



Abstract—A widely used Monte Carlo event generator is A

Multi-Phase Transport model (AMPT) for relativistic heavy-ion

collisions. It depends on Zhang’s Parton Cascade (ZPC) package

to simulate initial stage parton cascade. Based on ZPC, we have

developed a code for the simulation of the parton cascade to

exploit the powerful parallel processing capability of GPU. The

goal is to accelerate the simulation of the parton cascade in a

system of partons that is formed in ultrarelativistic heavy-ion

collisions. Named PCG (Parton Cascade on GPU), the code

makes real time collision detection among N interacting partons

formed in a heavy-ion collision parallelized. The parallelization

was implemented by using CUDA C. With simulating Pb-Pb

collisions at sqrt(sNN)=2.76 TeV as a use case, we first verified

the correctness of PCG through comparison of the output of

PCG with those of ZPC, then we estimated the computational

efficiency of PCG to be 2x to 3x relative to ZPC, which is a serial

code and only runs on CPU. Therefore PCG is viable for being

integrating into AMPT for simulating heavy-ion collisions and

can save large amount of computing resources for large scale

AMPT-based event generation in ultrarelativistic heavy-ion

collisions at sqrt(sNN)=2.76 TeV.

Index Terms—GPU, CUDA C, simulation of parton cascade,

ultrarelativistic heavy-ion collision.

I. INTRODUCTION

Monte-Carlo event generators [1]-[6] are essential in high

energy physics. Through analysis of large number of events

generated by event generators, scientists not only get insight

into physical mechanisms on the theory side [7]-[9], but also

evaluate detector performance on the experiment side

[10]-[12]. However in order to generate statistically

significant number of events, huge amount of resources, in

terms of computing time as well as electrical power, need to

be consumed. Therefore it is of great interest to accelerate

event generation by utilizing emerging high performance

computing technologies, such as those involving graphical

processing units (GPUs) and CUDA [13], [14], which have

been enabling variety of applications [15]-[18] to gain

phenomenal speedups.

Nowadays, in the field of ultrarelativistic heavy-ion

collisions, one of the widely used Monte Carlo event

Manuscript received November 30, 2014; revised August 15, 2015. This

work was supported by Beijing Natural Science Foundation under Project

No. 1132017, National Natural Science Foundation of China, and the

Scientific Research Foundation for the Returned Overseas Chinese Scholars,

State Education Ministry.

Qingjun Liu is with the Beijing Institute of Petro-chemical Technology,

Beijing 102617 China (e-mail: liuqingjun@bipt.edu.cn).

Weiqin Zhao is with the Institute of High Energy Physics, Chinese

Academy of Sciences, Beijing 100049 China (e-mail: zhaowq@ihep.ac.cn).

Fang Liu, Ningming Nie, and Chunbao Zhou are with the Supercomputer

Center, Computer Network Information Center, Chinese Academy of

Sciences, Beijing 100190 China (e-mail: liuf@sccas.cn, nienm@sccas.cn,

zhoucb@sccas.cn).

generators is A Multi-Phase Transport (AMPT) model [1]. It

simulates high energy heavy-ion collisions and is of great help

for physicists to study, on the surface of the earth, a new form

of matter called quark-gluon-plasma [19], which exists

immediately after the birth of the cosmos according to the Big

Bang theory [20]. Among the three main modules of AMPT

[1], HIJING [2], ZPC [3] and ART [4], which run on CPU

serially and are programmed in FORTRAN, ZPC mainly

simulates parton cascade process that dominates the initial

stage of ultrarelativistic heavy-ion collisions. Because ZPC

utilizes most of the time for simulating the initial stage of a

heavy-ion collision when QGP is formed through the parton

cascade, this work focuses on GPU-based acceleration of the

simulation of the cascade process.

