
  

 

Abstract—A commonly used approach for detecting objects is 

based on the techniques of “boosting” and “cascading”, which 

allow for real-time detection. In this paper I have developed a 

classifier for detecting horses from images or from real time 

video sources. For that purpose the Haar-like features were used 

to discriminate horses. Those features were used as input in a 

learning algorithm, based on AdaBoost, which selects a small 

number of critical visual features from a larger set and yields an 

extremely efficient classifier. 

 
Index Terms—Horse detection, object detection, haar-like 

features, adaboost.  

 

I. INTRODUCTION 

Object detection is an important element of various 

computer vision areas. The basic goal is to find an object of a 

predefined class in static images or video frames. Sometimes 

this task can be handled by extracting certain image features, 

such as edges, color regions, textures, contours, etc. 

Afterwards, some heuristics is applied to find configurations 

and/or combinations of those features characteristics of the 

object that one wants to detect. But, for complex objects, such 

as horses, it is hard to find features. Thus, horse detection in 

cluttered environment is an open problem. The major 

difficulties are: 

 The size, color and breeds are different (see Fig. 6) 

 A Horse is a non-rigid body. In other words, the 

shape and size of a horse varies greatly, and therefore 

the model of a horse is much more complex than that 

of rigid objects. 

 Illumination and weather conditions vary greatly. 

Another possible approach is to use the statistical models 

(classifiers). These models can be obtained by analyzing a set 

of training images, which will then be used to detect the 

horses. Statistical model-based training takes multiple 

instances of horses and multiple “negative” samples, i.e., 

images that do not contain horses. Different features are 

extracted from the training samples and distinctive features, 

that can classify the horses, are selected [1]. The Haar-like 

features (so called because they are computed similarly to the 

coefficients of Haar wavelet transforms) and a large set of 

very simple “weak” classifiers, that use a single feature to 

classify the image as horse or without horse, were used to 

extract the features characteristics of the horses. 
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An approach to this technique was originally developed by 

Viola and Jones [2] and then analyzed and extended by 

Lienhart et al. [3], [4]. In one image sub-window, the total 

number of Haar like features is very large, far larger than the 

number of pixels. In order to ensure a fast classification, the 

learning process must exclude a large majority of the 

available features, and focus on a small set of critical 

features. A similar methodology combining Haar-like 

features and the AdaBoost algorithm, proposed by Viola et 

al. to detect faces, is proposed here to detect horses. 

 

II. OBJECT DETECTION 

The object detection system uses a strong classifier to 

determine if sub-windows in an image contain a specified 

object. The strong classifier is composed of a set of weak 

learners with associated weights. Each weak learner uses a 

single image feature to produce a hypothesis. Viola and Jones 

show that AdaBoost can be used to both select a small subset 

of features and train the classifiers [2]. There are four steps to 

building an object detection system with AdaBoost: select a 

dataset with positive and negative training examples, train the 

threshold values for each feature, select and train a subset of 

the classifiers and train the attentional cascade. Once the 

detector is built, images are exhaustively scanned at all 

locations and scales to identify objects. 

 

 
Fig. 1. Haar-like feature. 

 

A. Image Features 

Each feature is represented by a template (shape of the 

feature), its coordinate relative to the search window origin 

and the size of the feature (its scale). A subset of the features 

prototypes used is shown in Fig. 1. 

Each feature is composed of two or three “black” and 

“white” rectangles joined together - these rectangles can be 

upright or rotated by 45 degrees. The Haar-like features value 

is calculated as a weighted sum of two components: the pixel 

gray level values sum over the black rectangle and the sum 

over the whole feature area (all black and white areas). The 
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weights of these two components are of opposite signs and 

for normalization purpose, their absolute values are inversely 

proportional to the areas. 

B. Integral Image 

An integral image representation is used to provide 

constant lookup times for the sum of pixels in rectangular 

regions of an image. This representation enables rectangular 

features to be computed using a minimal number of array 

references. The value of an integral image at location x, y 

contains the sum of the pixels above and to the left of x, y. 

The value of an integral image at location x, y is computed 

as: 

                                
          

                      (1) 

where i(x, y) is the original pixel value and ii(x, y) is the 

integral image [2]. Viola and Jones show that the following 

recurrences can be used to efficiently compute the integral 

image in a single pass over the original image: 

                          

                            

where s(x, y) is the cumulative row sum and s(x, 0) = 0 and 

ii(0, y) = 0. The top left corner of an integral image is shown 

in Fig. 2. The variable Px,y refers to the pixel value of an 

image at location x, y. Viola and Jones show that the sum of 

pixels in a rectangular region can be found in four array 

references. The value of D in Fig. 3 can be computed as 4 + 1 

– (2 + 3). Therefore, the time required to compute a feature is 

not dependent on its size. 

