

Abstract—Predicting status of registers is required in

verification development to accurately emulate behaviors of

DUT. However, it is a complicated thing when register couplings

exists in DUTs. To unleash verification development, we propose

a graph-based solution, with a model of “topology + behavior”

for register couplings, to accurate emulate states and behaviors

of DUT. This work is inspired by realistic verification

requirement in industry-level developments. With searching

mechanism, register couplings can be efficiently and accurately

processed at runtime. Verification works can be significantly

simplified without remarkable resource costs and performance

loss. Our experiment and analysis finally suggest tempting

benefits of this method in functional verification development.

Index Terms—Chip development, functional verification,

EDA.

I. INTRODUCTION

EDA has dramatically propelled design and verification

technology in the past. While the explosion of design

complexity, with Moore’s Law, continuously challenges EDA

technologies. This paper focuses on functional verification

and the register features, which belongs to the domain of

front-end digital logic development and EDA methodology.

A. Functional Verification Overview

Functional verification finds flaws and ensures correctness

of logic design in an early phase, now has been a big domain

in modern chip development. However, along with the

growing complexity of design target, verification

development tends to be a systematical engineering. It spends

much time and costs more resources of work effort in

verification than RTL design itself. On one hand, researchers

start to enhance simulation tools in performance by either

optimize computing technique such as parallelism, or

leverage special hardware approach. On the other hand, they

enhance and standardize methodologies to enable efficient

verification developments.

Driven by continuous increment of industrial requirement,

it has achieved preeminent progress of methodology of

functional verification in the past decades. In TLM

(Transaction-Level Modeling) [1], the use of packaged

transactions transcends traditional RTL (Register Transfer

Level) behavior modeling, makes verification development

efficient. Modern functional verification methodology, fuses

concepts from software engineering, provides abstract-level

Manuscript received January 12, 2015; revised June 16, 2015.

Zhang Yuxuan, Jiang Guofan, Lu Yinchao, and Gou Pengfei are with

China System and Technology Laboratory, IBM, Shanghai, P.R. China

(e-mail: {zyxsh, jianggf, luyinch, goupengf}@cn.ibm.com).

modeling and object-oriented features. It does not only focus

on functional checking and coverage analyzing, but also

accent a system perspective so that enable very complicated

large-scale engineering. OVM (Open Verification

Methodology) [2] and UVM [3] (Universal Verification

Methodology), provide a sequence-dominated framework,

widely applied and examined in industry-level development.

Fusion/RTX [4] -IBM’s methodology, advanced in its

flexibility, specializes in server processors and chips. These

methodologies usually support a chain of

sequencer-driver-monitor, to organize and handle transaction.

And the kernel of these methodologies is the implementation

of a reference model, like a mirror, to emulate DUT

behaviors.

Registers, such as configuration register of digital design,

or operation register of CPU, are generally regarded as the

interfaces of software and hardware. Besides, as significant

parts in a control flow, registers drive functional behaviors.

However, integrated register solution is exerted in verification

methodologies only in the recent, such as RGM (Register and

Memory Package) [5] and REG (UVM Register Layer

Classes) [5]. Registers-Modeling [6] is also implemented in

Fusion/RTX as a special component. They are common in

bridging functional operation to protocol-level behaviors, to

represent register access and organization, and to manipulate

registers’ mirror as a special reference model.

B. Register Coupling in Verification

We present this paper for solving “register coupling”, — A

troublesome problem entangles verification development.

The typical coupling is dependency between registers (fields)

in a design, when one changes another one changes as well.

While “register coupling” has a general definition in this

paper, not only limited in those explicit dependencies exist in

logic design, but also involves implicit ones presented by

software interface like broadcast, indirect register.

Therefore, we categorize coupling patterns into explicit and

implicit, and list several most common ones below as

examples.

A Graph-Based Solution for Register Coupling in

Functional Verification

Zhang Yuxuan, Jiang Guofan, Lu Yinchao, and Gou Pengfei

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

379DOI: 10.7763/IJCTE.2016.V8.1074

1) Value dependency: The value of one register/field is

dynamically calculated by other ones.