The rest of this paper is mainly organized as follows. In

Section II, we present brief introduction of the simulation of

the parton cascade process in ultrarelativistic heavy-ion

collisions. Then an algorithm for developing the parton

cascade on GPU (PCG) to accelerate the cascade is

introduced in Section III. In Section IV, we present results

from PCG compared with those from ZPC. We give summary

and conclusion in Section V.

II. OUTLINE OF THE SIMULATION OF PARTON CASCADE

Taking place in a system of interacting N-partons, parton

cascade can simply be described as successive two-parton

collisions, which follow the laws of the perturbative quantum

chromodynamics [21] and satisfy certain geometrical criteria

for the collision to happen. According to AMPT, the system

of partons may be formed through a melting mechanism due

to high temperature in the early stage of heavy-ion collisions

[1]. As in ZPC, the first step in the simulation of parton

cascade in a heavy-ion collision is to detect the earliest

two-parton collision among a large number of possible

two-parton collisions that satisfy the collision criteria, then

simulates the collision thereby the momentum-energy and

space-time information for the involved two partons are

updated. According to ZPC, the rest of the simulation of the

parton cascade is to repeat the above two steps until no

two-parton collision is detected to happen earlier than a preset

physical time threshold. At this stage the parton cascade

terminates. It is based this account of the parton cascade that

we designed in this work an algorithm for the

GPU-accelerated simulation of the parton cascade in

ultrarelativistic heavy-ion collisions. For more details about

the simulation of the parton cascade within ZPC and its

optimization, interested readers are referred to [3], [22].

III. ALGORITHM FOR PCG

The main input to PCG includes the space-time and

GPU-Accelerated Parton Cascade in Heavy-Ion Collisions

Qingjun Liu, Weiqin Zhao, Fang Liu, Ningming Nie, and Chunbao Zhou

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

439DOI: 10.7763/IJCTE.2016.V8.1086

mailto:liuqingjun@bipt.edu.cn
mailto:zhaowq@ihep.ac.cn
mailto:liuf@sccas.cn
mailto:nienm@sccas.cn
mailto:zhoucb@sccas.cn

momentum-energy information for each of the partons in an

N-parton system that is formed through string-melting when

running AMPT to generate an event for an ultrarelativistic

heavy-ion collision [1], [3]. This information will be updated

during the parton cascade through two-parton collisions. In

our previous publication [23], we reported a speedup of

around 60 for the detection of the first two-parton collision in

Pb-Pb collisions at sqrt(sNN)=2.76 TeV, where we used

single precision in our calculations. In this work, all of our

calculations are carried out by using double precision. The

algorithm for simulating parton cascade in the N-parton

system is formulated in the following three sub-sections and is

implemented in a CUDA C code named cudarun.cu. The

output of PCG are the space-time and momentum-energy

information for all of the N partons at their last collisions and

are stored in the data structures that store the main input

information. These data structures are eight arrays of double

precision. Due to space limitations, we intend to describe

more details of all of the data structures and pseudo-code, in a

separate paper. However in APPENDIX A, interested readers

may have a brief sketch about the infrastructure of our

algorithm for PCG.

A. Detection of the First Two-Parton Collision

First of all, let program loop over all of the 0.5(N-1) N

parton pairs. In the loop, for each pair of partons, based on

calculations using the space-time and momentum-energy

information of the two partons, program can tell if the pair

collides or not according to the physical [21] and geometrical

collision criteria as defined in ZPC [3]. If a pair collides then

the collision time for that pair is saved in global memory,

together with their indices. What follows is the calculation of

the smallest collision time among all of the collision time for

all of the colliding pairs. For the calculation, we used a

reduction procedure [23] where shared memory on GPU is

utilized. The first collision is detected to happen between the

pair of partons that collide at the smallest collision time.

