



Abstract—Applying temporal constraint in planning is a

well-known problem, which keeps a plan is flexible until a

specific schedule is generated. In this area, Decoupled

Multi-agent simple temporal problem (DMaSTP) is suitably

applied for planning of a multi-agents system. However, in

scheduling problem, new events or temporal constraints are

added regularly and force scheduler to check the consistency of

exist MaSTP and retighten exist constraints. In this paper, we

study a distributed scheduling algorithm for incrementally

solving a DMaSTP. We have strongly considered the problem of

adding a set of new constraints into a tightening consistent

DMaSTP that tightened by also a distributed algorithm or set as

empty. The algorithm checks whether the new adding

constraints threaten the consistence of DMaSTP or not and

decouple such new adding constraints when necessary and

retighten DMaSTP. We have proposed a distributed algorithm,

called DI-DMaSTP that solves the above problem and

theoretically prove its correctness and outperformance, besides

we have experienced with the variant datasets.

Index Terms—Distributed algorithm, parallel, incremental,

decoupled, multi-agents, simple temporal problem.

I. INTRODUCTION

In a dynamic multi-agent system, an agent would have his

private tasks and joint tasks, in which the tasks might be

scheduled in different times and will be performed by an

agent himself or by a set of agents. For example people might

has a work plan involving shared tasks with his colleagues

and he has private actions such as shopping. He would plan

several joint events with his friends later also. These

problems require a scheduler has to deal with new adding

events all the time. In this circumstance Decoupled

Muti-agent Simple Temporal Problem - DMa-STP - is a good

candidate for planning multi-agent system at first [1].

In planning for an agent, the other important point besides

scheduling at the first time is that the new events or temporal

constraints are added regularly and force scheduler to

retighten exist constraint and check the consistency. The

problem of determining whether a tentative additional

constraint will threaten a consistent DSTP is a simple

question but retightening that DSTP is a NP-Hard problem

[2]. Adding a set of additional constraints is an extension for

adding a constraint and it is also a NP-Hard problem. We

have determined that problem by the name Incremental

Decoupling Multi-agent Simple Temporal Problem —

IDMa-STP, and in this paper we have proposed a distributed

algorithm to solve that problem, which has a largely potential

Manuscript received March 4, 2015; revised August 25, 2015.

The authors are with the Faculty of Economic Information System,

Vietnam Commercial University, Vietnam (e-mail:

cunguyengiap@vcu.edu.vn).

application in reality.

There are several known approaches that could be taken to

determine the consistency and to construct a decomposition

of DMaSTP instance, from which a particular schedule is

generated by a backtracking algorithm [2]. One is to gather

all members’ scheduling constraints, and solve the

corresponding STP in a centralized fashion. Consequently, an

incremental DMaSTP will be solved by repeatedly apply a

single shoot central algorithm for STP or by applying a pure

increment central algorithm [3]. The other approach is using

a distributed algorithm for STP repeatedly.

In the centralized approach, Ma-STP is considered as a

single STP and is solved incrementally by repeatedly

applying single shoot algorithm, such as all pairs shortest

path algorithms or an alternative algorithm Directed Path

Consistency (DPC) [4], [5] or the L. Xu and B. Choueiry’s

algorithm, △ STP, in [6] that extended from Partial Path

Consistency (PPC) algorithm [7] and triangulated algorithm

[8], [9]. The other useful algorithm applying PPC-based

algorithms is represented by Planken, Weerdt, and Krogt [10]

called new algorithm P3C, which sweep the triangles process

in a systematic order, resulting in an improved performance.

However, these algorithms require to recalculating all

DMaSTP for every new adding constraint therefore they are

so slow.

There are several pure incremental central algorithms

proposed base on single shoot algorithms above. One is

Incremental full path consistence – IFPC that based on full

path consistence algorithm to check the consistence of STP

and only update new bounds required by adding constraints.

Besides, Planken has proposed an incremental algorithm for

STP based on partial path consistence called IPPC [3].

However Planken’s algorithm only works for adding

constraints that do not threaten the triangulation property of

the exist STP.

The disadvantage of all algorithms following the

centralized fashion is that the scheduler has to gather agents’

constraints, therefore any agent has to disclose its private

tasks and this problem would not be welcomed if agents

come from different organizations in reality.

