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Abstract—Applying temporal constraint in planning is a 

well-known problem, which keeps a plan is flexible until a 

specific schedule is generated. In this area, Decoupled 

Multi-agent simple temporal problem (DMaSTP) is suitably 

applied for planning of a multi-agents system. However, in 

scheduling problem, new events or temporal constraints are 

added regularly and force scheduler to check the consistency of 

exist MaSTP and retighten exist constraints. In this paper, we 

study a distributed scheduling algorithm for incrementally 

solving a DMaSTP. We have strongly considered the problem of 

adding a set of new constraints into a tightening consistent 

DMaSTP that tightened by also a distributed algorithm or set as 

empty. The algorithm checks whether the new adding 

constraints threaten the consistence of DMaSTP or not and 

decouple such new adding constraints when necessary and 

retighten DMaSTP. We have proposed a distributed algorithm, 

called DI-DMaSTP that solves the above problem and 

theoretically prove its correctness and outperformance, besides 

we have experienced with the variant datasets. 

 

Index Terms—Distributed algorithm, parallel, incremental, 

decoupled, multi-agents, simple temporal problem. 

 

I. INTRODUCTION 

In a dynamic multi-agent system, an agent would have his 

private tasks and joint tasks, in which the tasks might be 

scheduled in different times and will be performed by an 

agent himself or by a set of agents. For example people might 

has a work plan involving shared tasks with his colleagues 

and he has private actions such as shopping. He would plan 

several joint events with his friends later also. These 

problems require a scheduler has to deal with new adding 

events all the time. In this circumstance Decoupled 

Muti-agent Simple Temporal Problem - DMa-STP - is a good 

candidate for planning multi-agent system at first [1].  

In planning for an agent, the other important point besides 

scheduling at the first time is that the new events or temporal 

constraints are added regularly and force scheduler to 

retighten exist constraint and check the consistency. The 

problem of determining whether a tentative additional 

constraint will threaten a consistent DSTP is a simple 

question but retightening that DSTP is a NP-Hard problem 

[2]. Adding a set of additional constraints is an extension for 

adding a constraint and it is also a NP-Hard problem. We 

have determined that problem by the name Incremental 

Decoupling Multi-agent Simple Temporal Problem — 

IDMa-STP, and in this paper we have proposed a distributed 

algorithm to solve that problem, which has a largely potential 
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application in reality. 

There are several known approaches that could be taken to 

determine the consistency and to construct a decomposition 

of DMaSTP instance, from which a particular schedule is 

generated by a backtracking algorithm [2]. One is to gather 

all members’ scheduling constraints, and solve the 

corresponding STP in a centralized fashion. Consequently, an 

incremental DMaSTP will be solved by repeatedly apply a 

single shoot central algorithm for STP or by applying a pure 

increment central algorithm [3]. The other approach is using 

a distributed algorithm for STP repeatedly.    

In the centralized approach, Ma-STP is considered as a 

single STP and is solved incrementally by repeatedly 

applying single shoot algorithm, such as all pairs shortest 

path algorithms or an alternative algorithm Directed Path 

Consistency (DPC) [4], [5] or the L. Xu and B. Choueiry’s 

algorithm, △ STP, in [6] that extended from Partial Path 

Consistency (PPC) algorithm [7] and triangulated algorithm 

[8], [9]. The other useful algorithm applying PPC-based 

algorithms is represented by Planken, Weerdt, and Krogt [10] 

called new algorithm P3C, which sweep the triangles process 

in a systematic order, resulting in an improved performance. 

However, these algorithms require to recalculating all 

DMaSTP for every new adding constraint therefore they are 

so slow.  

There are several pure incremental central algorithms 

proposed base on single shoot algorithms above. One is 

Incremental full path consistence – IFPC that based on full 

path consistence algorithm to check the consistence of STP 

and only update new bounds required by adding constraints. 

Besides, Planken has proposed an incremental algorithm for 

STP based on partial path consistence called IPPC [3]. 

However Planken’s algorithm only works for adding 

constraints that do not threaten the triangulation property of 

the exist STP. 

The disadvantage of all algorithms following the 

centralized fashion is that the scheduler has to gather agents’ 

constraints, therefore any agent has to disclose its private 

tasks and this problem would not be welcomed if agents 

come from different organizations in reality.  