Using CUDA C, we implemented the aforementioned

algorithm for GPU in a CUDA kernel named datTime() and it

is launched with the block size set to be 128, according to the

calculation using CUDA Occupancy Calculator [13]. The

algorithm for the detection of the first two-parton collision is

pretty much as previously reported in [23], however is

modified in this work to use double precision. Furthermore, in

this work during the detection of the first two-parton collision,

we have the collision time and the indices of the colliding two

partons for all of the colliding pairs saved in global memory.

These saved data may be updated during the simulation of the

whole parton cascade process, and are reused for the detection

of the next earliest two-parton collision, as one may see in the

following two sub-sections.

B. Simulation of Two-Parton Collision

Once the indices of the colliding two partons and their

collision time have been determined for the first or the next

earliest two-parton collision, the immediate task is to simulate

the two-parton collision. Following the laws of the

perturbative quantum chromodynamics [21], simulation of

two-parton collision has been implemented in several

FORTRAN subroutines in ZPC [3]. In this work, the

simulation of two-parton collision is realized through

invoking of these subroutines within the context of our CUDA

C code named cudarun.cu. These subroutines were not

rewritten in CUDA C because we found that they are not

suitable to be parallelized. Executing these subroutines moves

the involving two partons to the new location where collision

happens at the collision time. In addition, through calling

those subroutines, PCG updates their momenta and energies,

and thus their speeds. Therefore PCG actually simulates

two-parton collision on CPU, exactly as ZPC does.

C. Collision Detection for the Next Two-Parton Collision

After simulation of the just happened two-parton collision,

the space-time as well as momentum-energy information for

the two partons have been renewed. Because it is based on

calculations using the space-time and momentum-energy

information that PCG determines if a pair of partons will

collide or not, and when to collide if the pair collides, it is

necessary that before detecting the next earliest two-parton

collision, the collision time for each of the just collided

partons with other partons need to be updated if they will

collide. The counting of the number of colliding pairs as well

as the calculation of the collision time for each of those pairs

that contain one of the just collided two partons are realized

through invoking a CUDA kernel named

ijUpdatTime(…,i,…), where i stands for the index of one of

those two just collided two partons. Hence for the detection of

the next earliest two-parton collision, this kernel is invoked

two times, once for each of the just collided two partons. It

can be inferred that the update by invoking CUDA kernel

ijUpdatTime(…,i,…) concerns with the parallelized

calculation of collision time for 2(N-2) pairs. It is

worth-mentioning that all of the collision time for the rest

parton pairs are left unchanged in the global memory at this

stage and can be accessed for the detection of the next earliest

two-parton collision. Given all the collision time and indices

for all the colliding pairs of partons, the rest task for detecting

the next earliest two-parton collision is partly done through a

reduction procedure [23] that has been used for the detection

of the first two-parton collision illustrated in sub-section A.

For this job we implemented a CUDA kernel named

updatTime(), which also updates the number of colliding

pairs by ignoring those pairs that will not collide according to

the result from ijUpdatTime().

IV. RESULTS

A. Correctness Check and Speedups for One Event

PCG is developed to take advantages of the high

performance that a multi-core GPU provides for general

purpose computing. It has to be correct in order to be

integrated into AMPT or similar transport code to accelerate

Monte Carlo event generation for ultrarelativistic heavy-ion

collisions. We validate the correctness of PCG by checking

the collision history from PCG with that from ZPC during the

simulation of the parton cascade process in an N-parton

system. The information contained in the collision history

includes space-time and momentum-energy information for

both of the two partons that are involved in a two-parton

collision, for all the two-parton collisions in the cascade

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

440

process, not only right before the two-parton collision but also

right after the two-parton collision. We have examined the

collision history for various types of heavy-ion collisions of

Pb – Pb at sqrt(sNN)=2.76 TeV, which is the top LHC(Large

Hadron Collider) energy. The result of the examination,

together with the computing time for the simulation of the

parton cascade process is tabulated in Table I, where t_ZPC

and t_PCG stand for the computing time used for simulating

the parton cascade by ZPC and PCG, respectively. As a result

of the examination by using UNIX command diff, we have

found that ZPC and PCG record the same two-parton collision

history for each of the heavy-ion collisions with the impact

parameter b ranging from 0 to 10 fm. It means PCG passed the

correctness check. Therefore PCG can correctly simulate

parton cascade as ZPC can, however with the exploitation of

the powerful parallel processing capability GPUs have to

offer for general purpose computing.

