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Abstract—In order to create interaction, immersive VR 

rooms can receive various types of inputs from a user. One of 

these input types are the gestures and movements of the user in 

the CAVE, which can be captured with sensors such as the 

Microsoft Kinect. However, the large scale of an immersive 

room implies the use of multiple Kinects to provide optimal 

coverage. This multi-Kinect set-up requires an effective 

selection method to determine the most accurate Kinects 

depending on the user’s position. The example of VR 

environment described in this paper is a CAVE named “Le 

SAS” that currently supports 4 Kinects. This paper describes 

the SAS’s features as well as the constraints the implemented 

solution had to take into account. It will justify the technical 

choices and provide experiment results. 

 
Index Terms—CAVE, Kinect selection algorithm, 

multi-Kinect. 

 

I. INTRODUCTION 

The Microsoft Kinect is a sensor embedded with a color 

camera that returns an RGB video stream and an IR camera 

that measures the visible objects’ depth. Since its commercial 

release in 2010, this device has attracted interest from the 

community due to being a low-cost VR sensor. Intended to be 

used as a game controller for the Microsoft XBOX360, the 

device’s accessibility, compared to other similar sensors, led 

to its use in other kinds of applications, such as user-tracking 

in a CAVE. In this environment, gestures of the user can also 

be tracked as an input scheme.  

In this paper we use multi-Kinects system in order to 

properly track the user and its gestures in real time inside the 

CAVE. Multi-Kinects have advantages such high coverage 

area and easy setup. Also, in our solution we need to 

determine in real time which of the four sensors have the 

most relevant data in every frame. 

This paper is organized as follows. Section II highlights 

the related work and various camera selection methods. 

Section III describes virtual reality cave “Le SAS”. Section 

IV describes the algorithm that is the most suited to the 

context and the environment. Section V describes experiment 

set-up for our CAVE. Section VI concludes on the algorithm 

choice and the obtained data. 

 

II. RELATED WORK 
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Selection and classification algorithms have already been 

discussed and used in previous research works.  Thrun et al. 

[1] relied on a real-time version of the Expectation 

Maximization (EM) Algorithm to generate 3D 

representations of the inside of buildings from images and 

measurements taken by mobile robots. They present 

algorithm for recovering 3D models from camera and 

manipulate prior knowledge on the shape of basic building 

elements. Also they fit a probabilistic model that consists of 

large rectangular, flat surfaces to the data collected by a 

robot. They design generative probabilistic model that 

consists of four sections, world model, measurements, 

correspondences and measurement model. In work model 

they represent non-flat surfaces by small polygons and flat 

surfaces by rectangular surfaces for representing doors, walls 

and ceiling. In measurements are we using a laser range 

finder that each range is projected into 3D space. In 

correspondences they use an efficient algorithm for 

environment mapping to make explicit relation between 

individual measurements. The measurement model match 

between volumetric and the measurements where the 

measurement model is generative probabilistic model of the 

measurements. They propose EM for likelihood 

maximization which considers a popular method for hill 

climbing in likelihood space, EM starts with two steps which 

are E-step and M-step. E-Step applies Bays rule applied to the 

sensor model which permit to calculate the desired 

expectations. M-step passes through certain set of 

calculations to determine some parameters that’s important 

for principal orientation and location of the rectangular 

surface without the surface boundary. Kushwaha et al. [2] 

also used EM algorithms for multi-target tracking in a 

multimodal sensor system. This system could track an object 

through audio and visual sensors. They use Markov Chain 

Monte Carlo Data Association (MCMCDA) algorithm for 

tracking that avoids enumeration of tracks. Also, 

(MCMCDA) can tracks unknown number of targets in noisy 

urban environment. They aims to track moving vehicles 

emitting engine noise which include system components 

including audio processing, video processing, WSN 

middleware services, multimodal sensor fusion, and target 

tracking based on sequential Bayesian estimation and 

MCMCDA. For audio they implement beam forming 

technique on audio sensors utilizing an FPGA-based sensor 

board and evaluated its performance as well its energy 

consumption. For video they use a standard motion detection 

algorithm on video sensors, we have implemented 

post-processing filters that represent the video data in a 

similar format as the audio data, which enables seamless 
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audio-video data fusion. Levine et al. [3] detailed some 