 

 
Fig. 2. Encoding integral image. 

 

 
Fig. 3. Rectangular regions of an integral image. 

 

C. Weak Classifier  

The object detection system uses weak learners 

constrained to evaluating a single feature. For each feature, 

the weak learner determines the optimal threshold 

classification function, such that the minimum number of 

examples are misclassified [2]. A weak learner consists of a 

feature, fj, and a threshold, θj: 

 

                       
                          

                                          
              (2) 

 

The best weak learner has a misclassification rate of 

approximately 0.07. The strong classifier combines several 

weak learners to produce more accurate hypotheses. 

 

 
Fig. 4. Pseudo-code for the adaboost algorithm. adapted from [2]. 

 

D. Classifier Training 

AdaBoost is used to find the best weak learners and the 

corresponding weights for these classifiers. The boosting 

algorithm maximizes the margin between a set of positive 

and negative examples. Pseudo code for the boosting 

algorithm is shown in Fig. 4. The algorithm is first given a set 

of positive and negative examples. Each of the examples is 

converted to gray-scale, scaled to the base resolution of the 

detector and annotated with a 1 or 0 for positive and negative 

examples respectively. Next, the algorithm creates a weight 

vector for the examples. The initial weights are dependent on 

the number of positive and negative examples. If the number 

of positive and negative examples is equal, then the algorithm 

starts with a uniform weight vector. 

The boosting algorithm performs a series of trials, each 

time selecting a new weak learner. At the beginning of each 

trial, the weights are normalized to sum to 1. Next, the 

algorithm selects the weak learner that produces the smallest 

misclassification error with respect to the weight vector. This 

step requires classifying all of the examples with the over 

270,000 weak learners and is computationally expensive. 

Fortunately, the threshold value for each weak learner needs 

to be computed only once, because the hypothesis of a weak 

learner does not consider the weight vector. The best weak 

learner is then selected and used to update the weight vectors. 

The weights of correctly classified examples are multiplied 

by β, while the weights of misclassified examples do not 

change. Combined with normalization, this update results in 

most of the weight being placed on hard to classify examples. 

Therefore, as the number of trials increases, the error rates 

also increase. This leads to smaller α values for weak learners 

selected later in the training process. The final classification 

function is the sum of the predictions of the selected weak 

learners multiplied by the corresponding α values. 

E. Attentional Cascade 

The object detection system exhaustively scans all 

sub-windows in an image. Evaluating all sub-windows 
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becomes intractable when the strong classifier selects several 

thousand features. A method to overcome this problem is the 

use of a degenerate decision tree to limit the number of 

features computed for each sub-window. Several filters are 

used to build decision nodes for the tree. If any filter in the 

tree rejects a sub-window, then the sub-window if rejected. 

The structure of the decision tree is shown in Fig. 5. The 

decision tree is constructed such that the first filter evaluates 

a small number of features and the later filters add more and 

more features. The threshold values of features in each filter 

must be modified to avoid discarding positive sub-windows. 

This is achieved by increasing the threshold value, but this 

process leads to higher false positive rates. Therefore, the 

purpose of each filter in the decision tree is to progressively 

discard the harder to classify false positives. A 

well-constructed decision tree significantly reduces the 

number of features evaluated for each sub-window while 

maintaining accuracy close to the exhaustive approach. 

 

 
Fig. 5. Attentional cascade. adapted from [2]. 

 

F. Scanning for Objects 

The system detects objects by exhaustively scanning 

images. For each input image, the detector first converts the 

image to gray-scale and computes the integral image. Next, 

the detector starts with an initial scale of 1.0 and evaluates 

every sub-window with the strong classifier. The scale is then 

increased and all sub-windows are evaluated at the new scale. 

The detector efficiently computes features at different scales 

by scaling the features, not the image. The scale is increased 

until the detection window is larger than the image width or 

height. A sub-window is marked as an object occurrence if 

the strong classifier returns a value of 1. 

 

III. BUILDING HORSE DETECTOR 

In this section it is described an algorithm for constructing 

a cascade of classifiers [2] which achieves increased 

detection performance while radically reducing the 

computation time. The key insight is that smaller, and 

therefore more efficient, boosted classifiers which reject 

many of the negative sub-windows while detecting almost all 

positive instances, can be constructed. Simpler classifiers are 

used to reject the majority of sub-windows before more 

complex classifiers are called upon, in order to achieve low 

false positive rates. 

A cascade of classifiers is a degenerated decision tree 

where, at each stage, a classifier is trained to detect almost all 

objects of interest (horses or other objects) while rejecting a 

certain fraction of the non-object patterns [2] (see Fig. 5). 