In contradiction, a distributed algorithm gives an 

opportunity of maintaining the privacy of agents’ private 

schedule and the distributed algorithm seeks out a suitable 

schedule of join event by exchanging required information 

but disclosing all agents’ private schedules. J. Boerkoel has 

proposed a new formal definition of a STP for a scheduling 

problem of a Multi-agents system [1], [11]. In his point of 

view, an entire MaSTP has corresponding Decoupled MaSTP 

and his algorithm seeks for a Decoupled STP combining 

separated agents’ schedules. As a DMa-STP is tightening, 

each private STP is used to generate an exact solution for 

each agent individually by a backtracking algorithm. He has 
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proposed an algorithm called D-MaTDP that improves not 

only computing time but also privacy of scheduling problem. 

However D-MaTDP has not solved the adding constraint 

problem. 

In this study, we have strongly concerned the problem of 

adding a set of new constraints into a tight consistent 

DMa-STP, and how to check whether a new constraint 

threatens the consistence of such DMa-STP and how to 

decouple those constraints and retighten that DMa-STP. We 

have inherent J. Boerkoel definition of Ma-STP to solve 

DMa-STP incrementally. Even though, we have borrowed J. 

Boerkoel idea to decouple Ma-STP, our main contribution is 

dealing with a set of adding constraints into a tight DMa-STP.  

We have proposed a distributed algorithm called 

DI-DMa-STP, in which each agent deals with local adding 

constraints privately and simultaneously by IFPC algorithms. 

Each agent also repeatedly decouples its adding inter-agent 

constraints by firstly setting decoupling constraints related to 

referent time point, and then retighten private STP by IFPC 

algorithms again. We have applied a decoupling strategy that 

maximizes the flexibility of all agents’ private STPs. This 

approach increases the chance of successful planning when 

an agent attempts to make new a joint event. 

In this paper, we have reviewed formal definitions related 

to DMa-STP problem in the second part and followed by 

details of our algorithm in the third part. We have also proved 

theoretically the soundness and completeness and upper 

bound of the algorithm’s time complexity in the fourth part, 

and then compare our algorithm with the well-known 

existing algorithms practically in the fifth part. In the final 

part we summary several important points in our study and 

future works. 

 

II. BACKGROUND  

In this part, we briefly review formal definition of STP, 

Multi-agents STP, Decoupled Multi-agents STP and several 

well-known solutions for such problems, which effected on 

our algorithm chronologically. We have also drawn the 

problem we have concerned in detail at the end. 

The formal definition of a Simple temporal problem was 

first proposed in the paper “Temporal constraint network” by 

Dechter, Meiri and Pearl [5]. An important property of that 

definition is that a STP with all bilateral constraints can be 

represented by an undirected distance graph with all vertices 

and edges corresponding to time points and constraints of 

STP. When an STP is described by a constraint network, it is 

also call simple temporal network (STN). In the rest of this 

document we will use both pronouns STP and STN 

interchangeably. 

A. Multi-agent Simple Temporal Problem 

STP of a multi-agent system could be seen as one normal 

STP. Nonetheless, J. Boerkoel and H. Dufree have proposed 

a special definition of a STP of a multi-agent system as a set 

of private agents’ STPs and a shared STP between all agents.  

According to J. Boerkoel and H. Dufree [4], [11], the local 

STPs can be further partitioned into shared and private 

components. Particularly,   
  is partitioned into two sets, the 

agent    ’s private time-points    
  and the agent    ’s shared 

time-points    
 . The set edges of the agent    ,   

 , is also 

partitioned into two sets, the set of private edges,    
 , and 

shared inter-agent edges,    
 . Note, shared inter-agent edges 

   
  are edges whose endpoints are contained within the set 

   
 . 

The agent    ’s private STP is formally defined as follows. 

Definition 1: [11] The agent    ’s private STP,   
 , as the 

tuple     
     

  , where both   
  and    

  are defined above.  

Definition 2: [11] The multi-agent shared STP,  , is the 

tuple        , where the set of shared timepoints,    

    
 

  (notice that     
 
 will be included in    

  for some 

 ), and where the set of shared edges,         
 

      
  . 

Given definitions 1 and 2, now we can redefine Ma-STP as 

follow:  

Definition 3: [11] a Ma-STP,        , is an union over 

agents’ private STPs,   
 , and multi-agent shared STP   . 