In contradiction, a distributed algorithm gives an

opportunity of maintaining the privacy of agents’ private

schedule and the distributed algorithm seeks out a suitable

schedule of join event by exchanging required information

but disclosing all agents’ private schedules. J. Boerkoel has

proposed a new formal definition of a STP for a scheduling

problem of a Multi-agents system [1], [11]. In his point of

view, an entire MaSTP has corresponding Decoupled MaSTP

and his algorithm seeks for a Decoupled STP combining

separated agents’ schedules. As a DMa-STP is tightening,

each private STP is used to generate an exact solution for

each agent individually by a backtracking algorithm. He has

Distributed Algorithm for Incrementally Solving the

Decoupled Multi-agent Simple Temporal Problem

Cu Nguyen Giap and Do Thi Thu Hien

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

475DOI: 10.7763/IJCTE.2016.V8.1092

proposed an algorithm called D-MaTDP that improves not

only computing time but also privacy of scheduling problem.

However D-MaTDP has not solved the adding constraint

problem.

In this study, we have strongly concerned the problem of

adding a set of new constraints into a tight consistent

DMa-STP, and how to check whether a new constraint

threatens the consistence of such DMa-STP and how to

decouple those constraints and retighten that DMa-STP. We

have inherent J. Boerkoel definition of Ma-STP to solve

DMa-STP incrementally. Even though, we have borrowed J.

Boerkoel idea to decouple Ma-STP, our main contribution is

dealing with a set of adding constraints into a tight DMa-STP.

We have proposed a distributed algorithm called

DI-DMa-STP, in which each agent deals with local adding

constraints privately and simultaneously by IFPC algorithms.

Each agent also repeatedly decouples its adding inter-agent

constraints by firstly setting decoupling constraints related to

referent time point, and then retighten private STP by IFPC

algorithms again. We have applied a decoupling strategy that

maximizes the flexibility of all agents’ private STPs. This

approach increases the chance of successful planning when

an agent attempts to make new a joint event.

In this paper, we have reviewed formal definitions related

to DMa-STP problem in the second part and followed by

details of our algorithm in the third part. We have also proved

theoretically the soundness and completeness and upper

bound of the algorithm’s time complexity in the fourth part,

and then compare our algorithm with the well-known

existing algorithms practically in the fifth part. In the final

part we summary several important points in our study and

future works.

II. BACKGROUND

In this part, we briefly review formal definition of STP,

Multi-agents STP, Decoupled Multi-agents STP and several

well-known solutions for such problems, which effected on

our algorithm chronologically. We have also drawn the

problem we have concerned in detail at the end.

The formal definition of a Simple temporal problem was

first proposed in the paper “Temporal constraint network” by

Dechter, Meiri and Pearl [5]. An important property of that

definition is that a STP with all bilateral constraints can be

represented by an undirected distance graph with all vertices

and edges corresponding to time points and constraints of

STP. When an STP is described by a constraint network, it is

also call simple temporal network (STN). In the rest of this

document we will use both pronouns STP and STN

interchangeably.

A. Multi-agent Simple Temporal Problem

STP of a multi-agent system could be seen as one normal

STP. Nonetheless, J. Boerkoel and H. Dufree have proposed

a special definition of a STP of a multi-agent system as a set

of private agents’ STPs and a shared STP between all agents.

According to J. Boerkoel and H. Dufree [4], [11], the local

STPs can be further partitioned into shared and private

components. Particularly,
 is partitioned into two sets, the

agent ’s private time-points
 and the agent ’s shared

time-points
 . The set edges of the agent ,

 , is also

partitioned into two sets, the set of private edges,
 , and

shared inter-agent edges,
 . Note, shared inter-agent edges

 are edges whose endpoints are contained within the set

 .

The agent ’s private STP is formally defined as follows.

Definition 1: [11] The agent ’s private STP,
 , as the

tuple

 , where both
 and

 are defined above.

Definition 2: [11] The multi-agent shared STP, , is the

tuple , where the set of shared timepoints,

 (notice that

 will be included in

 for some

), and where the set of shared edges,

 .

Given definitions 1 and 2, now we can redefine Ma-STP as

follow:

Definition 3: [11] a Ma-STP, , is an union over

agents’ private STPs,
 , and multi-agent shared STP .

J. Boerkoel and H. Dufree have proposed a full-distributed

algorithm for Ma-STP, which has solved the problem by

tightening the private STPs at first and then tighten each

time-point of Shared-STP without gathering all

inter-connected time-points into only one processor, and the

privacy of agents’ schedule are increased. They have also

proposed the distributed algorithm for DMa-STP called

DMaTDP that finally generate decoupled Ma-STP [4], [11].