TABLE I: RESULTS ON CORRECTNESS CHECK AND COMPUTING TIME FOR

SIMULATING THE PARTON CASCADE IN AN N-PARTON SYSTEM GENERATED

IN ONE MONTE CARLO EVENT FOR PB –PB COLLISIONS AT SQRT(SNN)=2.76

TEV WITH VARIOUS IMPACT PARAMETERS

b(fm) check N t_ZPC(s) t_PCG(s) speedup

0 passed 43725 419.05 133.80 3.1x

1 passed 45145 494.31 159.38 3.1x

2 passed 40858 331.08 107.76 3.1x

3 passed 37230 259.24 85.37 3.0x

4 passed 30939 175.47 57.86 3.0x

5 passed 28908 144.41 48.79 3.0x

6 passed 22324 75.20 28.08 2.7x

7 passed 21138 74.26 29.22 2.5x

8 passed 17222 46.42 19.79 2.3x

9 passed 13781 28.16 14.08 2.0x

10 passed 10159 12.88 7.77 1.7x

TABLE II: COMPUTING TIME AND SPEEDUP FOR SIMULATING THE PARTON

CASCADE IN A COLLISION OF PB-PB AT SQRT(SNN)=2.76 TEV WITH

VARIOUS IMPACT PARAMETERS BY RUNNING ZPC COMPARED WITH THAT

BY RUNNING PCG, WITHOUT THE OVERHEAD OF WRITING ONTO DISK THE

DATA ABOUT PARTON COLLISION HISTORY

b(fm) N t_ZPC(s) t_PCG(s) speedup

0 43725 410.04 120.45 3.4x

1 45145 465.30 144.65 3.2x

2 40858 321.26 95.40 3.4x

3 37230 251.25 75.56 3.3x

4 30939 160.41 50.54 3.2x

5 28908 138.43 41.89 3.3x

6 22324 71.34 23.81 3.0x

7 21138 70.40 24.62 2.9x

8 17222 43.45 16.83 2.6x

9 13781 25.97 11.60 2.2x

10 10159 11.65 6.33 1.8x

From Table I, one may also see that PCG has a higher

computing efficiency than ZPC for simulating the parton

cascade in a heavy-ion collision of Pb-Pb at sqrt(sNN)=2.76

TeV. This is an indication that parallelized collision detection

exploiting the GPU’s multi-core parallel processing

capability in simulating the parton cascade are helpful for

saving computing resources. Certainly the speedup, which is

the ratio of t_ZPC over t_PCG in Table I, depends on what

hardware and software one uses. The GPU we used is

NVIDIA C1060 card [24]. In APPENDIX B we listed in more

detail the hardware and software that were used for obtaining

the results we presented this paper.

One may note is that the 2x to 3x speedups shown in the

Table I may be improved if ignoring the time used for writing

onto disk the data, which defines the parton collision history.

To make the point convincible we tabulated in Table II the

time ZPC, together with PCG, used for simulating the parton

cascade without the overhead of writing the onto disk the data

about parton collision history. What we can tell comparing

Table I with Table II is that better speedups can be expected

for simulating the parton cascade in an N-parton system

formed in a Pb-Pb collision during data production when it

may not be necessary to record parton collision history.