J. Boerkoel and H. Dufree have proposed a full-distributed 

algorithm for Ma-STP, which has solved the problem by 

tightening the private STPs at first and then tighten each 

time-point of Shared-STP without gathering all 

inter-connected time-points into only one processor, and the 

privacy of agents’ schedule are increased. They have also 

proposed the distributed algorithm for DMa-STP called 

DMaTDP that finally generate decoupled Ma-STP [4], [11]. 

B. Rigidity and Flexibility 

In order to evaluate the change of MaSTP by adding 

decoupling constraints, the useful way is applying an quality 

matrix, called rigidity that defined as below. 

Definition 4: Flexibility [12] given time-points    and    in 

a consistent STN, the relative flexibility    and    is the 

(non-negative) quantity:                              . 

Rigid Components [12]: Adding a constraint         in 

the extreme case where            , causes the updated 

distance matrix entries to satisfy:                 

        . In such a case, the temporal difference       is 

fixed (equivalently,              ), and    and    are said to 

be rigidly connected.  

Definition 5: Relative Rigidity [12] the relative rigidity of 

the pair of time-points    and    in a consistent STN is the 

quantity:            
 

             
  

 

                      
 

The rigidity of a consistent STN,  , is the quantity: 

        
 

      
             

 
   . 

Because of flexibility is always positive in consistent 

STP,              , both rigidity component, 

           and Rigidity,        are positive and restrict in 

interval      .  

When flexibility of a constraint equal to 0,             

 , this means that constraint is complete rigid and its rigid 

component             . Similarly, if an STP, S, is 

completely rigid then         . At the opposite extreme, if 

  has absolutely no constraints then         . 

 

III. DISTRIBUTE ALGORITHM FOR INCREMENTALLY 

SOLVING DMASTP 

We have proposed a new distributed approach to 
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incrementally solve a Ma-STP called DI-DMaSTP and has 

two stages: the first stage tighten and decouple a Ma-STP or 

return inconsistence, the second stage copes with adding 

constraints into a tight decoupled Ma-STP that might return 

inconsistence or new tight decoupled Ma-STP.  

In order to tighten a Ma-STP at first stage, we have 

recommended using the J. Boerkoel’s distributed algorithm 

for Temporal Decoupled problem —  DMaTDP [11]. 

However, the other using scenario is considering the input 

MaSTP as an empty MaSTP and a set of adding constraints, 

we have preferred to this scenario. 

In the second stage, the algorithm incrementally solves a 

tight decoupled Ma-STP and it has two part: the first part 

tighten each agent’s private STP by its local adding 

constraints or return inconsistence, the second part copes 

with inter-agent adding constraints, in this part, an inter-agent 

adding constraint is decoupled into two decoupling local 

constraints which are treated as a local adding constraint 

above. Finally, it returns inconsistence or new tight 

decoupled Ma-STP. The process has several main steps as 

follow: 

1) The set of entire adding constraints   is split into each 

agent adding constraints by the rules that is: 

 

                                      

 

where    is the set of adding constraints and    is the set of 

time-points of an agent    . It is simple to conclude that all    

have no overlap constraints and union of       is  . 

2) Each agent has its own processor that checks whether a 

adding constraint threatened consistence of its private 

STP and retightens private STP if not.  

The problem is solved by separating    into different types 

of adding constraints: adding local constraints       
  and 

adding inter-agent constraints       
 . An adding local 

constraint is dealt by running incremental algorithm IFPC on 

an agent itself, and an adding inter-agent constraint between 

two agents will be decouple by two decoupling local 

constraints belong to both agents relates, and then two 

decoupling local constraints will be deal with by two agents 

simultaneously. 

An inter-agent constraint will be replaced by two local 

constraints that all involved the reference time-point. We 

have proposed a decoupling strategy that maximizes the 

flexibilities of the agents’ private STPs. Therefore, a new 

bound of decoupling constraint is assigned by the middle of 

possible bounds. 

 

Algorithm 1: Distributed Incremental Decoupled 

Multigagents STP (DI-DMaSTP) 

Inputs: the Agent i’s pivate STP instance            of 

an Decoupled MaSTP, a set of adding constraints belong to 

this agent                 . 

Outputs: The agent i’s private tightening STP of an 

Decoupled MaSTP or INCONSISTENT. 