B. Rigidity and Flexibility

In order to evaluate the change of MaSTP by adding

decoupling constraints, the useful way is applying an quality

matrix, called rigidity that defined as below.

Definition 4: Flexibility [12] given time-points and in

a consistent STN, the relative flexibility and is the

(non-negative) quantity: .

Rigid Components [12]: Adding a constraint in

the extreme case where , causes the updated

distance matrix entries to satisfy:

 . In such a case, the temporal difference is

fixed (equivalently,), and and are said to

be rigidly connected.

Definition 5: Relative Rigidity [12] the relative rigidity of

the pair of time-points and in a consistent STN is the

quantity:

The rigidity of a consistent STN, , is the quantity:

 .

Because of flexibility is always positive in consistent

STP, , both rigidity component,

 and Rigidity, are positive and restrict in

interval .

When flexibility of a constraint equal to 0,

 , this means that constraint is complete rigid and its rigid

component . Similarly, if an STP, S, is

completely rigid then . At the opposite extreme, if

 has absolutely no constraints then .

III. DISTRIBUTE ALGORITHM FOR INCREMENTALLY

SOLVING DMASTP

We have proposed a new distributed approach to

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

476

incrementally solve a Ma-STP called DI-DMaSTP and has

two stages: the first stage tighten and decouple a Ma-STP or

return inconsistence, the second stage copes with adding

constraints into a tight decoupled Ma-STP that might return

inconsistence or new tight decoupled Ma-STP.

In order to tighten a Ma-STP at first stage, we have

recommended using the J. Boerkoel’s distributed algorithm

for Temporal Decoupled problem — DMaTDP [11].

However, the other using scenario is considering the input

MaSTP as an empty MaSTP and a set of adding constraints,

we have preferred to this scenario.

In the second stage, the algorithm incrementally solves a

tight decoupled Ma-STP and it has two part: the first part

tighten each agent’s private STP by its local adding

constraints or return inconsistence, the second part copes

with inter-agent adding constraints, in this part, an inter-agent

adding constraint is decoupled into two decoupling local

constraints which are treated as a local adding constraint

above. Finally, it returns inconsistence or new tight

decoupled Ma-STP. The process has several main steps as

follow:

1) The set of entire adding constraints is split into each

agent adding constraints by the rules that is:

where is the set of adding constraints and is the set of

time-points of an agent . It is simple to conclude that all

have no overlap constraints and union of is .

2) Each agent has its own processor that checks whether a

adding constraint threatened consistence of its private

STP and retightens private STP if not.

The problem is solved by separating into different types

of adding constraints: adding local constraints
 and

adding inter-agent constraints
 . An adding local

constraint is dealt by running incremental algorithm IFPC on

an agent itself, and an adding inter-agent constraint between

two agents will be decouple by two decoupling local

constraints belong to both agents relates, and then two

decoupling local constraints will be deal with by two agents

simultaneously.

An inter-agent constraint will be replaced by two local

constraints that all involved the reference time-point. We

have proposed a decoupling strategy that maximizes the

flexibilities of the agents’ private STPs. Therefore, a new

bound of decoupling constraint is assigned by the middle of

possible bounds.

Algorithm 1: Distributed Incremental Decoupled

Multigagents STP (DI-DMaSTP)

Inputs: the Agent i’s pivate STP instance of

an Decoupled MaSTP, a set of adding constraints belong to

this agent .

Outputs: The agent i’s private tightening STP of an

Decoupled MaSTP or INCONSISTENT.

1: ; // calculate distance graph of private

STP

2: if has a negative value then returns inconsistence and

halt;

3:

 separate (;

4: for each

5: {

6: If has a time point that is not exist in

7: Extend ()

8: return IFPC (;

9: }

10: for each

11:

12: If (||)

13: return inconsistence and halt;

14: Else

15: {

16: tighten_triangle (z, x, y);

17:

18:

 ;

19: tighten_triangle (z, x, y);

20:

21:

 ;

22: Sent new referent distance (;

23: IFPC (; IFPC (
24: }

25:

26: or each

27:return IFPC(;

Algorithm 2: Extend (,)

Inputs: Agent i’s time points, its private distance graph.