B. Speedups for Statistically Significant Number of Events

Though we see in both Table I and Table II that PCG can

gain 2 to 3-fold speedup relative to ZPC, it has to be noted that

the speedup is just out of analysis of simulating the parton

cascade in one event. In order to come to a solid conclusion as

for what a speedup PCG can gain, we use both ZPC and PCG

to simulate the parton cascade in AMPT-based generation of

hundreds of events for Pb – Pb collisions at sqrt(sNN)=2.76

TeV, respectively. The event-averaged computing time for

the simulation of the parton cascade in one event was

tabulated in Table III, together with the average speedup that

we gained by using PCG. The errors are statistical, and are

calculated as the standard deviation. From Table III, one may

come to the same conclusion as from Table II, i.e. relative to

ZPC we may gain 2 to 3 fold speedup by using PCG in the

simulation of the parton cascade process varying with the

impact parameter b. Because for the time being PCG

simulates two-parton collision on CPU the same way as ZPC

does, the speedup of PCG relative to ZPC may be attributed to

the parallelized simulation of the collision detection on the

GPU.

TABLE III: AVERAGE SPEEDUP AND COMPUTING TIME FOR SIMULATING THE

PARTON CASCADE IN GENERATING MONTE CARLO EVENTS FOR PB-PB

COLLISIONS AT SQRT(SNN)=2.76 TEV BY USING ZPC COMPARED WITH

THAT BY USING PCG

Number

of events
b(fm) <t_ZPC>(s) <t_PCG>(s) <speedup>

760 1 518.5 4.5 152.2 1.3 3.42 0.01

960 10 12.7 0.2 5.60.1 2.20 0.01

V. SUMMARY AND CONCLUSION

On the basis of ZPC, we have introduced a GPU-based

algorithm for accelerating the simulation of the parton

cascade process in the early stage of ultrarelativistic

heavy-ion collisions. Implementing the algorithm, we have

developed a code called PCG (Parton Cascade on GPU) by

using CUDA C. Running both ZPC and PCG, we simulated

parton cascade in AMPT-generated heavy-ion collision

events of Pb - Pb at sqrt(sNN)=2.76 TeV with impact

parameter b ranging from 0 to 10 fm. We compared results

from running ZPC on CPU with those from running PCG. The

comparison demonstrates that PCG can give the same parton

collision history as ZPC does thus the correctness of PCG is

proved. Additionally, the comparison shows that by using

PCG speedups in the range of 2x to 3x can be obtained relative

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

441

to ZPC in our computing environment. Therefore PCG is

ready for being integrated into AMPT and can help save huge

amount of computing resources in the case of AMPT-based

large scale Monte Carlo event generation for ultrarelativistic

heavy-ion collisions at sqrt(sNN)=2.76 TeV.

APPENDIX A

Cudarun (x, y, z, w, px, py, pz, pw, …, N) may also be

invoked in AMPT thus space-time and momentum energy

information for N partons are ready for parton cascade. The

information are contained in the following data structures:

double x[N], y[N], z[N], w[N], px[N], py[N], px[N], pw[N].

The sketch for algorithm of PCG:

cudarun (x, y, z, w, px, py, pz, pw, …, N){

step1: after memcpy(…), on device datTime(…) calculates

for each parton the number of collisions, and for each

collision the collision time and indices of the two colliding

partons; uses a shared-memory-based reduction procedure to

get and then save in global memory the smallest collision time

in each block of threads, together with the indices of the two

colliding partons;

step2: after using memcpy (…), on host calculate

t_collision_time for the first two-parton collision and the

indices of the two colliding partons i and j;

step3:

while (t_collision time <t_preset_threshold) {

step3_1: on host, simulate two_parton collision between

parton i and j and update x[i], y[i]], z[i], w[i], x[j], y[j], z[j],

w[j], px[i], py[i], pz[i], pw[i], px[j], py[j], pz[j], pw[j];

step3_2: after memcpy(…), on device ijUpdatTime(…,

i, …) updates collision time and indices for all of the colliding

pairs that include i;

step3_3: after memcpy(…), on device ijUpdatTime(…,

j, …) updates collision time and indices for all of the colliding

pairs that include j;

step3_4: on device updatTime(…) updates for each parton

the number of collisions, and for each collision the collision

time and indices of the two colliding partons, one of which is

either i or j; uses a shared-memory-based reduction procedure

to get and then save in global memory the smallest collision

time in each block of threads, together with the indices of the

two colliding partons;

step3_5: after memcpy(…), on host update

t_collision_time for the next earliest two-parton collision and

the indices of the two colliding partons i and j;

