
  

 

Abstract—Predicting status of registers is required in 

verification development to accurately emulate behaviors of 

DUT. However, it is a complicated thing when register couplings 

exists in DUTs. To unleash verification development, we propose 

a graph-based solution, with a model of “topology + behavior” 

for register couplings, to accurate emulate states and behaviors 

of DUT. This work is inspired by realistic verification 

requirement in industry-level developments. With searching 

mechanism, register couplings can be efficiently and accurately 

processed at runtime. Verification works can be significantly 

simplified without remarkable resource costs and performance 

loss. Our experiment and analysis finally suggest tempting 

benefits of this method in functional verification development. 

 
Index Terms—Chip development, functional verification, 

EDA. 

 

I. INTRODUCTION 

EDA has dramatically propelled design and verification 

technology in the past. While the explosion of design 

complexity, with Moore’s Law, continuously challenges EDA 

technologies. This paper focuses on functional verification 

and the register features, which belongs to the domain of 

front-end digital logic development and EDA methodology. 

A. Functional Verification Overview 

Functional verification finds flaws and ensures correctness 

of logic design in an early phase, now has been a big domain 

in modern chip development. However, along with the 

growing complexity of design target, verification 

development tends to be a systematical engineering. It spends 

much time and costs more resources of work effort in 

verification than RTL design itself. On one hand, researchers 

start to enhance simulation tools in performance by either 

optimize computing technique such as parallelism, or 

leverage special hardware approach. On the other hand, they 

enhance and standardize methodologies to enable efficient 

verification developments. 

Driven by continuous increment of industrial requirement, 

it has achieved preeminent progress of methodology of 

functional verification in the past decades. In TLM 

(Transaction-Level Modeling) [1], the use of packaged 

transactions transcends traditional RTL (Register Transfer 

Level) behavior modeling, makes verification development 

efficient. Modern functional verification methodology, fuses 

concepts from software engineering, provides abstract-level 
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modeling and object-oriented features. It does not only focus 

on functional checking and coverage analyzing, but also 

accent a system perspective so that enable very complicated 

large-scale engineering. OVM (Open Verification 

Methodology) [2] and UVM [3] (Universal Verification 

Methodology), provide a sequence-dominated framework, 

widely applied and examined in industry-level development. 

Fusion/RTX [4] -IBM’s methodology, advanced in its 

flexibility, specializes in server processors and chips. These 

methodologies usually support a chain of 

sequencer-driver-monitor, to organize and handle transaction. 

And the kernel of these methodologies is the implementation 

of a reference model, like a mirror, to emulate DUT 

behaviors. 

Registers, such as configuration register of digital design, 

or operation register of CPU, are generally regarded as the 

interfaces of software and hardware. Besides, as significant 

parts in a control flow, registers drive functional behaviors. 

However, integrated register solution is exerted in verification 

methodologies only in the recent, such as RGM (Register and 

Memory Package) [5] and REG (UVM Register Layer 

Classes) [5]. Registers-Modeling [6] is also implemented in 

Fusion/RTX as a special component. They are common in 

bridging functional operation to protocol-level behaviors, to 

represent register access and organization, and to manipulate 

registers’ mirror as a special reference model.  

B. Register Coupling in Verification 

We present this paper for solving “register coupling”, — A 

troublesome problem entangles verification development. 

The typical coupling is dependency between registers (fields) 

in a design, when one changes another one changes as well. 

While “register coupling” has a general definition in this 

paper, not only limited in those explicit dependencies exist in 

logic design, but also involves implicit ones presented by 

software interface like broadcast, indirect register. 

Therefore, we categorize coupling patterns into explicit and 

implicit, and list several most common ones below as 

examples.  
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1) Value dependency: The value of one register/field is 

dynamically calculated by other ones. 

2) Attribute dependency: The attribute (i.e. read-write, 

read-only, write-only) of one register/field is dynamically 

determined by a condition related with the value of other 

ones. 

3) Indirect register: A set of registers cannot be directly 

access through bus, but can only be indirectly access by 

configuring a pair of index/value registers. 

4) Broadcast: When writing to a broadcast address, registers 

in corresponding different groups are concurrently 



  

updated. 

C. Our Work 

Currently, existing methodologies are deficient in 

providing a complete approach for model register coupling. 