Output: Updating agent i’s time points, its private

distance graph

1:)

2: {

3: for each

4: {

5:

 ;

6:

;

7: add
,

 into ;

8: }

9: add into ;

10: }

11:else

12:{

13: for each
14: {

15:
 ;

 ;

16:
 ;

 ;

17: add
,

 ,
,

 into ;

18: }

19: }

20: add , into ;

21: add into ;

Algorithm 3: IFPC(;

Inputs: the Agent i’s private STP and a local adding

constraint.

Outputs: The agent i’s new private tightening STP or

INCONSISTENT.

1: if () return INCONSISTENT;

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

477

2: else if () halt;

3: else {

4:

5:

6: For all do {

7: If {

8:

9:
10: }

11: If {

12:

13:
14: }

15: }

16: for all do {

17: if then

18:

19: }

20: Return

Algorithm 4: decouple

Inputs: weight of an inter-agent constraint
 and

shortest distances .

Outputs: distances four decoupling constraints

1:

 ;

2:

 ;

3: return

Fig. 1. An example of decoupling a pair inter-agent constraints.

In our point of view, each agent has the right to schedule

itself, therefore in the decoupling procedure we have applied

the rules to maximize the flexibilities of agents’ private STPs.

Besides, the roles of both agents are the same then we have

balanced the flexibilities of both agents relate to a decoupled

intra-agent constraint.

For example, the tighten contraints between two

timepoints belong to different agent and are

decoupled by a process depicted in Fig. 1. The value of

decoupling constraints are chosen due to algorithm 4 that

makes the flexibilities of private decoupling constraints

between timepoints are equal:
 .

IV. THE CORRECTNESS AND THE RUNTIME SHORTAGE

The algorithm DI-DMaSTP deals with adding constraints

by separating them into local adding constraints and

inter-agent adding constraints, and solves local adding

constraints by running Increment Full Path Consistent

algorithm — IFPC — on each private STPs and its local

adding constraints. And then, an inter-agent adding constraint

is decoupled into two local constraints which have bounds set

by a decoupling procedure and then two local constraints are

dealt by running IFPC in two corresponding private STPs.

The correctness of DIDMaSTP is proved by proving its

two minor problems. The first problem is running IFPC for a

local adding constraint and a private STP of Decoupled

MaSTP is equal to running IFPC for such adding constraint

and entire Decoupled Ma-STP. The second one is that an

adding inter-agent constraint might threaten the consistence

of MaSTP or be decoupled correctly by two local constraints

selected by the decoupling procedure.

The algorithm IFPC calculates the shortest path between

all pairs of time-points in a STP, and when a constraint is

added the algorithm updates the shortest paths of pairs

needed. In order to the first problem above, we have to prove

that the distance between any pair of time-points belonged to

an agent would be evaluated by such agent private STP itself

and retightening a local constraint would not effects other

agents’ private STPs.

Lema 1: The distance of shortest part between two

timepoints belong to an agent that is constructed by

calculation on only local STPs is also shortest path of such

two time-points in entire Decoupled Ma-STP.

Proof: Assume is the distance of the shortest path

between in local STPs of agent , we have an inequal:

 (1)

The equal happens if z is a time-point of shortest path.

Assume that there is a shorter path from to that

involves a timepoint of other agent and has a distance

 , then we have an inequality:

 (2)

and

 (3)

In Ma-STP, all agents only shared referent time-point so

that the shorter path from to through must involve

referent time-point . Then we have:

 (4)

In consistent STP, we have , so that

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

478

 (5)

From equations [1] and [4] we have that

contradicts to [2] -the assume that is shorter path from

to .

The next issue is that running IFPC for a local adding

constraint and private STP of Decoupled MaSTP is equal to

running IFPC for such adding constraint and entire Ma-STP

Lema 2: In Decoupled MaSTP, the shortest path between

two time-points Dij belongs to two different agents is total

path of one time point to the referent time-point Diz and the

path of the referent time-point to the end Dzj.

Proof: This is consequence of Decoupled MaSTP

structure, in which any two private STP only shared referent

time-point, therefore all paths between two time-points

belong to two different agents have to involve referent

time-point, , including shortest path. Consequently, =

 .

The soundness of the algorithm will be proved by at first,

give a proof that if any local constraint does not threatens it’s

private STP then it does not threaten the consistent of

Ma-STP, and any inter-agent constraint does also.