}

}

APPENDIX B

The version of AMPT, which generates the parton system

for both PCG and ZPC to simulate parton cascade, is

v1.26t4-v2.26t4. The compiler [25] we used to compile code

written in FORTRAN is GNU FORTRAN (GCC) 4.1.2

20080704 (Red Hat 4.1.2-44). The compiler options for

gfortran are -fdefault-real-8 -O2. For compiling our CUDA C

code cudarun.cu, which contains three kernels datTime(),

ijUpdatTime() and updatTime(), we in command line issued

nvcc –arch=sm_13 –O2 –c cudarun.cu. The computing

environment for this work mainly consists of one core of CPU

that is Intel Xeon E5410 @ 2.33GHz, and one GPU that is

NVIDIA C1060 Tesla T10 [24], in addition to CUDA3.2 [13]

and Red Hat 4.1.2-44 Linux 2.6.18-128.el5 for x86_64. The

CUDA C codes as well as the FORTRAN subroutines PCG

uses are available per request.

ACKNOWLEDGMENT

Qing-Jun Liu would like to thank Professors Zi-Wei Lin

and Bin Zhang for helpful discussions and allowing us to use

AMPT and ZPC code, on which this work is based.

Computing support is provided by the Supercomputing

Center, Computer Network Information Center, Chinese

Academy of Sciences.

REFERENCES

[1] Z. W. Liu, C. M. Ko, B. A. Li, and S. Pal, “A multi-phase transport

model for relativistic heavy ion collisions,” Phys. Rev. C, vol. 72, no.

064901, December 2005.

[2] M. Gyulassy and X. N. Wang, “HIJING 1.0: A monte carlo program for

parton and particle production in high-energy hadronic and nuclear

collisions,” Comput. Phys. Commun., vol. 83, pp. 307–331, December

1994.

[3] B. Zhang, “ZPC 1.0.1: A parton cascade for ultrarelativistic heavy ion

collisions,” Comput. Phys. Commun., vol. 109, pp. 193–206, April

1998.

[4] B. A. Li and C. M. Ko, “Formation of superdense hadronic matter in

high-energy heavy ion collisions,” Phys. Rev. C., vol. 52, pp.

2037-2063, October 1995.

[5] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A brief introduction to

PYTHIA 8.1,” Comput. Phys. Commun., vol. 178, no. 1, pp. 852-867,

2008

[6] M. Bahr et al., “Herwig++ Physics and Manual,” Eur. Phys. J. C, vol.

58, no. 4, pp. 639-707, December 2008.

[7] X. N. Wang and M. Gyulassy, “Gluon shadowing and jet quenching

in A+A collisions at √s =200 A GeV,” Phys. Rev. Lett., vol. 68, pp.

1480-1483, March 1992.

[8] L. Lonnblad and T. Sjostrand, “Bose-Einstein effects and W mass

determinations,” Phys. Lett. B, vol. 351, pp. 293-301, May 1995.

[9] H. Stocker et al., “Nuclear fluid dynamics versus intranuclear

cascade-possible evidence for collective flow in central high-energy

nuclear collisions,” Phys. Rev. Lett., vol. 47, pp. 1807-1810, December

1981.

[10] S. Agostinelli et al., “Geant4 — a simulation toolkit,” Nucl. Instrum.

Meth. A, vol. 506, no. 3, pp. 250–303, July 2003.

[11] J. Allison et al., “Geant4 developments and applications,” IEEE Trans.

on Nucl. Sci., vol. 53, no. 1, pp. 270–278, February 2006.