2) Attribute dependency: The attribute (i.e. read-write,

read-only, write-only) of one register/field is dynamically

determined by a condition related with the value of other

ones.

3) Indirect register: A set of registers cannot be directly

access through bus, but can only be indirectly access by

configuring a pair of index/value registers.

4) Broadcast: When writing to a broadcast address, registers

in corresponding different groups are concurrently

updated.

C. Our Work

Currently, existing methodologies are deficient in

providing a complete approach for model register coupling.

Our work, for the first time, proposes a uniform model for

various coupling patterns. The main idea is to separate

connection and behavior of coupling, and then map to a

directed-graph model. It helps to facilitate verification

development by substituting most of developers’ manual

works with automatic searching. And this approach has

advantage in solving complicated compound couplings. We

present a register mirror subsystem, which enables friendly

integration in existing methodologies, to support the reference

model to deliver decision. The following sections of this

paper are structured as follow: Section II introduces the

modeling and mapping of problem; Section III elaborates the

implementation in a systematic point of view, to construct a

platform, and to integrate in test bench; finally this solution is

evaluated in realistic verification development in Section IV,

and finally the conclusion is drawn in Section V.

II. MAPPING COUPLING TO GRAPH

This section introduces mapping coupling to graph. Then

presents the key of this approach, involves the flattened fields

organization and runtime search mechanism.

A. Modeling

To model different coupling patterns uniformly, the

thought is to explore their commonness — The connection

relationship between register/field pairs. We abstract

dependency of register/field as topology feature by detaching

them from traditional behavior descriptions. Then, coupling

problem equals to a typical directed graph problem [7].

Mapping to a directed-graph, each register/field is projected

to a vertex; the dependency of a coupling is represented by a

directed edge. The behavior of each coupling is attached on

corresponding vertices, represented as expressions. Coupling

can be emulated in mirror by automatic search mechanism,

synchronized with a register bus operation.

Fig. 1 shows register coupling in a perspective of graph

according to coupling patterns and compound of a realistic IP

core specification. There are typical patterns presented, and

also intricate compound of them. Each vertex represents a

specific register/field, and direct edge represents a

dependency from one field to another field.

Fig. 1. Mapping register couplings in a graph model.

While functional behaviors of coupling vary with patterns,

connection relationship of each coupling, no matter explicit or

implicit, renders similar topology attributes in common. Fig. 2

symbolizes typical patterns. Fig. 2(a) and Fig. 2(b) show the

graphic representation of the pattern of attribute dependency

and a typical value dependency separately; Fig. 2(c) shows a

cascade of coupling that a simple compound of value

dependency and attribute dependency; Fig. 2(d) shows a

broadcast.

A

B

C D

E

M

N

O

B.attr = A.value?RO:WR;

E.value = C.value + D.value;

N.value = !M.value;

O.attr = N.value?RO:WR;

G

H I J K

H.value = G.value;

I.value = G.value;

J.value = G.value;

K.value = G.value;

(a) (b)

(c) (d)

Fig. 2. Graph description of basic coupling patterns.

This model approach has advantage in solving compound

of coupling patterns. With this model, complicated relations

of compound are not necessarily described by developers, but

can be solved by automatic searching. Fig. 3 is an example

compound of multi-coupling, in which three typical coupling

problems are involved. Additionally, this model is only

available when states of coupling are finite, meaningful and

predictable.

Brd

Val

Brd

Addr

vR0

Addr Val

vRi vRn

P

Broadcast

Indirect

Attr/value dependency

Fig. 3. Compound of multiple coupling patterns.

B. Flattened Reg-field Structure

Given that coupling effect between register fields, we

model coupling in granularity of register fields. The whole

register database is organized in a flattened structure of

register fields. Then, couplings are indirectly represented by

an adjacency matrix, which is almost sparse. Furthermore, to

solve couplings and their compounds, the search program

need to travel in either positive direction or opposite direction

on this directed-graph. That’s the reason that orthogonal list is

appropriately applied to store the matrix. In the memory

space, vertices and edges are stored discretely. Each edge

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

380

indicates a connection, that only ‘1’s are stored. The time to

complete the construct is O(v*e), and the spatial cost is

O(v+e), (v indicate the count of vertices, e indicates the count

of edges). This structure, finally, plays a role of mirror of

verification test bench at simulation time.

