

Abstract—Big data and Cloud computing are emerging as

new promising technologies, gaining noticeable momentum in

nowadays IT. Nowadays, and unprecedentedly, the amount of

produced data exceeds all what has been generated since the

dawn of computing; a fact which is mainly due to the

pervasiveness of IT usage and to the ubiquity of Internet

access. Nevertheless, this generated big data is only valuable if

processed and mined. To process and mine big data,

substantial HPC (high-performance computing) power is

needed; a faculty which is not that affordable for most, unless

we adopt for a convenient venue, e.g., cloud computing. In this

paper, we propose a blue print for deploying a real-world HPC

testbed. This will help simulating and evaluating HPC relevant

concerns with minimum cost.

Indeed, cloud computing provides the unique opportunity

for circumventing the initial cost of owning private HPC

platforms for big data processing, and this by providing HPC

as a service (HPCaaS). In this paper, we present the subtleties

of a synergetic “fitting” between big data and cloud computing.

We delineate opportunities and address relevant challenges. To

concretize, we advocate using private clouds instead of public

ones, and propose using Hadoop along with MapReduce, on

top of Openstack, as a promising venue for scientific

communities to own research-oriented private clouds meant to

provide HPCaaS for Big data mining.

Index Terms—High-performance computing, cloud

computing, big data, Hadoop.

I. INTRODUCTION

Big data and cloud computing are emerging as new

promising IT fields that are substantially changing the way

humans dealt with data forever. During the last decade, data

generation grew exponentially. IBM estimated data

generation rate to 2.5 quintillion bytes per day, and that 90%

of the data in the world today has been generated during the

last two years [1].

In the last decade, IT witnessed a significant boost in the

ubiquity of Internet access especially with the recent

advances in mobile networking technologies (e.g., Wi-Fi,

Wi-Max, Bluetooth, RFID, 3G, 4G) and smart phones (e.g.,

Android, iOS). This substantially contributed to the

exponential growth of data generation since users can easily

access the Internet wherever, whenever, and using whatever

device. This increase in data size, variance, and frequency is

referred to by “Big Data”.

However, this big data is of no value if not processed and

mined. To reach this end, significant HPC is needed. Most

Manuscript received November 6, 2014; revised March 1, 2015.

Mohamed Riduan Abid is with Alakhawayn University, Ifrane, Morocco

(e-mail: R.Abid@aui.ma).

importantly, the HPC service should be scalable because

more and more “users” are becoming interested in big data

processing and mining. In fact, to nowadays organization,

HPC is becoming an essential part of business success.

Scalability was not the issue with the preceding Grid

computing technology where communities (e.g.,

universities, research labs, organizations) were sharing HPC

resources. The issue, instead, was the heterogeneity of the

different components of the Grid, and the resulting

interfacing complexities. This resulted in the need of a

middleware layer masking the heterogeneity. Cloud

computing emerges as a potential information technology,

inheriting much of the Grid computing paradigm, mainly in

terms of resource sharing; And unlike Grid computing, it

offers scalability while providing “All” as a service, via the

Internet/Cloud.

Cloud computing is a paradigm based on providing

computing as a utility (e.g., electricity, water, and phone),

whereby usage is metered and the client pays only per-use

(when using public clouds). The payment model depends

basically on the adopted cloud deployment model: With the

public deployment model, users pay per-use, whereas with

the private model, users pay none, and the overall cost of

maintaining and running the cloud is taken care of by the

authority owning the cloud, e.g., research communities.

There are plenty of services offered by the Cloud. Still,

according to NIST [2] three of them constitute the

fundamental ones: SaaS (Software as a Service), PaaS

(Platform as a Service), and IaaS (Infrastructure as a

Service).

A synergetic fitting rises between cloud computing and

data mining. On one hand, big data is in crucial need of

“scalable” HPC services; on the other hand cloud computing

has been tailored to provide computing services. Regarding

big data processing and mining, the cloud offers HPCaaS

(High-Performance Computing as a Service). The latter is a

variation of the NIST’s defined IaaS.

II. HPCAAS

High Performance Computing (HPC) has been around

since the dawn of computing, and it was used to solve and

analyze complex problems requiring substantial compute

power in terms of both processing and storage.

