

Abstract—A commonly used approach for detecting objects is

based on the techniques of “boosting” and “cascading”, which

allow for real-time detection. In this paper I have developed a

classifier for detecting horses from images or from real time

video sources. For that purpose the Haar-like features were used

to discriminate horses. Those features were used as input in a

learning algorithm, based on AdaBoost, which selects a small

number of critical visual features from a larger set and yields an

extremely efficient classifier.

Index Terms—Horse detection, object detection, haar-like

features, adaboost.

I. INTRODUCTION

Object detection is an important element of various

computer vision areas. The basic goal is to find an object of a

predefined class in static images or video frames. Sometimes

this task can be handled by extracting certain image features,

such as edges, color regions, textures, contours, etc.

Afterwards, some heuristics is applied to find configurations

and/or combinations of those features characteristics of the

object that one wants to detect. But, for complex objects, such

as horses, it is hard to find features. Thus, horse detection in

cluttered environment is an open problem. The major

difficulties are:

 The size, color and breeds are different (see Fig. 6)

 A Horse is a non-rigid body. In other words, the

shape and size of a horse varies greatly, and therefore

the model of a horse is much more complex than that

of rigid objects.

 Illumination and weather conditions vary greatly.

Another possible approach is to use the statistical models

(classifiers). These models can be obtained by analyzing a set

of training images, which will then be used to detect the

horses. Statistical model-based training takes multiple

instances of horses and multiple “negative” samples, i.e.,

images that do not contain horses. Different features are

extracted from the training samples and distinctive features,

that can classify the horses, are selected [1]. The Haar-like

features (so called because they are computed similarly to the

coefficients of Haar wavelet transforms) and a large set of

very simple “weak” classifiers, that use a single feature to

classify the image as horse or without horse, were used to

extract the features characteristics of the horses.

Manuscript received October 29, 2014; revised May 26, 2015.

Mohammad Salah Uddin is with Dipartimento di Ingegneria Informatica

Automatica e Gestionale Antonio Ruberti, Sapienza Universit`a di Roma,
Rome, Italy (e-mail: uddin@dis.uniroma1.it).

Afroza Yesmin Akhi is with the Department of Computer Science and

Engineering, East West University, Dhaka, Bangladesh (e-mail:

ankhi.ayaz@yahoo.com).

An approach to this technique was originally developed by

Viola and Jones [2] and then analyzed and extended by

Lienhart et al. [3], [4]. In one image sub-window, the total

number of Haar like features is very large, far larger than the

number of pixels. In order to ensure a fast classification, the

learning process must exclude a large majority of the

available features, and focus on a small set of critical

features. A similar methodology combining Haar-like

features and the AdaBoost algorithm, proposed by Viola et

al. to detect faces, is proposed here to detect horses.

II. OBJECT DETECTION

The object detection system uses a strong classifier to

determine if sub-windows in an image contain a specified

object. The strong classifier is composed of a set of weak

learners with associated weights. Each weak learner uses a

single image feature to produce a hypothesis. Viola and Jones

show that AdaBoost can be used to both select a small subset

of features and train the classifiers [2]. There are four steps to

building an object detection system with AdaBoost: select a

dataset with positive and negative training examples, train the

threshold values for each feature, select and train a subset of

the classifiers and train the attentional cascade. Once the

detector is built, images are exhaustively scanned at all

locations and scales to identify objects.

Fig. 1. Haar-like feature.

A. Image Features

Each feature is represented by a template (shape of the

feature), its coordinate relative to the search window origin

and the size of the feature (its scale). A subset of the features

prototypes used is shown in Fig. 1.

Each feature is composed of two or three “black” and

“white” rectangles joined together - these rectangles can be

upright or rotated by 45 degrees. The Haar-like features value

is calculated as a weighted sum of two components: the pixel

gray level values sum over the black rectangle and the sum

over the whole feature area (all black and white areas). The

Horse Detection Using Haar Like Features

M. S. Uddin and A. Y. Akhi

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

415DOI: 10.7763/IJCTE.2016.V8.1081

weights of these two components are of opposite signs and

for normalization purpose, their absolute values are inversely

proportional to the areas.