The second thing we have to prove is that running IFPC in

all private STPs will retighten DMa-STP. This is an arbitrary

consequence of theorem 1 in J. Boerkoel publication [11],

that proves the change of bound of a local constraints will not

change other agents’ STP.

V. COMPUTING TIME SHORTAGE

Besides the purpose of maintaining privacies of agents’

scheduling problem on Multi-agent system, our distributed

algorithm has improved the computing times also. The time

of a distributed algorithm equals to total of calculated time

and communicate time (involving time required by the

synchronization routine).

In general, computing times of DI-DMaSTP is the

maximum computing time of an agent:

While:

 is the computing time of the agent and is

calculated by following equation:

The function “extend” uses a loop to update all shortest

paths of exist time-points to a new time point and has the time

complexity bound is . The function “decouple”

just apply several steps to choose a new bound for two

decoupling constraints, thus it has the time complexity bound

 , where is a constant parameter. The time

complexity of IFPC algorithm is
 , with n is the

number of time points. Therefore the bound of time

complexity of agent i
th

 DI-DMaSTP algorithm is:

TCi is the time spent for communication of the agent i
th

depends on number of its inter-agent constraint
inter

iC and the

time required to collect information relates to that constraints,

called.

 is formed by infrastructure of distributed system that run

DIFPC algorithm.

Take all into account we have the time complexity of

DIFPC in the best case is:

 =

 is the time complexity of IFPC algorithm and

according to L. Plaken (L. Planken, 2008) this algorithm has

time complexity upper bound is
 - is total number

of time points.

Therefore, in the best case the number of time-point and

adding constraints of agents are the same, the time

complexity upper bound of the algorithm DIFPC is:

where n is total time-point of MaSTP, M is the number of

agents and is total number of adding constraint.

The boundary of runtime when applying IFPC on MaSTP

as centralized fashion is

 , where is the

boundary of FPC algorithm that calculates distance matrix

and
 is the boundary of IFPC algorithm for

 adding constraints.

If is not so large, then the time complexity of DIFPC

algorithm, , is much smaller than time complexity of

algorithm IFPC, ,runs on the same MaSTP as one.

A. Memory Shortage

Our algorithm has outperformance compare to apply Full

path consistency algorithm for Ma-STP as one STP thanks to

the runtime shortage and memory shortage. The time

complexity of DI-DMaSTP is normally shorter than IFPC

applying on the same Ma-STP. The number of distance

DI-DMaSTP algorithm has to store is also m
2
 times smaller

than number of distance in the situation using IFPC.

IFPC has to store all pair shortest paths between

time-points, then the total number of distances in storage is

 . Meanwhile, each agent in DI-DMaSTP has to store all

pair shortest paths between agents’ timepoint, therefore, in

average, each agent stores totally

. The total number of

distances stored by all agents is only

.

B. Privacy VS Rigidity

Privacy is a major advantage of the DI-DMaSTP

algorithm. As we have presented, a MaSTP is partitioned into

agents’ private and shared components. Privacy problem

concern the ability of an agent to restrict its private

components and only share external elements within the

cooperating sub-group. In DI-DMaSTP algorithm, local

constraints of an agent, which involve both private and

shared time-points, are eliminated by the agent itself. If any

inter-agent constraint has been decoupled due to decoupling

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

479

procedure, the new decoupling constraints are only sent to

exactly the cooperating agents. Hence, the DI-DMaSTP

algorithm does not reveal any of its private time points or

constraints, it can be guaranteed that any shared time point

are at least kept private in the sub-set of related agents.

Moreover, the other strong benefit of the DI-DMaSTP

algorithm is that it generates the tight decoupled MaSTP, this

means each agent planning now is a part of temporal

decoupling STPs, therefore, an agent is able to generate their

private particular schedule regardless other agents’

schedules.

Decoupling procedure gives the agent an opportunity to

self-schedule however it also increases the rigidity of

MaSTP. An inter-agent constraint is replaced by two

decoupling constraints by the decoupling rules. This is the

payoff for privacy.

VI. EXPERIENCE

A. Data Generator

Running the algorithm on inconsistent instances is not a

full test of our algorithm, because inconsistency is discovered

earlier than completing decomposition. In addition several

testing algorithms have the same mechanism of consistency

checking. In order to evaluate complete algorithmic effects,

we have to construct a data generator that only generates

consistent MaSTP instances and a set of adding constraints

that do not threaten the consistence of MaSTP instances. This

generator works as a scheduling developer that iteratively

adds a new constraint into a consistent STP and is able to

evaluate whether a new added constraint maintains

consistency of STP or not.