1:           ; // calculate distance graph of private 

STP 

2: if    has a negative value then returns inconsistence and 

halt; 

3:       
         

    separate (   ; 

4: for each           
   

5: { 

6: If     has a time point that is not exist in    

7: Extend (          ) 

8:  return IFPC (       ; 

9: } 

10: for each                      
  

11:                                   

12: If (               ||                ) 

13: return inconsistence and halt; 

14: Else 

15: { 

16: tighten_triangle (z, x, y); 

17:              

18:                             
 
        ; 

19: tighten_triangle (z, x, y); 

20:              

21:                               
 
        ; 

22: Sent new referent distance (            ; 

23: IFPC (        ; IFPC (         
24: } 

25:                                 

26: or each          

27:return IFPC(        ; 
 

Algorithm 2: Extend (      ,    ) 

Inputs: Agent i’s time points, its private distance graph. 

Output: Updating agent i’s time points, its private 

distance graph  

1:                     ) 

2: { 

3: for each       

4: { 

5:     
     

    ; 

6:     
         

; 

7: add     
,     

  into   ; 

8: } 

9: add   into   ; 

10: } 

11:else 

12:{  

13:  for each       
14: { 

15:     
  ;     

  ; 

16:     
  ;     

  ; 

17: add     
,     

 ,     
,     

  into   ; 

18: } 

19: } 

20: add    ,     into   ; 

21: add     into   ; 

 

Algorithm 3: IFPC(       ; 

Inputs: the Agent i’s private STP and a local adding 

constraint. 

Outputs: The agent i’s new private tightening STP or 

INCONSISTENT. 

1: if (         ) return INCONSISTENT; 
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2: else if (        ) halt; 

3: else { 

4:          

5:          

6: For all              do { 

7: If              { 

8:             

9:        
10: } 

11: If              { 

12:             

13:         
14: } 

15: } 

16: for all             do { 

17: if             then  

18:              

19: } 

20: Return   

 

Algorithm 4: decouple                   
 
         

Inputs: weight of an inter-agent constraint   
        and 

shortest distances                . 

Outputs: distances four decoupling constraints            

1:       
 

 
          

 

 
  

   ; 

2:       
 

 
          

 

 
  

   ; 

3: return            

 

 
Fig. 1. An example of decoupling a pair inter-agent constraints. 

 

In our point of view, each agent has the right to schedule 

itself, therefore in the decoupling procedure we have applied 

the rules to maximize the flexibilities of agents’ private STPs. 

Besides, the roles of both agents are the same then we have 

balanced the flexibilities of both agents relate to a decoupled 

intra-agent constraint. 

For example, the tighten contraints between two 

timepoints     belong to different agent     and     are 

decoupled by a process depicted in Fig. 1. The value of 

decoupling constraints are chosen due to algorithm 4 that 

makes the flexibilities of private decoupling constraints 

between timepoints                 are equal:      
              . 

 

IV. THE CORRECTNESS AND THE RUNTIME SHORTAGE 

The algorithm DI-DMaSTP deals with adding constraints 

by separating them into local adding constraints and 

inter-agent adding constraints, and solves local adding 

constraints by running Increment Full Path Consistent 

algorithm — IFPC — on each private STPs and its local 

adding constraints. And then, an inter-agent adding constraint 

is decoupled into two local constraints which have bounds set 

by a decoupling procedure and then two local constraints are 

dealt by running IFPC in two corresponding private STPs. 

The correctness of DIDMaSTP is proved by proving its 

two minor problems. The first problem is running IFPC for a 

local adding constraint and a private STP of Decoupled 

MaSTP is equal to running IFPC for such adding constraint 

and entire Decoupled Ma-STP. The second one is that an 

adding inter-agent constraint might threaten the consistence 

of MaSTP or be decoupled correctly by two local constraints 

selected by the decoupling procedure. 

The algorithm IFPC calculates the shortest path between 

all pairs of time-points in a STP, and when a constraint is 

added the algorithm updates the shortest paths of pairs 

needed. In order to the first problem above, we have to prove 

that the distance between any pair of time-points belonged to 

an agent would be evaluated by such agent private STP itself 

and retightening a local constraint would not effects other 

agents’ private STPs. 

Lema 1: The distance of shortest part between two 

timepoints belong to an agent     that is constructed by 

calculation on only local STPs is also shortest path of such 

two time-points in entire Decoupled Ma-STP.  