The first form of HPC used supercomputers and

mainframes in the late 60’s. These were very expensive and

restricted to big companies. To circumvent the

expensiveness of owning supercomputers and mainframes,

cluster computing emerged at a later stage. In 1990, Donald

Becker succeeded in providing HPC by connecting off-the-

shelf desktop computers. This gave birth to the well-known

HPC (High-Performance the Computing) for Big Data on

Cloud: Opportunities and Challenges

Mohamed Riduan Abid

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

423DOI: 10.7763/IJCTE.2016.V8.1083

mailto:R.Abid@aui.ma

Beowulf clusters [3]. Afterwards, Grid computing emerged

as the common means of HPC among scientific community.

These former HPC forms faced a set of challenges that

consist in peak demand, high capital, and high expertise to

acquire and operate the HPC [4]. To deal with these issues,

HPC experts have leveraged the benefits of new technology

trends including, cloud technologies, parallel processing

paradigms and large storage infrastructures. Merging HPC

with these new technologies lead to a new HPC model,

called HPC as a service (HPCaaS).

HPCaaS is an emerging computing model where end

users have on-demand access to pre-existing needed

technologies that provide high performance and scalable

HPC computing environment [5]. HPCaaS provides

unlimited benefits because of the better quality of services

provided by the cloud technologies, and the better parallel

processing and storage provided by, for example, Hadoop

Distributed System [6] and MapReduce [7], [8].

There are plenty of HPCaaS providers in the market. An

example of HPCaaS provider is Penguin Computing [9]

which has been a leader in designing and implementing high

performance environments for over a decade. Nowadays, it

provides HPCaaS with different options: On-Demand,

HPCaaS as private services and hybrid HPCaaS services.

Amazon Web Services is also an active HPCaaS in the

market; it provides simplified tools to perform HPC over the

cloud. HPCaaS on AWS is currently used for Computer

Aided Engineering, molecular modeling, genome analysis,

and numerical modeling across many industries including

Oil and Gas, Financial Services and Manufacturing. Other

leaders of HPCaaS include Windows Azure HPC and

Google Compute Engine.

III. BIG DATA AND CLOUD COMPUTING: OPPORTUNITIES

There is a consensus about the potentialities of Cloud

computing as a new emerging IT. Topworld-wide IT

companies (e.g., Amazon, Google, IBM, Microsoft and

Oracle) already enrolled into a tough competitive race

towards gaining the best “positions” in the promising global

market of cloud computing. Those who have seen Larry

Ellison’2009 (Oracle CEO) tirade on cloud computing as

nothing other than a hyperbole may be surprised to the see

that Oracle now provides pay-per-use services in the cloud

and hardly leveraging its Virtual Box. Indeed, Oracle is

hardly striving to gain a better position especially that a

major portion of the Database business is quickly migrating

to the cloud through DaaS (database as a service). Still, the

ordinary SQL (structured query language) and RDBMS

(Relational Database Management Systems) models prove

to be inadequate for big data. The latter mostly falls in the

category of K-V (key-value) pairs, where the compute-

extensive RDBMS “join” operations are irrelevant. Besides,

big data will not frequently use the ordinary “update”,

“delete”, and “add” RDBMS SQL operations. Last, but not

least, the semi-structured and unstructured data sets

constitute the two fastest growing big data types in the

digital universe. The processing and mining of these two

data types will not be possible with traditional RDBMS.

In this context, NoSQL (Not Only Structured Query

Language) [10] is emerging as the alternative towards

transition from RDBMS to non-relational databases.

We classify the major opportunities for big data in cloud

computing into four main ones:

1) Supporting non-Relational Data Processing Models:

Thanks to the abundance of storage and processing

power, the cloud can provide the ideal infrastructure for

storing big data, and supporting relevant HPC tools.

2) Initial Cost Circumventing: To own an HPC capability

for big data mining, huge investments are needed; in

other words one definitely needs a “Data center” whose

size depends on “how much” big data will processed,

and “how many” big data jobs are to run in parallel.

With cloud computing, we can start storing and mining

our big data with an initial cost of zero.

3) Maintenance and Running Costs: Unlike with data

centers, where qualified personnel are needed (e.g.,

technicians and engineers) to run and maintain the

infrastructure, with cloud computing we do not.

4) Elasticity: With cloud computing, a user can ask for the

exact amount of HPC processing he needs (usually

counted by the number of vCPUs). If more is needed,

users can ask for it and get it instantly. Besides, the user

can always revert back to the initial settings whenever

needed, e.g., as a result of a sharp decrease in demand.