B. Integral Image

An integral image representation is used to provide

constant lookup times for the sum of pixels in rectangular

regions of an image. This representation enables rectangular

features to be computed using a minimal number of array

references. The value of an integral image at location x, y

contains the sum of the pixels above and to the left of x, y.

The value of an integral image at location x, y is computed

as:

 (1)

where i(x, y) is the original pixel value and ii(x, y) is the

integral image [2]. Viola and Jones show that the following

recurrences can be used to efficiently compute the integral

image in a single pass over the original image:

where s(x, y) is the cumulative row sum and s(x, 0) = 0 and

ii(0, y) = 0. The top left corner of an integral image is shown

in Fig. 2. The variable Px,y refers to the pixel value of an

image at location x, y. Viola and Jones show that the sum of

pixels in a rectangular region can be found in four array

references. The value of D in Fig. 3 can be computed as 4 + 1

– (2 + 3). Therefore, the time required to compute a feature is

not dependent on its size.

Fig. 2. Encoding integral image.

Fig. 3. Rectangular regions of an integral image.

C. Weak Classifier

The object detection system uses weak learners

constrained to evaluating a single feature. For each feature,

the weak learner determines the optimal threshold

classification function, such that the minimum number of

examples are misclassified [2]. A weak learner consists of a

feature, fj, and a threshold, θj:

 (2)

The best weak learner has a misclassification rate of

approximately 0.07. The strong classifier combines several

weak learners to produce more accurate hypotheses.

Fig. 4. Pseudo-code for the adaboost algorithm. adapted from [2].

D. Classifier Training

AdaBoost is used to find the best weak learners and the

corresponding weights for these classifiers. The boosting

algorithm maximizes the margin between a set of positive

and negative examples. Pseudo code for the boosting

algorithm is shown in Fig. 4. The algorithm is first given a set

of positive and negative examples. Each of the examples is

converted to gray-scale, scaled to the base resolution of the

detector and annotated with a 1 or 0 for positive and negative

examples respectively. Next, the algorithm creates a weight

vector for the examples. The initial weights are dependent on

the number of positive and negative examples. If the number

of positive and negative examples is equal, then the algorithm

starts with a uniform weight vector.

The boosting algorithm performs a series of trials, each

time selecting a new weak learner. At the beginning of each

trial, the weights are normalized to sum to 1. Next, the

algorithm selects the weak learner that produces the smallest

misclassification error with respect to the weight vector. This

step requires classifying all of the examples with the over

270,000 weak learners and is computationally expensive.

Fortunately, the threshold value for each weak learner needs

to be computed only once, because the hypothesis of a weak

learner does not consider the weight vector. The best weak

learner is then selected and used to update the weight vectors.

The weights of correctly classified examples are multiplied

by β, while the weights of misclassified examples do not

change. Combined with normalization, this update results in

most of the weight being placed on hard to classify examples.

Therefore, as the number of trials increases, the error rates

also increase. This leads to smaller α values for weak learners

selected later in the training process. The final classification

function is the sum of the predictions of the selected weak

learners multiplied by the corresponding α values.

E. Attentional Cascade

The object detection system exhaustively scans all

sub-windows in an image. Evaluating all sub-windows

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

416

becomes intractable when the strong classifier selects several

thousand features. A method to overcome this problem is the

use of a degenerate decision tree to limit the number of

features computed for each sub-window. Several filters are

used to build decision nodes for the tree. If any filter in the

tree rejects a sub-window, then the sub-window if rejected.

The structure of the decision tree is shown in Fig. 5. The

decision tree is constructed such that the first filter evaluates

a small number of features and the later filters add more and

more features. The threshold values of features in each filter

must be modified to avoid discarding positive sub-windows.