C. Searching Strategy

Searching program is used in our solution to dynamically

predict register mirror. The searching program involves two

major travelling procedures transmission and evaluation.

The transmission procedure transmits the propagation

wave of register update followed by state changes throughout

the topology. Considering the feature of coupling problem,

BFS (Breadth First Search) [8] is adopted in this approach to

search adjacent vertices of a given vertex. Once the value of a

field changed, the edges from corresponding vertex are

activated, then evaluate and update adjacent vertices. The

transmission procedure travels related edges and vertices in

order. We also optimize it to reducing redundant computing.

When evaluate and update each field on the transmission

route, it is necessary to collect all potentially dependant

vertices. This procedure is evaluation which needs to

reversely search in the directed graph. DFS (Depth first

search) [8] is properly used here to travel dependent vertices

reversely. The trace of searching, in reverse edge directions,

forms a DFS spanning tree, without cycling. Fig. 4(a) and Fig.

4(b) show transmission and evaluation separately.

B1 B2 B3 B4

A

C1 D1 C2 ...

1

2 3
4

5 6 7 8

A C

B

E

D

1

2 3

4
5

8

F

6 7

 (a) (b)

Fig. 4. Examples of coupling searching, (a) transmission, (b) evaluation.

We use a dynamic switch mechanism in this model to

emulate simulation — only when a change happens could

edges that emit from it be activated. Namely, if the state of a

vertex is not actually changed at runtime, the searching will be

terminated. It can be available in two aspects, 1) optionally

trigger next level transmission to reduce redundant

computation; 2) determine edge-connections at runtime to

handle potential circling.

The switch determines edge connection in the correct

direction and cut off potential circles in a transmission

procedure. It can solve practical problems like indirect

registers, which has circles when mapping to graph as shown

in Fig. 5. vB represents indirect fields vector; A and C are

index and value registers separately. Although there are circle

relationship among registers in a static mapping, but these

circles is not exist at runtime affected by dynamic switch.

III. BUILDING REGISTER SUBSYSTEM

This section elaborates the implementation of the register

subsystem, and presents how it cooperates with verification

methodology, and how it practically operates in a test bench.

A. The Subsystem

We integrate all functional components into a subsystem.

These components include a mirror database which record

predicted registers’ properties to support reference model and

checkers; and an engine that supports search algorithms to

handle update of mirror; and there is also a pair of bridges

which convert register operations for subsystem with

scatter/gather mechanism. Fig. 6 shows a schematic view of

the register subsystem.

C’

vBi ’

A C

vBi vBnvB0

pEdge = pC->FirstIn;

While(pEdge) {

 pB = pEdge->StartVex;

 if(pB->id == pA->value) {

 pC->value = pB->value;

 break;

 }

 pEdge = pEdge->ELink;

}

if (PreSponsor == pC) {

 if(pB->id == pA->value) {

 pB->value = pC->value;

 }

}

Index

Reg

Value

Reg

A C

vBi

A C

vBi

if (PreSponsor == pC) {

 if(pB->id == pA->value) {

 pB->value = pC->value;

 }

}

pEdge = pC->FirstIn;

While(pEdge) {

 pB = pEdge->StartVex;

 if(pB->id == pA->value) {

 pC->value = pB->value;

 break;

 }

 pEdge = pEdge->ELink;

}

(a)

(b) (c)

Index

Reg

Value

Reg
Index

Reg

Value

Reg

Fig. 5. An example of indirect registers pattern; its solution in graph model

and behavior description.

Register/Field

Mirror DB

Transmitter

Evaluator

Register

Field

Scatter

Register

Field

Gather

Register

Access

Interface

Switch

Register

Verification

Subsystem

RD

WR

Prediction Engine

Fig. 6. Schematic view of register subsystem.