Our work, for the first time, proposes a uniform model for 

various coupling patterns. The main idea is to separate 

connection and behavior of coupling, and then map to a 

directed-graph model. It helps to facilitate verification 

development by substituting most of developers’ manual 

works with automatic searching. And this approach has 

advantage in solving complicated compound couplings. We 

present a register mirror subsystem, which enables friendly 

integration in existing methodologies, to support the reference 

model to deliver decision. The following sections of this 

paper are structured as follow: Section II introduces the 

modeling and mapping of problem; Section III elaborates the 

implementation in a systematic point of view, to construct a 

platform, and to integrate in test bench; finally this solution is 

evaluated in realistic verification development in Section IV, 

and finally the conclusion is drawn in Section V. 

 

II. MAPPING COUPLING TO GRAPH 

This section introduces mapping coupling to graph. Then 

presents the key of this approach, involves the flattened fields 

organization and runtime search mechanism. 

A. Modeling 

To model different coupling patterns uniformly, the 

thought is to explore their commonness — The connection 

relationship between register/field pairs. We abstract 

dependency of register/field as topology feature by detaching 

them from traditional behavior descriptions. Then, coupling 

problem equals to a typical directed graph problem [7]. 

Mapping to a directed-graph, each register/field is projected 

to a vertex; the dependency of a coupling is represented by a 

directed edge. The behavior of each coupling is attached on 

corresponding vertices, represented as expressions. Coupling 

can be emulated in mirror by automatic search mechanism, 

synchronized with a register bus operation. 

Fig. 1 shows register coupling in a perspective of graph 

according to coupling patterns and compound of a realistic IP 

core specification. There are typical patterns presented, and 

also intricate compound of them. Each vertex represents a 

specific register/field, and direct edge represents a 

dependency from one field to another field.  

 
Fig. 1. Mapping register couplings in a graph model. 

While functional behaviors of coupling vary with patterns, 

connection relationship of each coupling, no matter explicit or 

implicit, renders similar topology attributes in common. Fig. 2 

symbolizes typical patterns. Fig. 2(a) and Fig. 2(b) show the 

graphic representation of the pattern of attribute dependency 

and a typical value dependency separately; Fig. 2(c) shows a 

cascade of coupling that a simple compound of value 

dependency and attribute dependency; Fig. 2(d) shows a 

broadcast.  
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Fig. 2. Graph description of basic coupling patterns. 

 

This model approach has advantage in solving compound 

of coupling patterns. With this model, complicated relations 

of compound are not necessarily described by developers, but 

can be solved by automatic searching. Fig. 3 is an example 

compound of multi-coupling, in which three typical coupling 

problems are involved. Additionally, this model is only 

available when states of coupling are finite, meaningful and 

predictable.  
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Fig. 3. Compound of multiple coupling patterns. 

 

B. Flattened Reg-field Structure 

Given that coupling effect between register fields, we 

model coupling in granularity of register fields. The whole 

register database is organized in a flattened structure of 

register fields. Then, couplings are indirectly represented by 

an adjacency matrix, which is almost sparse. Furthermore, to 

solve couplings and their compounds, the search program 

need to travel in either positive direction or opposite direction 

on this directed-graph. That’s the reason that orthogonal list is 

appropriately applied to store the matrix. In the memory 

space, vertices and edges are stored discretely. Each edge 
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indicates a connection, that only ‘1’s are stored. The time to 

complete the construct is O(v*e), and the spatial cost is 

O(v+e), (v indicate the count of vertices, e indicates the count 

of edges). This structure, finally, plays a role of mirror of 

verification test bench at simulation time.  

C. Searching Strategy 

Searching program is used in our solution to dynamically 

predict register mirror. The searching program involves two 

major travelling procedures transmission and evaluation. 

The transmission procedure transmits the propagation 

wave of register update followed by state changes throughout 

the topology. Considering the feature of coupling problem, 

BFS (Breadth First Search) [8] is adopted in this approach to 

search adjacent vertices of a given vertex. Once the value of a 

field changed, the edges from corresponding vertex are 

activated, then evaluate and update adjacent vertices. The 

transmission procedure travels related edges and vertices in 

order. We also optimize it to reducing redundant computing. 

When evaluate and update each field on the transmission 

route, it is necessary to collect all potentially dependant 

vertices. This procedure is evaluation which needs to 

reversely search in the directed graph. DFS (Depth first 

search) [8] is properly used here to travel dependent vertices 

reversely. The trace of searching, in reverse edge directions, 

forms a DFS spanning tree, without cycling. Fig. 4(a) and Fig. 

4(b) show transmission and evaluation separately. 
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Fig. 4. Examples of coupling searching, (a) transmission, (b) evaluation. 