[12] W. Lukas, “Fast simulation for ATLAS: Atlfast-II and ISF,” J. Phys.:

Conf. Ser., vol. 396, no. 022031, December 2012.

[13] NVIDIA Corporation, CUDA Toolkit, version 3.2, November 2010.

[14] R. Farber, CUDA Application Design and Development, 1st ed. USA:

Morgan Kaufmann, November 2011.

[15] Y. Cotronis, E. Konstantinidis, M. A. Louka, and N. M. Missirlis, “A

comparison of CPU and GPU implementations for solving the

convection diffusion equation using the local modified SOR method,”

Parallel Computing, vol. 40, pp. 173-185, July 2014.

[16] C. Harris, K. Haines, and L. S. Smith, “GPU accelerated radio

astronomy signal convolution,” Exp. Astron. vol. 22, pp. 129-141,

October 2008.

[17] M. S. Friedrichs et al., “Accelerating molecular dynamic simulation on

graphics processing units,” J. Comput. Chem., vol. 30, pp. 864–872,

April 2009.

[18] C. M. Bard and J. C. Dorelli, “A simple GPU-accelerated

two-dimensional MUSCL-hancock solver for ideal

magnetohydrodynamics,” J. Comput. Phys., vol. 259, pp. 444-460,

February 2014.

[19] PHENIX Collaboration, “Formation of dense partonic matter in

relativistic nucleus-nucleus collisions at RHIC: Experimental

evaluation by the PHENIX collaboration,” Nucl. Phys. A, vol. 757, pp.

184-283, August 2005.

[20] G. L. Murphy, “Big-Bang model without singularities,” Phys. Rev. D,

vol. 8, pp. 4231-4233, December 1973.

[21] B. L. Combridge, J. Kripfgang, and J. Ranft, “Hadron production at

large transverse momentum and QCD,” Phys. Lett. B, vol. 70, pp.

234-238, September 1977.

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

442

http://www.sciencedirect.com/science/journal/00219991

[22] R. Li, H. Jiang, H. C. Su, J. Jenness, B. Zhang, “Speculative

Parallelization of Many-particle Collision Simulations,” in Proc. the

2007 International Conference on Parallel and Distributed

Processing Techniques and Applications, June 2007, pp. 128–136.

[23] Q. J. Liu, F. Liu, N. Nie, C. Zhou, and W. Q. Zhao, “GPU-based first

collision detection in parton cascade in heavy-ion collisions,” in Proc.

the International Conference on Electrical, Electronics, Computer

Engineering and their Applications, Kuala Lumpur, Malaysia, pp.

12–15, November 2014.

[24] NVIDIA Corporation. (2008). Tesla C1060 Computing processor

board. [Online]. Available:

http://www.nvidia.com/docs/IO/56483/Tesla_C1060_boardSpec_v03

.pdf, September

[25] GCC Team. (February 2007). [Online]. Available:

https://gcc.gnu.org/gcc-4.1/

Qingjun Liu received the BS degree in 1986, MS degree in 1989, and Ph.D.

degree in 1993, respectively, in theoretical physics from JILIN University,

Changchun, China.

 His major research fields are high energy physics and computational

physics. Since 2004, he has been a professor of physics in the Beijing

Institute of Petro-chemical Technology, Beijing, China. In the period of

1994 to 2003, he worked as a Posdoc. in the Theoretical Physics Division,

Institute of High Energy Physics (IHEP), Chinese Academy of Sciences,

Beijing China; a research associate in the Department of Physics, University

of Washington, Seattle, USA; a computing scientist in the Computing Center

of IHEP, Beijing, China and a visiting computing scientist at the Computing

Division of Fermilab, USA. His current research interest is GPU-accelerated

Monte Carlo simulation of ultra-relativistic heavy-ion collisions. His major

publications include: 1) Q. J. Liu and T. A. Trainor, “Jet quenching and

event-wise mean-pt fluctuations in Au-Au collisions at √sNN = 200 GeV in

Hijing-1.37,” Phys. Lett. B, vol. 567, pp. 184-188, August 2003. 2) Q. J. Liu

and W. Q. Zhao, “Elastic parton scattering and non-statistical

event-by-event mean-pt fluctuations in Au - Au collisions at RHIC,” Phys.