Proof: Assume     is the distance of the shortest path 

between     in local STPs of agent    , we have an inequal: 

 

                                              (1) 

 

The equal happens if z is a time-point of shortest path. 

Assume that there is a shorter path from   to   that 

involves a timepoint   of other agent     and has a distance 

    , then we have an inequality: 

                                                (2) 

and 

                                               (3) 

In Ma-STP, all agents only shared referent time-point   so 

that the shorter path from   to   through   must involve 

referent time-point  . Then we have:  

                                           (4) 

In consistent STP, we have          , so that 
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                                      (5) 

From equations [1] and [4] we have           that 

contradicts to [2] -the assume that      is shorter path from   

to  . 

The next issue is that running IFPC for a local adding 

constraint and private STP of Decoupled MaSTP is equal to 

running IFPC for such adding constraint and entire Ma-STP 

Lema 2: In Decoupled MaSTP, the shortest path between 

two time-points Dij belongs to two different agents is total 

path of one time point to the referent time-point Diz and the 

path of the referent time-point to the end Dzj. 

Proof: This is consequence of Decoupled MaSTP 

structure, in which any two private STP only shared referent 

time-point, therefore all paths between two time-points 

belong to two different agents have to involve referent 

time-point,  , including shortest path. Consequently,     = 

       . 

The soundness of the algorithm will be proved by at first, 

give a proof that if any local constraint does not threatens it’s 

private STP then it does not threaten the consistent of 

Ma-STP, and any inter-agent constraint does also. 

The second thing we have to prove is that running IFPC in 

all private STPs will retighten DMa-STP. This is an arbitrary 

consequence of theorem 1 in J. Boerkoel publication [11], 

that proves the change of bound of a local constraints will not 

change other agents’ STP. 
 

V. COMPUTING TIME SHORTAGE 

Besides the purpose of maintaining privacies of agents’ 

scheduling problem on Multi-agent system, our distributed 

algorithm has improved the computing times also. The time 

of a distributed algorithm equals to total of calculated time 

and communicate time (involving time required by the 

synchronization routine).  

In general, computing times of DI-DMaSTP is the 

maximum computing time of an agent: 

         
                

        

While: 

          

   is the computing time of the agent     and is 

calculated by following equation: 

          

           
                             

         
                             

The function “extend” uses a loop to update all shortest 

paths of exist time-points to a new time point and has the time 

complexity bound is              . The function “decouple” 

just apply several steps to choose a new bound for two 

decoupling constraints, thus it has the time complexity bound 

            , where   is a constant parameter. The time 

complexity of IFPC algorithm is        
  , with n is the 

number of time points. Therefore the bound of time 

complexity of agent i
th

 DI-DMaSTP algorithm is: 
 

          

           
             

                 

         
                          

   

  
    

 
           

    

TCi is the time spent for communication of the agent i
th

 

depends on number of its inter-agent constraint 
inter

iC  and the 

time required to collect information relates to that constraints, 

called. 

           
    

  is formed by infrastructure of distributed system that run 

DIFPC algorithm. 

Take all into account we have the time complexity of 

DIFPC in the best case is: 

         
 =      

    

 
          

          
     

      is the time complexity of IFPC algorithm and 

according to L. Plaken (L. Planken, 2008) this algorithm has 

time complexity upper bound is        
  -  is total number 

of time points. 

Therefore, in the best case the number of time-point and 

adding constraints of agents are the same, the time 

complexity upper bound of the algorithm DIFPC is: 

             
 

 
 
 

   
   

 
   

 

 
 
 

         
    

where n is total time-point of MaSTP, M is the number of 

agents and     is total number of adding constraint.  

The boundary of runtime when applying IFPC on MaSTP 

as centralized fashion is 

            
               

  , where      is the 

boundary of FPC algorithm that calculates distance matrix 

and             
   is the boundary of IFPC algorithm for 

     adding constraints. 

If  is not so large, then the time complexity of DIFPC 

algorithm,       , is much smaller than time complexity of 

algorithm IFPC,      ,runs on the same MaSTP as one. 

A. Memory Shortage  

Our algorithm has outperformance compare to apply Full 

path consistency algorithm for Ma-STP as one STP thanks to 

the runtime shortage and memory shortage. The time 

complexity of DI-DMaSTP is normally shorter than IFPC 

applying on the same Ma-STP. The number of distance 

DI-DMaSTP algorithm has to store is also m
2
 times smaller 

than number of distance in the situation using IFPC. 