A random problem generator, that is parameterized by the

tuple where A is the number of

agents, T is the number of actions per agent, P is the

percentage of its time points that an agent keeps private,

 is the number of local constraints per agent, and

 is the total number of the inter-agent constraints, and

is propotion of adding constraint and existing constraint of an

agent.

Particularly, each instance of a problem has A agents, and

a number of activities T are added for each agent; an activity

has one start time-point and one end time-point. One global

zero time-point is created and the distance of all time-points

to zero time-point is smaller or equal to 60*T.

For each activity, the lower time bound, , is chosen

uniformly from the interval , and the upper time bound

is chosen uniformly in the interval .

Within time-points of each agent, local constraints

are added randomly but avoiding replacing constraints

represented agent’s activities. A local constraint between two

time-points and is made by choosing uniformly from the

tightened intervals .

Besides a number internal constraints the number

external constraints are also added over all agents. We first

randomly select a number, , of shared time points

for each agent. Then choose uniformly a shared time-point

of agent and then choose uniformly an agent differ

from agent , choose uniformly a shared time point of

agent and make a new constraint between two

time-points and by setting its bound uniformly from the

tighten intervals . We repeat times for each

instance MaSTP, and accept that a new constraint might

replace old one.

The proportion of adding constraint and existing constraint

of an agent is chosen between [0, 1]. And then, for each

agent, the generator has put local adding constraints

and inter-agent adding constraints with the same

method above.

Considering the consistent property of a generated graph,

we have seen that adding actions and a zero time point will

not threaten consistent property of the graph. Moreover,

adding extra local constraints and external constraints also

satisfy the rule that adding a new constraint between two

time-points and , such that ,

therefore new adding constraint will not threaten the

consistency. Taking above reasons into account; we can

conclude that the generated graph is consistent.

B. Experiment

We have firstly tested DI-DMaSTP algorithm with the size

of problem. Therefore, the generator makes the set of MaSTP

instances with the tuple of parameter,

 where the number of agents is

increasing, . Each agent has T = 10

actions, and we assume that they have least as many joint

actions as private actions, we set P = 0.4. Finally, we know

that algorithms constructing a decomposition of STP based

on PPC only work well with sparse STNs; therefore we set

number of added local constraint ; number of

inter-agent constraints , and

proportion of adding constraints = 0.4.

Secondly, we have evaluated our algorithms with respect

to the proportion of shared time point in total time point of

agent, this also reflects the proportion between adding local

constraints and adding inter-agent constraints. We generate

the set of MaSTP instance with the tuple of parameter,

 where A = 10, T = 10. Proportion, P, is

assigned a value from the set .
The number of intra-agent constraints, is double the

time points; the inter-agent constraints, , and proportion

of adding constraints are the same as in previous section

We have run all algorithm in multi-core configuration on

machine have Intel® Core™ i5 2.5GHz with 4Gb of

memory.

Fig. 2. Ratio of processing time vs number of agent.

In processing time aspect, the experiment data points out

that DI-DMaSTP algorithm is much faster than IFPC

algorithm, the former has the average processing time is 32.6

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

480

percent of later’ one. The DI-DMaSTP algorithm is nearly

the same distributed algorithm D-MaTDP, however,

D-MaTDP does not has ability to deal with adding

constraints.

The observed data also give an interesting property, in the

first stages, when the number of agents increases the ratio of

processing time of distributed algorithms decreases, however

when number of agent, A, reaches to a specific value this

ratio decreases (Fig. 2). When the number of agents

increases, the communication is more complex and requires

more time to synchronize between agents and

communication shorts the benefit of computing time.

Fig. 3. Ratio of processing time vs proportion of shared time points P.

The algorithm DI-DMaSTP and D-MaTDP only process

the adding local constraints completely synchronously, so

their performances are strongly depended on the proportion

between local and inter-agent constraints, and in our test this

proportion dominated by the proportion of private and shared

time points, P. When proportion, P, increases the processing

time of DI-DMaSTP algorithm increases and comes closer to

the processing time of IFPC algorithm (Fig. 3).

Fig. 4. Ratio of rigidities of algorithms and input vs proportion of shared time

point.