The subsystem serves as part of test bench to support

reference model as shown in Fig. 7. When a bus transaction is

captured by a corresponding monitor, this transaction will be

conveyed to register subsystem from a software tunnel. With

search engine and mirror database, the subsystem predicts

DUT behaviors according to mirror behaviors customized by

developers.

DUT

Reference

Model

Monitor/

Checker

Register

Mirror

Subsystem

Compare

Fig. 7. Integration of register subsystem in a verification environment.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

381

B. Access Interface-Scatter/Gather

As all register fields are flattened in mirror database of

register subsystem, and graph vertices associate with register

fields rather than registers. We provide a gather/scatter

mechanism, for register operation to bridge regular register

access to register subsystem. We assume this procedure

independent to bus protocols. For each read operation,

separated fields are gathered into a register as a whole as

shown in Fig. 8; for each write operation, register is

segmented into field slices and outputted in order, with

ordered fields from event queue trigger vertices’ evaluation

successively, as shown in Fig. 9.

A B

C

D

E

F

3 12 0

3 (E) 1 (C)2 0

Gather

read

operation

Fig. 8. Gather register fields when reading.

Arbitrator

Ordering vector

3 12 0

Scatter

3 12 0

A B

DC

3 (B)1 (A) 2 0

Event queue

write

operation

Fig. 9. Scatter register fields when writing.

C. Development Flow

Design specification is usually described by natural

language. Developers need to collect and analyze information

of design spec by manual or script process. In the

development flow, register information in design spec is

firstly translated into an intermediate format in which

couplings are presented as entries. This intermediate format is

loaded and translated to topology structure by verification

program at build phase of runtime.

IV. ANALYSIS AND EVALUATION

In this section, we estimate the potential benefits of

register-subsystem by analyzing practical chip verification

projects. We evaluate the performance of the subsystem in

verification environment.

A. Coupling Complexity

Register coupling pervasively exists in logic designs, might

be more diverse than above patterns, thereby perplexing

functional verification. Although it is difficult to evaluate how

many workload or codes can be reduced when using this

method, but it can be indirectly evidenced by quantify the

complexity of register coupling in a project.

We illustrate the complexity of register coupling with three

industry-level IP core designs. These three designs are

considered representative for either of them has

control-intensive and data-intensive features, frequent applied

as hardware components in state-of-the-art network devices

and data centers. Their detailed information is reported in

Table I where HSS is the largest one in the amount of registers

and fields.

TABLE I: REGISTER INFORMATION OF THREE IP CORE DESIGNS

Core

Information

virtual

register

virtual

register
Field Description

MC 130 175 270
Core of DDR4 memory

controller.

PHY 1093 1227 5876
Data-path of DDR memory

system, physics layer protocol.

HSS 1110 1242 3619

High-speed Serdes,

Data communication core,

large scale mixed-signal

design.

We quantify the percentage of coupling-involved fields in

Fig. 10, implicit and explicit ones in Fig. 11. The analysis is

based on register field which is the basic grain of dependency.

The statistic shows a varied percentage of coupling-related

register/field among the three designs. Most register fields of

PHY and HSS relate couplings, and most of them are implicit.

Fig. 10. Count of coupling fields in three developments.

Fig. 11. Percentage of implicit and explicit patterns.

A coupling register, that involves functional state, usually

determine export of reference model, or status of functional

checker. Based on verification criteria, register mirror should

be synchronized in terms of verification. Nevertheless,

existing methodology, either UVM or Fusion, lacks a valid

mechanism to support coupling. Developers usually need to

code conditions for each coupling manually. In a simulation

flow, each time when a register operation executes, conditions

are triggered to decide whether to update register mirror.

Compound of patterns complicates coupling in width and

depth. For instance, a pair of value-dependency registers

updated by broadcast. For verification developers, they have

to consider the overlap and cascade of effects of multiple

couplings. When comes to compound coupling in

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

382

multi-dimensions, those conditions tend to be more intricate

than individual ones, and more difficult for developers to

describe its behavior in a test bench. We quantify the

complexity of each coupling with three factors by evaluate

each register, 1) the depth of a coupling cascade; 2) the

number of registers effect as condition vector; and 3) the

number of registers to be affected. These factors are

illustrated in Fig. 12(a), (b) and (c) report each complex

dimension of the three developments.