IFPC has to store all pair shortest paths between 

time-points, then the total number of distances in storage is 

  . Meanwhile, each agent in DI-DMaSTP has to store all 

pair shortest paths between agents’ timepoint, therefore, in 

average, each agent stores totally  
 

 
 
 

. The total number of 

distances stored by all agents is only 
  

 
. 

B. Privacy VS Rigidity 

Privacy is a major advantage of the DI-DMaSTP 

algorithm. As we have presented, a MaSTP is partitioned into 

agents’ private and shared components. Privacy problem 

concern the ability of an agent to restrict its private 

components and only share external elements within the 

cooperating sub-group. In DI-DMaSTP algorithm, local 

constraints of an agent, which involve both private and 

shared time-points, are eliminated by the agent itself. If any 

inter-agent constraint has been decoupled due to decoupling 
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procedure, the new decoupling constraints are only sent to 

exactly the cooperating agents. Hence, the DI-DMaSTP 

algorithm does not reveal any of its private time points or 

constraints, it can be guaranteed that any shared time point 

are at least kept private in the sub-set of related agents. 

Moreover, the other strong benefit of the DI-DMaSTP 

algorithm is that it generates the tight decoupled MaSTP, this 

means each agent planning now is a part of temporal 

decoupling STPs, therefore, an agent is able to generate their 

private particular schedule regardless other agents’ 

schedules. 

Decoupling procedure gives the agent an opportunity to 

self-schedule however it also increases the rigidity of 

MaSTP. An inter-agent constraint is replaced by two 

decoupling constraints by the decoupling rules. This is the 

payoff for privacy. 

 

VI. EXPERIENCE 

A. Data Generator 

Running the algorithm on inconsistent instances is not a 

full test of our algorithm, because inconsistency is discovered 

earlier than completing decomposition. In addition several 

testing algorithms have the same mechanism of consistency 

checking. In order to evaluate complete algorithmic effects, 

we have to construct a data generator that only generates 

consistent MaSTP instances and a set of adding constraints 

that do not threaten the consistence of MaSTP instances. This 

generator works as a scheduling developer that iteratively 

adds a new constraint into a consistent STP and is able to 

evaluate whether a new added constraint maintains 

consistency of STP or not.  

A random problem generator, that is parameterized by the 

tuple                         where A is the number of 

agents, T is the number of actions per agent, P is the 

percentage of its time points that an agent keeps private, 

       is the number of local constraints per agent, and 

       is the total number of the inter-agent constraints, and   

is propotion of adding constraint and existing constraint of an 

agent. 

Particularly, each instance of a problem has A agents, and 

a number of activities T are added for each agent; an activity 

has one start time-point and one end time-point. One global 

zero time-point is created and the distance of all time-points 

to zero time-point is smaller or equal to 60*T.   

For each activity, the lower time bound,   , is chosen 

uniformly from the interval       , and the upper time bound 

is chosen uniformly in the interval           .  

Within time-points of each agent,        local constraints 

are added randomly but avoiding replacing constraints 

represented agent’s activities. A local constraint between two 

time-points    and    is made by choosing uniformly from the 

tightened intervals           .  

Besides a number internal constraints the number        

external constraints are also added over all agents. We first 

randomly select a number,      , of shared time points 

for each agent. Then choose uniformly a shared time-point    

of agent     and then choose uniformly an agent     differ 

from agent    , choose uniformly a shared time point    of 

agent      and make a new constraint between two 

time-points    and    by setting its bound uniformly from the 

tighten intervals           . We repeat        times for each 

instance MaSTP, and accept that a new constraint might 

replace old one. 

The proportion of adding constraint and existing constraint 

of an agent   is chosen between [0, 1]. And then, for each 

agent, the generator has put         local adding constraints 

and         inter-agent adding constraints with the same 

method above. 

Considering the consistent property of a generated graph, 

we have seen that adding actions and a zero time point will 

not threaten consistent property of the graph. Moreover, 

adding extra local constraints and external constraints also 

satisfy the rule that adding a new constraint between two 

time-points    and   ,         such that       , 

therefore new adding constraint will not threaten the 

consistency. Taking above reasons into account; we can 

conclude that the generated graph is consistent. 

