9554(7) 0.9620(5) 0.9708(4) 0.9589(6) 0.9714(2) 0.9714(2) 0.9714(2) 

WPBC 0.7926(2) 0.7160(7) 0.7926(2) 0.7635(4.5) 0.7270(6) 0.7926(2) 0.7635(4.5) 

Ionosphere 0.8654(5) 0.8666(4) 0.8716(2.5) 0.8765(1) 0.8631(6.5) 0.8716(2.5) 0.8631(6.5) 

Sonar 0.7444(6) 0.7396(7) 0.7567(5) 0.7893(1) 0.7865(3) 0.7865(3) 0.7865(3) 

Average 0.8772(3.97) 0.8730(4.81) 0.8824(3.22) 0.8712(4.16) 0.8783(4.75) 0.8854(2.50) 0.8806(4.59) 
1Ranking: when ranking of multiple classifiers are the same, average ranking is provided.    

2A bold letter denotes the best accuracy and the best ranking. 

 

In terms of average ranking, the compared classifiers can 

be ranked in descending order as {novel classifier, TERa, 

LSE, TERb, AAAC, AAC, FLD}. Here we note that LSE 

shows the third best average ranking unlike the average 

classification accuracy comparison. This is because little 

difference in accuracy performance can result in relatively big 

difference in ranking (see results on Tic-Tac-Toe database in 

Table III as an extreme example). 

 
TABLE IV: FRIEDMAN TEST RESULTS USING CLASSIFICATION ACCURACY 

Assumption p  0.01p   

0.01p   257.4125 10  Reject null 

 

Table IV shows the results from a Friedman test using 

classification accuracy. Since the results reject null 

hypothesis that all algorithms are equivalent at p < 0.01, 

Nemenyi test can be further performed to observe the 

difference among the algorithms. Fig. 1 shows the results 

from Nemenyi test. As illustrated in Fig. 1, novel classifier 

and TERa show better classification accuracy performance 

than other classifiers. 

 
Fig. 1. Nemenyi test results using classification accuracy. 

 

We observe that AAAC minimization is not suitable to use 
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as a stand-alone classifier in view of its average classification 

accuracy and ranking. As for future work, we propose to 

combine it with novel and other existing classifiers to form a 

stronger classifier. 

 

V. CONCLUSION 

In this paper, we proposed to optimize a data 

transformation matrix for binary classification. An alternating 

framework based on the area above the ROC curve 

minimization with respect to a data transformation matrix and 

a weighting coefficient vector was presented. Our 

experimental results and analysis on 16 UCI machine learning 

repository databases showed encouraging results in terms of 

average classification accuracy. In addition, we showed that 

most of the performance comparisons are significantly 

different in statistical sense. 
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