(a)

(b)

(c)

Fig. 12. Indication of development complexity of couplings. (a) cascade

Depth; (b) fan-in Width; (c) fan-out Width.

B. Simulation Costs

We use iProf [9] to emulate an ideal complexity of

coupling in a testbench, from sparse connections to intensive

connections, to evaluate potential simulation costs. In the

experiment, we construct a dummy register subsystem with

heavy register couplings (2000 registers with 2000 couplings)

in MC testbench. Additional memory cost of register

subsystem is 0.7% (48KB for data structure cost) of testbench

before run-phase. And this cost will not increase once

constructed at build-phase. At run-phase, compared with

logic simulation, the cost of CPU and memory of register

subsystem is nearly ignorable. Therefore, the cost of

verification environment won’t result to remarkable

performance loss and resource burden.

V. RELATED WORKS

Only in recent decades, mature methodologies substitute

direct test in functional verification. And only in recent,

specialized approaches were adopted in verification

methodologies to manage registers. Both RGM [5] and REG

[6] provide mechanism to bridge programming interface to

protocol-level transactions, and enable convenient testbench

integration. IP-XACT [10] has also been adopted by

Accellera Group [11] that to enable automatic generation of

codes for register layer classes [12], [13].

However, register coupling is not really well supported in

existing methodologies. Although some works used to try to

solve behaviors of registers, never successfully establish a

uniform model for coupling problem. For example the

emulation of indirect register in RGM and REG which is not

flexible enough to adapt functional requirements. A special

method in IBM Fusion/RTX is used to verify multi-address

register which has different access attributes [14], [15]. Work

of [16] only solves conflict of register binding for formal

verification, and it is similar with indirect registers. In

general, the above methods solve specified patterns with

specified methods. However, none of them proposed a

uniform model to solve this problem, that coupling of

configure registers still torments functional verification.

Other previous works of registers’ verification mainly focus

on testbench building, but rarely successful in modeling the

relationship of registers, e.g. [17] codifies register

descriptions for SoC verification, and works in [18] only

optimize structure reusability of register modules but ignore

behavior and relation.

Although graph model applied to solve EDA problems, e.g.

circuit synthesizing [19] and parallel simulation partitioning

[20], but our proposal is fundamentally discrepant with these

works. This work focuses on a totally different problem,

which only specializes in functional verification rather than

circuit and logic designs.

VI. CONCLUSION

In this paper, we propose an efficient method to handle

register coupling. It explores the commonness of coupling

problems to provide a uniform model. It is important in

register testing and reference model building. It can

significantly reduce the complexity of development overhead

of registers and related logic behaviors. It is advantage in

aspects of following.

1) Universality. For the first time, the coupling behaviors of

registers/fields are modeled as one problem, mapping to

a graph model universally.

2) Flexibility. No longer circumscribed with fixed patterns,

this solution supports customizable behavior description

to facilitate a flexible modeling for explicit and implicit

couplings;

3) Scalability. Providing systematical graph-based data

structure and algorithms, the modeling method delivers a

scalable platform to adapt the variation of verification

tasks.

The static analysis has shown a significant value of the

graph-based register subsystem in verification development.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

383

In the future, we will consider how to better describe coupling

problem with IP-XACT format, and improve further

automation. The subsystem will be delivered as a library with

application interfaces for mainstream HDL, C/C++ and

different verification methodologies in our future work.

ACKNOWLEDGMENT

Thank colleagues in CDC Dev team of IBM CSTL for

helping us in data and experiments, and managers for their

continuous support.

REFERENCES

[1] L. Cai and D. Gajski, “Transaction level modeling: An overview,” in

Proc. International Conference on HW/SW Codesign and System

Synthesis, Oct. 2003, pp. 19-24.