Algorithm IFPC generates a decomposition of the MaSTP,

therefore its rigidity are equal to rigidity of the input MaSTP

instance, obviously. Rigidity of DI-DMaSTP and D-MaTDP

algorithms are higher than the input MaSTP and depend on

number of inter-agent constraints. Particularly, when the

proportion of shared time points, P, increases from 0.2 to 0.8

the proportion of rigidity of DIFPC and input MaSTP

increases from 4% to 38%, while DI-DMaSTP increases

from nearly 4% to 28% (Fig. 4).

VII. CONCLUSIONS

Applying the distributed approach and the Full path

consistency algorithm in DI-DMaSTP to incrementally

solving MaSTP avoid the limitation of algorithms based on

chordal graph, for example IP3C [13], that only works with

an adding constraint does not threaten chordal property.

Therefore, all adding constraints are solved in. The proposed

algorithm also maintains the privacy as planning for all

agents. Each agent would attend in many different

organizations in reality, therefore maintaining privacy of

agent schedule is a strong advantage.

The DI-DMaSTP algorithm also has outperformance

compare to apply Full path consistency algorithm for

Ma-STP as one STP thanks to the runtime shortage and

memory shortage. The time complexity of DI-DMaSTP is

normally shorter than IFPC applying on the same Ma-STP.

The number of distance DI-DMaSTP has to stored is also m
2

times smaller than number of distance in the situation of

using IFPC.

The disadvantage of DI-DMaSTP is that it increases the

rigidity of entire MaSTP,that means it miss a part of available

solution schedules. In our algorithm, the decoupling process

manages to maximize the flexibilities of private STP then it

limits the increasing of rigidity of private STP as much as

possible. In the future, we are going to to apply new heuristic

algorithm to choose better bounds of decoupling constraints,

which decrease rigidity of entire MaSTP.

REFERENCES

[1] J. Boerkoel and H. Dunfee, “Distributed algorithm for solving the

multiagent temporal decoupling problem,” Artificial Intelligence, pp.
141-148, 2011.

[2] K. S. Koubarakis, “Backtracking algorithms,” Artificial Intelligence,

vol. 120, pp. 81-117, 2000.
[3] L. R. Planken, “Incrementally solving the STP by enforcing partial

path consistency,” PlanSIG-08, pp. 87-94, 2008.

[4] R. Dechter, Constraint Processing, San Francisco, CA, USA: Morgan
Kaufmann Publisher Inc, 2003.

[5] R. Dechter and I. Meiri, “Temporal constraint network,” Arificial

Intellegence, pp. 61-95, 1991.
[6] L. Xu and B. Choueiry, “A new efficient algorithm for solving the

simple temporal problem,” TIME-ICTL-03, pp. 210-220, 2003.

[7] C. Bilieck et al., “Path Consistency on triangulated constraint graphs,”
IJCAI, pp. 456-461, 1999.

[8] J. R. S. Blair et al., An Introduction to Chordal Graphs and Clique

Trees, New York: Springer-Verlag, 1993.
[9] U. Kjaerulff, “Graph triangulation — algorithms giving small total

state space,” Technical Report, Aalborg: University of Aalborg, 1990.

[10] L. R. Planken et al., “P3C-New algorithms for the simple temporal
problem,” ICAPS, pp. 256-263, 2008.

[11] J. Boerkoel and H. Dunfee, “A comparison of algorithms for solving

the multiagent simple temporal problem,” ICAPS, pp. 27-33, 2010.
[12] L. Hunsberger, “Algorithms for a temporal decoupling problem in

multi-agent planning,”AAAI, pp. 468-475, 2002.

[1] L. R. Planken and M. M. de Weerdt, “Optimal temporal decoupling in
multiagent systems,” AAMAS, pp. 789-796, 2010.

Cu Nguyen Giap was born in 1984 in Phutho province,

Vietnam. He received the B.Sc. degree in information
technology from Hanoi University of Technology in

2007. In 2012, he received the M.Sc. degree in

computer science from Vrije Universiteit Brussels.
Now, He is a lecturer in the Faculty of Economic

Information System in Vietnam Commercial

University. His research interests include scheduling
algorithm, expert & prediction system, parallel &

genetic algorithm, neutral network.

Hien Thu Thi Do was born in 1980 in Bacgiang

province, Vietnam. In 2008, She received the M.S.

degree in information management from Shute
University, Taiwan. Now, She is a lecturer in the

Faculty of Economic Information System in Vietnam

Commercial University. Her research interests include
scheduling algorithm, information management

system, expert & prediction system.

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

481