IV. BIG DATA AND CLOUD COMPUTING: CHALLENGES

There are plenty of challenges to address regarding the

use of cloud computing for big data mining. Still, we

delineate three as the major ones:

1) Dependability: With Cloud computing, you own

nothing. Since “All” is taken care of by the cloud

service provider, then “All” is “owned” by the provider.

2) Privacy: Since big data needs to be migrated to the

cloud provider’s servers in order to be processed, it can

stay there forever, e.g., by copying it. Furthermore, the

algorithms to run on the big data, and the relevant

results, can always be “used” by a third part unless we

use advanced encryption methods, and send data in an

encrypted form.

3) Mapping Mining Algorithms into MapReduce Jobs:

Most HPC platforms are opting for the MapReduce [7],

[8] programming whereby mining algorithms need to be

transmuted into a set of independent jobs that run in

parallel. The MapReduce programming model is

different from the usual programming models, e.g.,

object-oriented or structured. Thus, the transmutation of

these algorithms to fit in the MapReduce model would

constitute a major challenge as well.

V. PRIVATE HPC CLOUDS: THE BEST VENUE FOR

SCIENTIFIC COMMUNITIES?

To mainly address the challenges of dependability and

privacy, we advocate opting for the private cloud

deployment model. In the latter, an authority (e.g., research

community, universities consortium) has owns and runs the

HPC infrastructure, and each member in the

community/consortium would participate by a portion of the

required infrastructure(e.g., servers, engineers). By sharing

the resources, the community members can reach an optimal

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

424

and efficient use of the HPC infrastructure.

In this paper, we propose the use of Hadoop [6] on top of

the open-source Openstack cloud computing platform [11].

Besides, we recommend adopting the MapReduce

programming model [7], [8] to run big data processing and

mining tasks, see Fig. 1.

Control Plane
Back Office

Application
Server

Hadoop Cluster

HDFS

NameNode

Sends Data

MapReduce

JobTracker

Node

HDFS

Client

MapReduce

Program

JobClient

HDFS

DataNode

MapReduce

TaskTracker

Node

HDFS

DataNode

MapReduce

TaskTracker

Node

HDFS

DataNode

MapReduce

TaskTracker

Node

User

Web
Interface

Fig. 1. The general architecture of the HPC service in a private cloud.

Fig. 1 depicts the general architecture of the proposed

infrastructure. By connecting to the private cloud using the

Internet (http), users can submit their jobs and data via a

web interface. The latter implements the relevant business

logic, and decides on the appropriate action to undertake. In

fact, the web server/interface plays the role of a proxy server

which forwards users “requests” using two main flows:

1) Towards the Hadoop HDFS (Hadoop Distributed File

System) Client which is responsible of establishing

communication with the underlying Hadoop HDFS file

system. The HDFS client forwards the data to the

appropriate HDFS Namenode. The latter is responsible

for dividing the big data into chunks, replicating them,

and keeping track of their location. The selection of the

appropriate locations (i.e., HDFS Datanodes) depends

mainly on load-balancing, i.e., keeping balanced loads

(in terms of free storage capacity) between the different

HDFS Data nodes.

2) Towards the Application server which runs the

MapReduce Jobclient entity. The latter is responsible

for establishing communication with the Hadoop

MapReduce platform, and contacting the appropriate

Jobtracker node which monitors the tracking of

submitted jobswhile on the run. The Jobtracker divides

jobs into relevant sub-tasks and assigns them to specific

individual Tasktracker nodes depending on load-

balancing and data locality. The latter stipulates that a

job’s sub-tasks should run on the HDFS Datanode

containing the data in order to avoid the expensive cost

of moving big data over the network.

VI. REAL-WORLD HADOOP TESTBED INSTALLATION

This section presents a real-world deployment of a

Hadoop cluster that has been deployed to simulate the

environment of a web search engine.
This Hadoop cluster is constructed using:

1) Ubuntu Linux 12.04 LTS ,Ubuntu Linux 11.10 and

Ubuntu Linux 13.04

2) Hadoop 1.2.1

A. Cluster Structure

We built a multi-node cluster using four slave machines

having (Hostname, IP Address) as follows:

 (node1, 10.50.1.9)-(node2, 10.50.1.199)-(node3,

10.50.1.139)-(node4, 10.50.1.242)

One master node which has as (Hostname, IP Address):

 (master, 10.50.1.126)

B. Run Single Node Hadoop Cluster

Before running the Multi-Node Hadoop cluster, we

started by setting up five single-node Hadoop ones. We

describe here the detailed steps for setting up this pseudo-

distributed single-node Hadoop cluster, running on Ubuntu

Linux machines.