applications of a variant of the EM algorithm called the 

Monte Carlo EM algorithm. They use Monte Carlo 

simulations to compute expectation in EM algorithm, take 

result of each iteration of Monte Carlo sample, then apply 

Monte Carlo EM algorithm through Markov chain Monte 

Carlo (MCMC) routines such as the Gibbs and 

Metropolis–Hastings samplers. They apply an automated rule 

for increasing the Monte Carlo sample size. EM provides a 

tool for getting maximum like hood equations under models 

that yield analytically formidable like hood equations. On the 

other hand, Gupta et al. [4] proposed another sensor shuffling 

technique that uses a stochastic sensor selection algorithm to 

select one sensor every time step among set of sensors 

because all sensors cannot operate simultaneously. Their 

algorithm differs than other algorithm, it based on the letting 

the sensors switch randomly according to certain optimal 

probability distribution to get the best expected steady-state 

performance. Also their algorithm can be applied to the 

problem of sender trajectory generation for optimal coverage 

of an area. This problem happens when are some specified 

numbers of mobile sensors that can reach sense over a limited 

region but together they must monitor a given area. Faion et 

al. [5] present a method to intelligently schedule a network of 

multiple RGBD sensors in a Bayesian object tracking 

scenario. The method also deals with multiple Kinects issues 

such as large amount of raw data generated by the sensors and 

interference caused by overlapping fields of view. They 

propose a new hardware that control IR-projector toggling 

and synchronize depth data stream with existing software as 

in Fig. 1. 
 

 
Fig. 1. Hardware modification for IR-projector-subsystem on/off-toggling of 

a Kinect device [5]. 

 

The proposed algorithm addresses these issues by selecting 

and exclusively activating the sensor. Other selection 

methods exist, based on specific criteria such as a relevancy 

level attributed to each sensor and is updated in real-time to 

determine the most accurate [6]. The Kinect’s distance from 

the user is also a point of comparison for the selection. 

The choice of camera selection algorithm depends on its 

efficiency in terms of accuracy but also of computational cost 

and algorithmic simplicity. For this reason, it is necessary to 

perform an analysis of the SAS to determine which method is 

more suited to the VR environment and the constraints that 

are related to the infrastructure. 

In the context of a multi-Kinects system, this model can 

infer the Kinects which data is the most likely to be relevant 

by analyzing samples from previous user tracking data in the 

SAS. 

III. ANALYSIS OF “LE SAS” 

The “SAS” is an immersive room with a front screen and a 

floor screen. Both are 3 meters high and 4 meters wide as in 

Fig. 2. In our configuration, two Kinects are located on the 

top of the front screen and two other Kinects are located at the 

back of the floor screen. All four of them are pointed towards 

the middle of the floor screen, where is located the default 

position of the user which is supposed the most common 

position.  This position is where the Kinect coverage is at its 

best [7]. 

 

 
Fig. 2. Representation of “Le SAS. 

 

They propose an algorithm to overcome these problems by 

synthesizing the skeletons generated by duplex Kinects, 

which capture the human motion indifferent views. The 

algorithm is formulated under the constrained optimization 

framework by using the bone-lengths as hard constraints and 

the tradeoff between inconsistent joint positions as soft 

constraints. Extracted single view skeleton has problems 

such as self-occlusion, Bone-length variation and artificial 

vibration as in Fig. 3. Self-occlusion happens when some 

parts of skeleton are hidden from the camera, so, the depth 

value of a pixel will be missed. For bone-length-variation, 

they use segmentations algorithm to generate 

confidence-weighted proposals for the join positions. For 

solving single-view skeleton problems, they design a system 

with duplex kinect for motion capture. First camera faces the 

user which called principal camera and second camera. For 

reducing artificial variation can be reduced by y averaging 

the positions of joints reported by two kinects. But still the 

system has inconsistency due to overlapped regions on the 

human body. Another reason is the miss classification of 

regions in the 3D data obtained from a single-view. Another 

reason which inconsistent positions are estimated because it’s 

not tracked. Artificial vibration is result of the acquisition 

error from camera which produces unwanted vibrations on 

the extracted joint-position and makes length of bones 

change during the motion [8]. They apply object recognition 

approach that produce designing an intermediate body parts 

representation that maps the difficult pose estimation 

problem into a simpler per-pixel classification problem. They 

use large set of highly varied training dataset allows the 

classifier to estimate body parts invariant to pose, body 

shape, clothing. Then generate confidence-scored 3D 

proposals of several body joints by reprojecting the 

classification result and finding local modes. They use 

consumer hardware which runs at 200 frames per second, this 

allow to show high accuracy on both synthetic and real test 

sets, and investigates the effect of several training parameters 

[8]. 
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Fig. 3. Problems of skeleton tracking by single Kinect (Top-left) 

Self-occlusion, (Top-right) Bone-length variation [7]. 