 

We use a dynamic switch mechanism in this model to 

emulate simulation — only when a change happens could 

edges that emit from it be activated. Namely, if the state of a 

vertex is not actually changed at runtime, the searching will be 

terminated. It can be available in two aspects, 1) optionally 

trigger next level transmission to reduce redundant 

computation; 2) determine edge-connections at runtime to 

handle potential circling. 

The switch determines edge connection in the correct 

direction and cut off potential circles in a transmission 

procedure. It can solve practical problems like indirect 

registers, which has circles when mapping to graph as shown 

in Fig. 5. vB represents indirect fields vector; A and C are 

index and value registers separately. Although there are circle 

relationship among registers in a static mapping, but these 

circles is not exist at runtime affected by dynamic switch. 
 

III. BUILDING REGISTER SUBSYSTEM 

This section elaborates the implementation of the register 

subsystem, and presents how it cooperates with verification 

methodology, and how it practically operates in a test bench. 

A. The Subsystem 

We integrate all functional components into a subsystem. 

These components include a mirror database which record 

predicted registers’ properties to support reference model and 

checkers; and an engine that supports search algorithms to 

handle update of mirror; and there is also a pair of bridges 

which convert register operations for subsystem with 

scatter/gather mechanism. Fig. 6 shows a schematic view of 

the register subsystem. 
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Fig. 5. An example of indirect registers pattern; its solution in graph model 

and behavior description. 
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Fig. 6. Schematic view of register subsystem. 

 

The subsystem serves as part of test bench to support 

reference model as shown in Fig. 7. When a bus transaction is 

captured by a corresponding monitor, this transaction will be 

conveyed to register subsystem from a software tunnel. With 

search engine and mirror database, the subsystem predicts 

DUT behaviors according to mirror behaviors customized by 

developers. 
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Fig. 7. Integration of register subsystem in a verification environment. 
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B. Access Interface-Scatter/Gather 

As all register fields are flattened in mirror database of 

register subsystem, and graph vertices associate with register 

fields rather than registers. We provide a gather/scatter 

mechanism, for register operation to bridge regular register 

access to register subsystem. We assume this procedure 

independent to bus protocols. For each read operation, 

separated fields are gathered into a register as a whole as 

shown in Fig. 8; for each write operation, register is 

segmented into field slices and outputted in order, with 

ordered fields from event queue trigger vertices’ evaluation 

successively, as shown in Fig. 9. 
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Fig. 8. Gather register fields when reading. 
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Fig. 9. Scatter register fields when writing. 

 

C. Development Flow 

Design specification is usually described by natural 

language. Developers need to collect and analyze information 

of design spec by manual or script process. In the 

development flow, register information in design spec is 

firstly translated into an intermediate format in which 

couplings are presented as entries. This intermediate format is 

loaded and translated to topology structure by verification 

program at build phase of runtime. 

 

IV. ANALYSIS AND EVALUATION 

In this section, we estimate the potential benefits of 

register-subsystem by analyzing practical chip verification 

projects. We evaluate the performance of the subsystem in 

verification environment. 

A. Coupling Complexity 

Register coupling pervasively exists in logic designs, might 

be more diverse than above patterns, thereby perplexing 

functional verification. Although it is difficult to evaluate how 

many workload or codes can be reduced when using this 

method, but it can be indirectly evidenced by quantify the 

complexity of register coupling in a project.  

We illustrate the complexity of register coupling with three 

industry-level IP core designs. These three designs are 

considered representative for either of them has 

control-intensive and data-intensive features, frequent applied 

as hardware components in state-of-the-art network devices 

and data centers. Their detailed information is reported in 

Table I where HSS is the largest one in the amount of registers 

and fields. 

 
TABLE I: REGISTER INFORMATION OF THREE IP CORE DESIGNS 

Core 

Information 

virtual 

register 

virtual 

register 
Field Description 

MC 130 175 270 
Core of DDR4 memory 

controller. 

PHY 1093 1227 5876 
Data-path of DDR memory 

system, physics layer protocol.  

HSS 1110 1242 3619 

High-speed Serdes, 

Data communication core, 

large scale mixed-signal 

design. 

 

We quantify the percentage of coupling-involved fields in 

Fig. 10, implicit and explicit ones in Fig. 11. The analysis is 

based on register field which is the basic grain of dependency. 

The statistic shows a varied percentage of coupling-related 

register/field among the three designs. Most register fields of 

PHY and HSS relate couplings, and most of them are implicit. 

 

 
Fig. 10. Count of coupling fields in three developments. 

 

 
Fig. 11. Percentage of implicit and explicit patterns. 