This is achieved by increasing the threshold value, but this

process leads to higher false positive rates. Therefore, the

purpose of each filter in the decision tree is to progressively

discard the harder to classify false positives. A

well-constructed decision tree significantly reduces the

number of features evaluated for each sub-window while

maintaining accuracy close to the exhaustive approach.

Fig. 5. Attentional cascade. adapted from [2].

F. Scanning for Objects

The system detects objects by exhaustively scanning

images. For each input image, the detector first converts the

image to gray-scale and computes the integral image. Next,

the detector starts with an initial scale of 1.0 and evaluates

every sub-window with the strong classifier. The scale is then

increased and all sub-windows are evaluated at the new scale.

The detector efficiently computes features at different scales

by scaling the features, not the image. The scale is increased

until the detection window is larger than the image width or

height. A sub-window is marked as an object occurrence if

the strong classifier returns a value of 1.

III. BUILDING HORSE DETECTOR

In this section it is described an algorithm for constructing

a cascade of classifiers [2] which achieves increased

detection performance while radically reducing the

computation time. The key insight is that smaller, and

therefore more efficient, boosted classifiers which reject

many of the negative sub-windows while detecting almost all

positive instances, can be constructed. Simpler classifiers are

used to reject the majority of sub-windows before more

complex classifiers are called upon, in order to achieve low

false positive rates.

A cascade of classifiers is a degenerated decision tree

where, at each stage, a classifier is trained to detect almost all

objects of interest (horses or other objects) while rejecting a

certain fraction of the non-object patterns [2] (see Fig. 5).

A. OpenCV Software

An open-source computer vision library called OpenCV

was used to train the classifiers. OpenCV implements Viola

and Jones’ [2] original boosted cascade algorithm, but

includes an option to use the extended Haar feature set of

Lienhart and Maydt [4]. The software works on Windows,

Mac OS X and Linux, and comprises a series of command

line programs with many parameters that can be specified by

the user. It is written entirely in C/C++ and can be edited by

anyone.

TABLE I: NUMBER OF TRAINING EXAMPLES USED FOR OUR CLASSIFIERS

 Horses Source

Positive images 650 INRIA Horses

Database and

Google.com
Negative images 900

Fig. 6. Example of horse images used for training.

B. The Training Set

The detection algorithm requires two set of training

images; a positive set containing the object of interest

(horses), and a negative (or ‘backgrounds’) set. For our

training set we used INRIA Horses Database [6] plus collect

horse images from google.com. Table I shows the number of

positive and negative examples used for our classifiers. Some

examples of positive training images are shown in Fig. 6.

There are many challenges in object recognition, such as

variations in viewpoint, illumination, scale as well as

interclass variation. For this reason, the training set should

include many images of the object (generally thousands),

which capture all possible sources of variation. The training

set should be well chosen; otherwise it confuses the learning

algorithm.

In principle, negative samples can be arbitrary images

which do not contain the object of interest (such as horse).

Initially, we used images from INRIA Horses and

google.com. We choose negative set very carefully and

assure that not to include positive examples in the negative

set. Since the actual choice of negative images does not

matter, as long as they don’t contain the object of interest.

C. Preparing the Images for Training

Viola and Jones’ algorithm is a supervised learning

algorithm, so the computer must be ‘told’ which images are

positive and which are negative. For the negative examples,

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

417

all that is required is a text file containing the locations of the

image files. For positive examples, the objects must be

manually segmented from the background, and their

locations and their locations within the image recorded in a

text file with the following format:

<path>image_name_1 count1 x11 y11 w11 h11 x12 y12 w12

h12 ... <path>image_name_2 count2 x21 y21 w21 h21 x22 y22
w22 h22 ...

Each line contains the full filename of the image, followed

by a count of how many objects are in the image, along with a

list of rectangles containing their top-left coordinates, width

and height in pixels. An open-source program called

ObjectMarker.exe was used to draw bounding rectangles

around the object(s) in each image, automatically creating a

file in the above format, later to be read by OpenCV. It took

many hours to go through several thousands of images,

drawing bounding boxes around the objects.