 

When the user is in the middle of the floor screen, all of the 

Kinects can detect the skeleton and send its data to the VR 

application server. However, as soon as the user moves away 

from the center, the coverage is altered. For instance, the 

Kinects’ FOV are not long enough to properly track a user 

located on the diagonally opposite side of the SAS. As a 

result, the number of relevant Kinects changes depending on 

the user’s location. 

Therefore, the selection algorithm will have to take into 

account the differences between optimal and sub-optimal 

coverage areas and adapt to the user’s behavior as in Fig. 

4.One of the main constraints of the virtual reality 

environment is its interactive real-time nature. As a result, the 

selection algorithm must be efficient enough to compute the 

Kinect data at a steady Kinect rate 30FS, with 5 millisecond 

timestamp difference between frames due to synchronization 

between Kinects. . Optimization of data processing may be 

required in order to provide a lag-free interactive experience 

for the user, for that, the algorithm sends only head joint data 

with status = 2. 

 

 
Fig. 4. Tracking level areas. [6] 

 

IV. SENSOR SELECTION ALGORITHM 

After an overview of the various selection algorithms and 

an analysis of the constraints of our physical infrastructure 

and our technical environment, we decided to apply a simple 

algorithm that will extract the head joint data (position and 

orientation) from the Kinects that are the closest to the user. 

To achieve this, the depth coordinate of the joint returned by 

the Kinects are compared to each other. The selection 

algorithm collects the data from the 4 Kinects for the head 

and associates a status value to each for every skeleton joint 

head in every frame. This status value is 0 if the Kinect does 

not recognize a joint, 1 if it detects a joint but does not 

provide joint data (position and orientation), and 2 if the joint 

tracking’s status is optimal. Based on this status values, the 

algorithm focuses on the joint data from the Kinects with the 

higher status value and sends it to the SAS’s interaction 

server. When several Kinects track the user’s joint data with 

excellent status on the same frame, one of the Kinects is 

randomly chosen.  

The algorithm also provides a failsafe mechanism for 

frames where no Kinect returns an acceptable status value. In 

these situations, the data sent to the server is related to the 

previous frame where at least one Kinect’s status was 

optimal. That means the user stands in dead area which is not 

detected by any Kinect. Fig. 5 shows overall kinect selection 

algorithm with failsafe mechanism. 

 

 
Fig. 5. Kinect selection algorithm. 

 

V. EXPERIMENT 

A. Experiment Setup 

We installed the 4 kinects in the SAS as shown by Fig. 6 as 

explained in [6]. A user moved freely around the SAS 

without any equipment, guides or instruction for 

approximately 5 minutes.  

B. Simulation 

A user moved around the SAS, his skeleton was tracked by 

the sensors and his joint data was collected by our 

infrastructure. We chose to focus on head joint data for 

tracking purpose, and analyzed the data sent by the Kinects 

for this specific joint for every single frame. 

Fig. 4 shows coverage areas inside the SAS, Green area 

related to optimal coverage area. Orange area related to 

sub-optimal coverage area. Red area or dead area which 

means all Kinects had a head joint status value of 0, due to IR 

interferences, noise between the sensors and dead areas as in 

Fig. 4. 

Fig. 7 shows results of analyzed frames that collected 

during the simulation. On83.89% of analyzed frames, there 

was at least one of the four Kinects that returned a status head 

joint value = 2. On 52.56% of analyzed frames there was all 

Kinects that returned a status head joint value = 2. 15.09% of 

analyzed frames returned a status head joint value of 0 for 

every Kinect. 
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Fig. 6. Simple representation of the Kinect dispatching on the SAS [6]. 

 

 
Fig. 7. Percentages for each area. 

 

VI. CONCLUSION 

In this experiment, we proposed a selection method for the 

multi-Kinect system in our CAVE. Our solution is easy to 

implement as it alleviates the issues related to the heaviness 

of multi-sensor calibration. The selection process bypasses 

this need to calibrate the entire system and chooses the 

optimal Kinect for user tracking in real time. 
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