B. Experiment 

We have firstly tested DI-DMaSTP algorithm with the size 

of problem. Therefore, the generator makes the set of MaSTP 

instances with the tuple of parameter, 

                         where the number of agents is 

increasing,                     . Each agent has T = 10 

actions, and we assume that they have least as many joint 

actions as private actions, we set P = 0.4. Finally, we know 

that algorithms constructing a decomposition of STP based 

on PPC only work well with sparse STNs; therefore we set 

number of added local constraint           ; number of 

inter-agent constraints                , and 

proportion of adding constraints   = 0.4. 

Secondly, we have evaluated our algorithms with respect 

to the proportion of shared time point in total time point of 

agent, this also reflects the proportion between adding local 

constraints and adding inter-agent constraints. We generate 

the set of MaSTP instance with the tuple of parameter, 

                       where A = 10, T = 10. Proportion, P, is 

assigned a value from the set                              . 
The number of intra-agent constraints,         is double the 

time points; the inter-agent constraints,       , and proportion 

of adding constraints   are the same as in previous section 

We have run all algorithm in multi-core configuration on 

machine have Intel® Core™ i5 2.5GHz with 4Gb of 

memory.  
 

 
Fig. 2. Ratio of processing time vs number of agent. 

 

In processing time aspect, the experiment data points out 

that DI-DMaSTP algorithm is much faster than IFPC 

algorithm, the former has the average processing time is 32.6 
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percent of later’ one. The DI-DMaSTP algorithm is nearly 

the same distributed algorithm D-MaTDP, however, 

D-MaTDP does not has ability to deal with adding 

constraints. 

The observed data also give an interesting property, in the 

first stages, when the number of agents increases the ratio of 

processing time of distributed algorithms decreases, however 

when number of agent, A, reaches to a specific value this 

ratio decreases (Fig. 2). When the number of agents 

increases, the communication is more complex and requires 

more time to synchronize between agents and 

communication shorts the benefit of computing time. 
 

 
Fig. 3. Ratio of processing time vs proportion of shared time points P. 

 

The algorithm DI-DMaSTP and D-MaTDP only process 

the adding local constraints completely synchronously, so 

their performances are strongly depended on the proportion 

between local and inter-agent constraints, and in our test this 

proportion dominated by the proportion of private and shared 

time points, P. When proportion, P, increases the processing 

time of DI-DMaSTP algorithm increases and comes closer to 

the processing time of IFPC algorithm (Fig. 3). 
 

 
Fig. 4. Ratio of rigidities of algorithms and input vs proportion of shared time 

point. 

 

Algorithm IFPC generates a decomposition of the MaSTP, 

therefore its rigidity are equal to rigidity of the input MaSTP 

instance, obviously. Rigidity of DI-DMaSTP and D-MaTDP 

algorithms are higher than the input MaSTP and depend on 

number of inter-agent constraints. Particularly, when the 

proportion of shared time points, P, increases from 0.2 to 0.8 

the proportion of rigidity of DIFPC and input MaSTP 

increases from 4% to 38%, while DI-DMaSTP increases 

from nearly 4% to 28% (Fig. 4). 

 

VII. CONCLUSIONS 

Applying the distributed approach and the Full path 

consistency algorithm in DI-DMaSTP to incrementally 

solving MaSTP avoid the limitation of algorithms based on 

chordal graph, for example IP3C [13], that only works with 

an adding constraint does not threaten chordal property. 

Therefore, all adding constraints are solved in. The proposed 

algorithm also maintains the privacy as planning for all 

agents. Each agent would attend in many different 

organizations in reality, therefore maintaining privacy of 

agent schedule is a strong advantage. 

The DI-DMaSTP algorithm also has outperformance 

compare to apply Full path consistency algorithm for 

Ma-STP as one STP thanks to the runtime shortage and 

memory shortage. The time complexity of DI-DMaSTP is 

normally shorter than IFPC applying on the same Ma-STP. 

The number of distance DI-DMaSTP has to stored is also m
2
 

times smaller than number of distance in the situation of 

using IFPC. 

The disadvantage of DI-DMaSTP is that it increases the 

rigidity of entire MaSTP,that means it miss a part of available 

solution schedules. In our algorithm, the decoupling process 

manages to maximize the flexibilities of private STP then it 

limits the increasing of rigidity of private STP as much as 

possible. In the future, we are going to to apply new heuristic 

algorithm to choose better bounds of decoupling constraints, 

which decrease rigidity of entire MaSTP.   
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