Before being presented to the learning algorithm, the

positive samples must be reduced to a standard size. For

horses we used a size of 72 × 48 pixels. The reasoning is that

the width of horse is more than height. The OpenCV program

CreateSamples.exe was used to size normalize the positive

images and compress them into a vector file.

Fig. 7. Partial output of the horse detector.

D. Training a Cascade of Classifiers

The cascade training process involves two types of

tradeoffs. In most cases, the classifiers with the most features

will achieve higher detection rates and lower false positive

rates. At the same time classifiers with more features require

more time to compute. In principle one could define an

optimization framework in which: i) the number of classifier

stages, ii) the number of features in each stage, and iii) the

threshold of each stage, are traded off in order to minimize

the expected number of evaluated features. Unfortunately

finding this optimum is a tremendously difficult problem [2].

In practice a very simple framework is used to produce an

effective classifier which is highly efficient. Each stage in the

cascade reduces the false positive rate as well as the detection

rate. A target is selected for the minimum reduction in false

positives and the maximum decrease in detection. Each stage

is trained by adding features until the target detection and

false positives rates are met (these rates are determined by

testing the detector on a validation set). Stages are added until

the overall target for false positive and detection rate is met.

The complete horse detection cascade has 18 stages with

4769266 features.

IV. EXPERIMENTAL RESULTS

The classifier described in the paper was tested by using

image sequences with horses in different size, and breeds.

This set consists of 200 images. The system achieves a horse

detection rate of 63% with 74 false positives. Some examples

of the Horse detection are presented in the Fig. 7. The output

of the classifier is represented by the pink eclipses, meaning

that in the search sub-window corresponding to the pink

eclipse the output of the cascade of the classifier was true, in

other words, it has detected a horse. Note that, the detector

can only detect the side view horses.

V. CONCLUSION

In this paper we introduced an algorithm for detecting

horses, based on Haar like features. The detection rate is 62%

which is further improved by increasing the test images. Due

to the shortest of time we are unable to train our cascade over

more training images, which improved the performance of

our detector.

REFERENCES

[1] G. Bradski, A. Kaehler, and V. Pisarevsky, “Learning-based computer

vision with intel’s open source computer vision library,” Intel
Technologies Journal, vol. 9, iss. 2, 2005.

[2] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features,” presented at IEEE Conference on Computer Vision
and Pattern Recognition, 2001.

[3] R. L. A. Kuranov and V. Pisarevsky, “An empirical analysis of

boosting algorithms for rapid objects with an extended set of Haar-like
features,” Intel Technical Report MRL-TR-July 02-01, 2002.

[4] R. Lienhart and J. Maydt, “An extended set of Haar-like features for

rapid object detection,” presented at the IEEE International Conference
on Image Processing, 2002.

[5] Y. Freund and R. E. Schapire, “Experiments with a new boosting

algorithm,” in Proc. 13th International Conference on Machine
Learning, 1996.

[6] INRIA Horses. A dataset for object class detection. [Online].

Available: http://www.lear.inrialpes.fr/data

Mohammad Salah Uddin is a PhD student in

Dipartimento di Ingegneria Informatica Automatica e

Gestionale Antonio Ruberti, Sapienza Universit`a di

Roma, Rome, Italy. He previously worked as a lecturer

in the Department of Computer Science and
Engineering, Central Women’s University, Dhaka,

Bangladesh. He published several journal and

international conference papers from his research work.
He received his B.Sc. degree in computer science and engineering from East

West University, Dhaka, Bangladesh in 2012. He is interested in computer

vision, human computer interaction (HCI), web service composition,
semantic web service, and mobile apps.

Afroza Yesmin Akhi is a B.Sc. student in the
Department of Computer Science and Engineering, East

West University, Dhaka, Bangladesh. She is a member

of Web Engineering Research Group, East West
University. She is currently working towards web

application development. She is also interested in mobile

apps.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

418