As a prerequisite, Hadoop requires a Java installation. We

installed Java 1.6.

1) Creating a Hadoop system user

We used a special Hadoop account to run our cluster. The

purpose is the separation of the Hadoop installation from

other software applications running on the same machine.

1) Create a special group called hadoop

 sudoaddgrouphadoop

2) Create user hduser and add him to the group hadoop

 Sudoadduser—ingrouphadoophduser

2) Configuring SSH

Hadoop requires SSH access to access and manage the

nodes. For our single-node setup of Hadoop, we need to

configure SSH access to the localhost for our Hadoop user

called hduser.

We started by setting up SSH and we ran it on the five

machines and configured it to allow SSH public key

authentication:

1) Install SSH client

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

425

 sudo apt-get install openssh-client

2) Install SSH server

 sudo apt-get install openssh-server

Second, we generated an SSH key for the Hadoop user

(hduser)

 su-hduser

 hduser@ubuntu: ssh-keygen -t rsa -P ""

Third, we enabled SSH access to the local machine with

this newly created key.

 hduser@ubuntu:~catHOME/.ssh/id_rsa.pub>>$HO

ME/.ssh/authorized_keys

Afterwards, we tested the SSH access by connecting to

the local machine with the Hadoop user (hduser).

 hduser@ubuntu:~$ sshlocalhost

This command also saves the local machine’s host key to

hduser user’s known_host file for future access.

3) Hadoop installation

We downloaded Hadoop from

(www.apache.org/dyn/closer.cgi/hadoop/core) and extracted

the contents of the Hadoop package to /usr/local.

1) Create a new directory (aka. Hadoop) and move the

untared files to it

 sudo mv hadoop-1.0.3 hadoop

2) Change the ownership of the new created directory to

the Hadoop user (hduser)

 sudochown-R hduser:hadoophadoop

4) Update $HOME/.bashrc

This file consists of a set of shell commands. It is

typically used to change prompts, set environment variables,

and define shell procedures. In this step, we appended the

following lines to the end of the $HOME/.bashrc file of user

hduser. Open HOME/.bashrcfile using:

 Sudo apt-get gedit HOME/.bashrc

5) HDFS and MapReduce configuration

a) Hadoop-env.sh

This file contains the environment variables settings used

by Hadoop, and it is used to affect some aspects of Hadoop

daemon behavior, such as where log files are stored and the

maximum amount of heap memory used.

The only variable we should change in this file is

JAVA_HOME, which specifies the path to the Java 1.6

installation used by Hadoop

Open the file using:

 Sudo apt-get gedit /usr/local/hadoop/conf/hadoop-

env.sh

Add this line to the file

 export JAVA_HOME=/usr/lib/jvm/java-6-sun

b) Create the tmpdirectory

In this section we configure the directory where Hadoop

stores its data files and the network ports it listens to.

The first step consists on creating the directory and setting

up the required ownerships and permissions:

Create the directory:

 sudomkdir -p/app/hadoop/tmp

Change the ownership of the directory to the hduser

 sudochownhduser:hadoop /app/hadoop/tmp

Make the file accessible by any user (This is not

recommended but for the purpose of testing,we made it

accessible by every user to not having any accessibility issue

later)

 sudochmod 777/app/hadoop/tmp

c) conf/core-site.xml

This file contains configuration information that overrides

the default values for core Hadoop properties.

We added the following snippets between the

<configuration></configuration> tags in the respective

configuration XML file:

<property>

<name>hadoop.tmp.dir</name>

<value>/app/hadoop/tmp</value>

<description>A base for other temporary

directories.

</description>

</property>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:54310</value>

<description>The name of the default file system.

A URI whose scheme and authority determine the

FileSystem implementation.The uri's scheme

determines the config property (fs.SCHEME.impl)

naming the FileSystem implementation class. The

uri's authority is used to determine the host, port,

etc. for a filesystem.

</description>

</property>

d) conf/mapred-site.xml

This file contains configuration information that overrides

the default values for MapReduce configuration properties.

We added the following snippets between the

<configuration></configuration> tags in the respective

configuration XML file:

<property>

<name>mapred.job.tracker</name>

<value>localhost:54311</value>

<description>The host and port that the

MapReduce job tracker runs at. If "local", then

jobs are run in-process as a single map and reduce

task.