 

A coupling register, that involves functional state, usually 

determine export of reference model, or status of functional 

checker. Based on verification criteria, register mirror should 

be synchronized in terms of verification. Nevertheless, 

existing methodology, either UVM or Fusion, lacks a valid 

mechanism to support coupling. Developers usually need to 

code conditions for each coupling manually. In a simulation 

flow, each time when a register operation executes, conditions 

are triggered to decide whether to update register mirror. 

Compound of patterns complicates coupling in width and 

depth. For instance, a pair of value-dependency registers 

updated by broadcast. For verification developers, they have 

to consider the overlap and cascade of effects of multiple 

couplings. When comes to compound coupling in 
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multi-dimensions, those conditions tend to be more intricate 

than individual ones, and more difficult for developers to 

describe its behavior in a test bench. We quantify the 

complexity of each coupling with three factors by evaluate 

each register, 1) the depth of a coupling cascade; 2) the 

number of registers effect as condition vector; and 3) the 

number of registers to be affected. These factors are 

illustrated in Fig. 12(a), (b) and (c) report each complex 

dimension of the three developments.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 12. Indication of development complexity of couplings. (a) cascade 

Depth; (b) fan-in Width; (c) fan-out Width. 

 

B. Simulation Costs 

We use iProf [9] to emulate an ideal complexity of 

coupling in a testbench, from sparse connections to intensive 

connections, to evaluate potential simulation costs. In the 

experiment, we construct a dummy register subsystem with 

heavy register couplings (2000 registers with 2000 couplings) 

in MC testbench. Additional memory cost of register 

subsystem is 0.7% (48KB for data structure cost) of testbench 

before run-phase. And this cost will not increase once 

constructed at build-phase. At run-phase, compared with 

logic simulation, the cost of CPU and memory of register 

subsystem is nearly ignorable. Therefore, the cost of 

verification environment won’t result to remarkable 

performance loss and resource burden. 

V. RELATED WORKS 

Only in recent decades, mature methodologies substitute 

direct test in functional verification. And only in recent, 

specialized approaches were adopted in verification 

methodologies to manage registers. Both RGM [5] and REG 

[6] provide mechanism to bridge programming interface to 

protocol-level transactions, and enable convenient testbench 

integration. IP-XACT [10] has also been adopted by 

Accellera Group [11] that to enable automatic generation of 

codes for register layer classes [12], [13]. 

However, register coupling is not really well supported in 

existing methodologies. Although some works used to try to 

solve behaviors of registers, never successfully establish a 

uniform model for coupling problem. For example the 

emulation of indirect register in RGM and REG which is not 

flexible enough to adapt functional requirements. A special 

method in IBM Fusion/RTX is used to verify multi-address 

register which has different access attributes [14], [15]. Work 

of [16] only solves conflict of register binding for formal 

verification, and it is similar with indirect registers. In 

general, the above methods solve specified patterns with 

specified methods. However, none of them proposed a 

uniform model to solve this problem, that coupling of 

configure registers still torments functional verification. 

Other previous works of registers’ verification mainly focus 

on testbench building, but rarely successful in modeling the 

relationship of registers, e.g. [17] codifies register 

descriptions for SoC verification, and works in [18] only 

optimize structure reusability of register modules but ignore 

behavior and relation. 

Although graph model applied to solve EDA problems, e.g. 

circuit synthesizing [19] and parallel simulation partitioning 

[20], but our proposal is fundamentally discrepant with these 

works. This work focuses on a totally different problem, 

which only specializes in functional verification rather than 

circuit and logic designs. 

 

VI. CONCLUSION 

In this paper, we propose an efficient method to handle 

register coupling. It explores the commonness of coupling 

problems to provide a uniform model. It is important in 

register testing and reference model building. It can 

significantly reduce the complexity of development overhead 

of registers and related logic behaviors. It is advantage in 

aspects of following. 

1) Universality. For the first time, the coupling behaviors of 

registers/fields are modeled as one problem, mapping to 

a graph model universally. 

2) Flexibility. No longer circumscribed with fixed patterns, 

this solution supports customizable behavior description 

to facilitate a flexible modeling for explicit and implicit 

couplings; 

3) Scalability. Providing systematical graph-based data 

structure and algorithms, the modeling method delivers a 

scalable platform to adapt the variation of verification 

tasks. 

The static analysis has shown a significant value of the 

graph-based register subsystem in verification development. 
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In the future, we will consider how to better describe coupling 

problem with IP-XACT format, and improve further 

automation. The subsystem will be delivered as a library with 

application interfaces for mainstream HDL, C/C++ and 

different verification methodologies in our future work. 
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