Rev. C, vol. 77, no. 034902, March 2008. 3) Q. J. Liu and W. Q. Zhao,

“Iterative Solution for Groundstate of H2+ Ion,” Commun. in Theor. Phys.,

vol. 53, no. 01, pp. 57-62, January 2010.

Fang Liu received the BS degree in 2005 in Nanjing

University, the Ph.D. degree in 2010 in the Institute of

Software, Chinese Academy of Sciences, where she

received The Excellence Award of the Presidential

Academy Awards. Since 2010, she has been working in

Supercomputing Center, Computer Network

Information Center, Chinese Academy of Sciences,

China. She was promoted to associate professor at the

beginning of this year. Her major research field is high performance

computing, general purpose computing on gpu. Her major publications

include: 1) F. Liu, M. Huang, X. Liu, and E. Wu, “efficient depth peeling via

bucket sort,” in Proc. ACM High Performance Graphics, 2009, New York:

ACM Press, pp. 51-57. 2) F. Liu, M. Huang, X. Liu, and E. Wu, “FreePipe: A

programmable, parallel rendering architecture for efficient multi-fragment

effects,” in Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games, 2010, New York: ACM Press, pp. 75-82.

Ningming Nie received the BS degree in 2005 in

information and computing science in Xiangtan

University, and the Ph.D. degree in 2010 in Academy of

Mathematical & Systems Science, Chinese Academy of

Sciences, China. Since 2010, she has being working in

Supercomputing Center, Computer Network

Information Center, Chinese Academy of Sciences,

China. She was promoted to associate professor at the

beginning of this year. Her major research field is High

Performance Computing. Her major publications include: 1) N. Nie, J.

Huang, W. Wang, and Y. Tang, “solving spatial-fractional partial

differential diffusion equations by spectral method,” J. of Stat. Comput. and

Simul., vol. 84, no. 6, 2014. 2) J. Huang, N. Nie, and Y. Tang, “A second

order finite difference-spectral method for space fractional diffusion

equation,” Science China Mathematics, vol. 57, no. 6, pp. 1303–1317, 2014.

Chunbao Zhou received the Ph.D. degree in 2012 in the

College of Computer Science and Technology in Ji-Lin

University, China. Since 2012, he has been working in

Supercomputing Center of CAS, Computer Network

Information Center, Chinese Academy of Sciences,

China.

 His major research field is high performance

computing and bioinformatics. his major publications

include: 1) C. Zhou, X. Lang, Y. Wang, C. Zhu, Z. Lu,

and X. Chi, “Parallel metropolis coupled Markov chain Monte Carlo for

isolation with migration model,” Appl. Math. Inf. Sci., vol. 7, pp. 219-224,

2013. 2) C. Zhou, J. Wang, Y. Wang, and Y. Liang, “Identification of

phage-induced genomic islands in the 13 Streptococcus pyogenes strains

using genome barcodes,” Int. J. of Data Mining and Bioinformatics, vol. 10,

no. 3, pp. 269-284, 2014.

International Journal of Computer Theory and Engineering, Vol. 8, No. 6, December 2016

443

http://www.nvidia.com/docs/IO/56483/Tesla_C1060_boardSpec_v03.pdf
http://www.nvidia.com/docs/IO/56483/Tesla_C1060_boardSpec_v03.pdf
https://gcc.gnu.org/gcc-4.1/
http://www.tandfonline.com/loi/gscs20?open=84#vol_84
http://www.tandfonline.com/toc/gscs20/84/6