</description>

</property>

e) conf/hdfs-site.xml

This file contains Configuration settings for HDFS

daemons: the namenode, the secondary namenode, and the

datanodes.

We added the following snippets between the

<configuration></configuration> tags in the respective

configuration XML file:

<property>

<name>dfs.replication</name>

<value>1</value>

<description>Default block replication.

The actual number of replications can be specified

when the file is created.

The default is used if replication is not specified in

create time.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

426

</description>

</property>

6) Starting Hadoop installation

The first step to start the Hadoop cluster is to format the

Hadoop file system which is implemented on top of the

local file system. We do this using the following command:

 hduser@ubuntu:~$

/usr/local/hadoop/bin/hadoopnamenode-format

The services that must be started in the single node cluster

are:

 Namenode

 Datanode

 Jps

 JobTracker

 TaskTracker

Normally, not all the services have to be started in one

machine. However, in a single node cluster all the services

are started on the same station.

To start all the services, we use the following command:

 hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

We checked if all the services are running:

 hduser@ubuntu:/usr/local/hadoop$ jps

The output looked as:

 2287 TaskTracker

 2149 JobTracker

 1938 DataNode

 2085 SecondaryNameNode

 2349 Jps

 1788 NameNode

7) Testing Hadoop installation

To test the Hadoop installation, we followed the

following steps:

1) Creating a directory in the local file system:

 hduser@ubuntu:~$ mkdir /home/hdusertestfile

2) Downloading file1.txt and file2.txt to the directory

(testfiles)

3) Copying the files from the local HDFS file system:

 hduser@ubuntu:/usr/local/hadoop$ bin/hadoopdfs-

copyFromLocal /home/hduser/testfile

/home/hduser/testfiledfs

4) Running the WordCount example job

 hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar

hadoop*examples*.jar wordcount

/home/hduser/testfiledfs /home/hduser/testfiledfsoutpute

5) Retrieving the output:

 hduser@ubuntu:/usr/local/hadoop$ bin/hadoopdfs-cat

testfiledfs /home/hduser/testfiledfsoutpute/part-r-00000

VII. RUNNING MULTI-NODE HADOOP CLUSTER

After deploying five single node Hadoop clusters, we

moved on to deploy the required steps to set up a multi-node

Apache Hadoop cluster, using the five nodes configured in

the former part.

A. Networking Configuration

The five machines must be able to reach each other over

the network. The easiest solution is to put all machines in

the same network with regard to hardware and software

configuration. In our case, the five machines are connected

to a local network using Ethernet.

To make the machines reachable from each other, we

updated /etc/hosts on all machines with the following lines:

 10.50.1.126 master

 10.50.1.9 node1

 10.50.1.199 node2

 10.50.1.139 node3

 10.50.1.242 node4

B. Establish SSH Access to Slaves

In this step, we are making the hduser on the master able

to connect to the hduser on the slaves machines , this is done

by adding the hduser@master’s public SSH key (which

should be in $HOME/.ssh/id_rsa.pub) to the

authorized_keys file of hduser@slave (in this user’s

$HOME/.ssh/authorized_keys). This is done using this

command on the master:

 hduser@master:~$ ssh-copy-id-i

$HOME/.ssh/id_rsa.pub hduser@node1

 hduser@master:~$ ssh-copy-id-i

$HOME/.ssh/id_rsa.pub hduser@node2

 hduser@master:~$ ssh-copy-id-i

$HOME/.ssh/id_rsa.pub hduser@node3

 hduser@master:~$ ssh-copy-id-i

$HOME/.ssh/id_rsa.pub hduser@node4

C. Multi-node Configuration

1) conf/masters

The file conf/masters file identifies the machines on

which Hadoop will start the secondary NameNodes.

In the master node, we updated the file /conf/masters by

adding the line:

Master(which is the hostname of the master node)

a) conf/slaves

The conf/slaves file lists the hosts, one per line, where the

Hadoop slaves’ daemons (DataNodes and TaskTrackers)

will be run.

In the master node, we updated the file /conf/slaves by

adding the lines:

 node1

 node2

 node3

 node4

b) conf/core-site.xml

We must change the configuration file conf/core-site.xml

in all machines, in this case we changed the fs.default.name

parameter (in conf/core-site.xml), which specifies the

NameNode (the HDFS master) host and port.

<property>

<name>fs.default.name</name>

<value>hdfs://master:54310</value>

<description>The name of the default file system.