A. OpenCV Software 

An open-source computer vision library called OpenCV 

was used to train the classifiers. OpenCV implements Viola 

and Jones’ [2] original boosted cascade algorithm, but 

includes an option to use the extended Haar feature set of 

Lienhart and Maydt [4]. The software works on Windows, 

Mac OS X and Linux, and comprises a series of command 

line programs with many parameters that can be specified by 

the user. It is written entirely in C/C++ and can be edited by 

anyone. 

 
TABLE I: NUMBER OF TRAINING EXAMPLES USED FOR OUR CLASSIFIERS  

 Horses Source 

Positive images 650 INRIA Horses 

Database and 

Google.com 
Negative images 900 

 

 
Fig. 6. Example of horse images used for training. 

 

B. The Training Set 

The detection algorithm requires two set of training 

images; a positive set containing the object of interest 

(horses), and a negative (or ‘backgrounds’) set. For our 

training set we used INRIA Horses Database [6] plus collect 

horse images from google.com. Table I shows the number of 

positive and negative examples used for our classifiers. Some 

examples of positive training images are shown in Fig. 6. 

There are many challenges in object recognition, such as 

variations in viewpoint, illumination, scale as well as 

interclass variation. For this reason, the training set should 

include many images of the object (generally thousands), 

which capture all possible sources of variation. The training 

set should be well chosen; otherwise it confuses the learning 

algorithm. 

In principle, negative samples can be arbitrary images 

which do not contain the object of interest (such as horse). 

Initially, we used images from INRIA Horses and 

google.com. We choose negative set very carefully and 

assure that not to include positive examples in the negative 

set. Since the actual choice of negative images does not 

matter, as long as they don’t contain the object of interest. 

C. Preparing the Images for Training 

Viola and Jones’ algorithm is a supervised learning 

algorithm, so the computer must be ‘told’ which images are 

positive and which are negative. For the negative examples, 
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all that is required is a text file containing the locations of the 

image files. For positive examples, the objects must be 

manually segmented from the background, and their 

locations and their locations within the image recorded in a 

text file with the following format:  

 
<path>image_name_1 count1 x11 y11 w11 h11 x12 y12 w12 

h12 ... <path>image_name_2 count2 x21 y21 w21 h21 x22 y22 
w22 h22 ... 

 

Each line contains the full filename of the image, followed 

by a count of how many objects are in the image, along with a 

list of rectangles containing their top-left coordinates, width 

and height in pixels. An open-source program called 

ObjectMarker.exe was used to draw bounding rectangles 

around the object(s) in each image, automatically creating a 

file in the above format, later to be read by OpenCV. It took 

many hours to go through several thousands of images, 

drawing bounding boxes around the objects. 

Before being presented to the learning algorithm, the 

positive samples must be reduced to a standard size. For 

horses we used a size of 72 × 48 pixels. The reasoning is that 

the width of horse is more than height. The OpenCV program 

CreateSamples.exe was used to size normalize the positive 

images and compress them into a vector file.  

 

 
Fig. 7. Partial output of the horse detector. 

 

D. Training a Cascade of Classifiers 

The cascade training process involves two types of 

tradeoffs. In most cases, the classifiers with the most features 

will achieve higher detection rates and lower false positive 

rates. At the same time classifiers with more features require 

more time to compute. In principle one could define an 

optimization framework in which: i) the number of classifier 

stages, ii) the number of features in each stage, and iii) the 

threshold of each stage, are traded off in order to minimize 

the expected number of evaluated features. Unfortunately 

finding this optimum is a tremendously difficult problem [2]. 

In practice a very simple framework is used to produce an 

effective classifier which is highly efficient. Each stage in the 

cascade reduces the false positive rate as well as the detection 

rate. A target is selected for the minimum reduction in false 

positives and the maximum decrease in detection. Each stage 

is trained by adding features until the target detection and 

false positives rates are met (these rates are determined by 

testing the detector on a validation set). Stages are added until 

the overall target for false positive and detection rate is met. 

The complete horse detection cascade has 18 stages with 

4769266 features. 

 

IV. EXPERIMENTAL RESULTS 

The classifier described in the paper was tested by using 

image sequences with horses in different size, and breeds. 

This set consists of 200 images. The system achieves a horse 

detection rate of 63% with 74 false positives. Some examples 

of the Horse detection are presented in the Fig. 7. The output 

of the classifier is represented by the pink eclipses, meaning 

that in the search sub-window corresponding to the pink 

eclipse the output of the cascade of the classifier was true, in 

other words, it has detected a horse. Note that, the detector 

can only detect the side view horses. 

 

V. CONCLUSION 

In this paper we introduced an algorithm for detecting 

horses, based on Haar like features. The detection rate is 62% 

which is further improved by increasing the test images. Due 

to the shortest of time we are unable to train our cascade over 

more training images, which improved the performance of 

our detector. 
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