A URI whose scheme and authority determine the

FileSystemimplementation. Theuri's scheme

determines the config property (fs.SCHEME.impl)

naming the FileSystem implementation class. The

uri's authority is used to determine the host, port,

etc. for a filesystem.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

427

</description>

</property>

c) conf/mapred-site.xml

Finally, we changed the HDFS replication factor

parameter, which specifies the default block replication. It

defines how many machines a single file should be

replicated to before it becomes available. We set it to 3.

<property>

<name>dfs.replication</name>

<value>3</value>

<description>Default block replication. The actual

number of replications can be specified when the

file is created. The default is used if replication is

not specified in create time.

</description>

</property>

d) Formatting the HDFS Filesystem via the Namenode

To format filesystem we used the command:

 hduser@master:/usr/local/hadoop$

bin/hadoopnamenode–format

e) Starting the multi-node cluster

To start the multi-node cluster we need to:

1) To start the HDFS daemons: the NameNodedaemonis

started on master, and DataNode daemons are started

on all slaves (node1-node2-node3-node4)

2) To start the MapReduce daemons: the JobTracker is

started on master, and TaskTracker daemons are started

on all slaves.

On the master Node, We run the command:

 hduser@master:/usr/local/hadoop$ bin/start-dfs.sh

This command starts the NameNode daemon on the

master node and the DataNode daemon on the slaves.

On the master node, we run the command:

 hduser@master:/usr/local/hadoop$ bin/start-mapred.sh

This command starts the JobTracker daemon on the

master node and the TaskTracker daemon on the slaves.

The steps to run a MapReduce job in a Multi-Node

Hadoop cluster are the same as a Single-Node one.

The followings napshot shows in which node the different

tasks are run (Fig. 2).

Fig. 2. Jobs status and corresponding tasks and nodes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an overview of a natural

fitting between big data and cloud computing. We

delineated relevant opportunities and challenges. We

delineated an architecture for deploying an HPC private

cloud, as a testbed meant basically to simulate and study

HPC relevant issues, and highlighted its main components,

e.g., Hadoop, Openstack, and MapReduce.

Furthermore, we delineated a step-by-step blueprint for

deploying Hadoopon real-world cluster. The latter can be

used to extensively simulate MapReduce Jobs.

As a future work, we are planning to deploy a real-world

implementation of the proposed architecture. The latter can

be used by most scientific communities in need of big data

processing and mining.

REFERENCES

[1] IBM. Big data at the speed of businesses. [Online]. Available:

http://www-01.ibm.com/software/data/bigdata/

[2] P. Mell and T. Grance, “The NIST definition of cloud computing,”
NIST Special Publication 800-145 (Draft).

[3] T. Sterling, Beowulf Cluster Computing with Linux, Publisher: MIT

Press, 2001.

[4] J. Ernstein and K. McMahon, “Computing on demand — HPC as a

service: High performance computing for high performance

business,” White Paper, Penguin Computing & McMahon Consulting.
[5] Y. Xiaotao, L. Aili, and Z. Lin, “Research of high performance

computing with clouds,” in Proc. International Symposium Computer

Science and Computational Technology, 2010, pp. 289-293.
[6] ApacheHadoop. [Online]. Available: http://hadoop.apache.org/

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing

on large clusters,” in Proc. the 6th USENIX OSDI, 2004, pp. 137-150.
[8] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing

on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.

107–113, 2008.
[9] Penguincomputing. [Online]. Available:

http://www.penguincomputing.com/services/hpc-cloud/pod

[10] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. M. Capretz,
“Data management in cloud environments: NoSQL and NewSQLdata

stores,” Journal of Cloud Computing: Advances, Systems and

Application, Springer Open, vol. 2, 2013.
[11] The Openstack Cloud Software. Open source software for building

private and public clouds. [Online]. Available:

http://www.openstack.org/

M. R. Abid received a PhD degree in computer

science in 2010 from Auburn University (USA). He

received the Excellence Fulbright Scholarship in 2006.
He is currently an assistant professor of computer

science at Alakhawayn University, Morocco. His

recent research interests include cloud computing, IoT
(internet of things), and wireless mesh networking.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

428

http://hadoop.apache.org/
http://www.penguincomputing.com/services/hpc-cloud/pod
http://publish.uwo.ca/~kgroling/NoSQL%20and%20NewSQL%20survey.pdf
http://publish.uwo.ca/~kgroling/NoSQL%20and%20NewSQL%20survey.pdf
http://www.openstack.org/