[2] OVM User Guide, version 2.1.1, Cadence, Mentor Graphics Inc.,

March 2010.

[3] Universal Verification Methodology (UVM) 1.1 User’s Guide,

Accellera, May 2011.

[4] Fusion User’s Guide, IBM, 2007.

[5] Open Verification Methodology Register and Memory Model, Version

2.4, Cadence Design Systems Inc., August 2010.

[6] UVM Register Layer Classes, Cadence Design Systems Inc., June

2012.

[7] J. Bondy and U. Murty, Graph Theory with Applications, Elsevier

Science Publishing, 1976, ch. 3.

[8] E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data

Structures, Silicon Pr, June 2006, ch. 6.

[9] Advanced Profiler, Version 13.20, Cadence Design System Inc.,

January 2014.

[10] Standard Structure for Packaging, Integrating, and Reusing IP within

Tools Flows, IEEE Std 1685-2009 for IP-XACT.

[11] Accellera Group. [Online]. Available: http://www.accellera.org

[12] D. Murray, “Verification and automation improvement using

IP-XACT,” in Proc. Design and Verification Conference and

Exhibition, 2012.

[13] W. Kruijtzer, Van der Wolf, E. de Kock et al., “Industrial IP integration

flows based on IP-XACT standards,” Design, Automation and Test in

Europe, pp. 32-37, 2008.

[14] S. Uldrikis, Register Modeling Class Description and Figtree

Utilities, 2011.

[15] W. Roesner et al., FigTree, API, Semantics, and Behavior, Featuring

Scary Usage Cases, July 12, 2001.

[16] C. Blank, “Formal verification of register binding,” presented at

Workshop on Advances in Verification, 2000.

[17] N. Kim et al., “How to automate millions lines of top-level UVM

testbench and handle huge register classes,” presented at SoC Design

Conference, 2012.

[18] Y. X. Zhang, N. Xu, and Z. G. Liu, “Vertical and horizontal: Towards

adaptable register layer for scalable core verification,” presented at

CDNLive Cadence User Conference, Sept. 2013.

[19] J. Gargers, H. J. Promel, and A. Steger, “Finding Clusters in VLSI

Circuits,” in Proc. International Conference on Computer-Aided

Design, Nov. 1990, pp. 520-523.

[20] J. Cong and M. Smith, “A parallel bottom-up clustering algorithm with

applications to circuit partitioning in VLSI design,” in Proc. Design

Automation Conference, June 1993, pp. 755-760.

Zhang Yuxuan received the BS and MS degrees in

computer science from Northwestern Polytechnical

University, Xi'An, China, in 2009 and 2012. He joined

IBM and worked on chip development since 2012.

Now, Yuxuan is a developer of IBM XL C/C++

Compiler, focuses on z/series mainframe. His research

interests include computer architecture,

high-performance computing and compiler.

Jiang Guofan received his BS and MS degrees both

in information engineering from Zhejiang Univeristy,

Hangzhou, in 2006 and 2008, respectively. From

2008, he worked in IBM China System and

Technology Laboratory as an advisory hardware

development engineer. Guofan is an expert of

functional verification and phisical design. His

research interests include transceivers for high-speed

wireline communications and high-performance

processor microarchitecture.

Lu Yinchao received the BS degree in

communication engineering and MS degree in

microelectronics engineering from the Southeast

University, China, in 2009 and 2012, respectively. His

diploma thesis focuses on reconfigurable system, low

power SoC and cipher processor. In 2012, he joined

IBM Microelectronics, Shanghai Chip Design Center,

as a verification engineer, focuses efforts on IP and

SoC verification methodology. Yinchao is an expert of

DDR protocol and High-Speed Serial Link. He has recently moved to

Freescale Semiconductor.

Gou Pengfei received the BS, MS and PhD degrees

from Harbin Institute of Technology. He joined IBM

since 2012 as a staff verification engineer, worked on

chip functional verification for servers. He worked on

IBM XL Compiler backend development. He has

recently joined NVIDIA Corporation as a senior GPU

Stream Multiprocessors architect. Pengfei is also an

expert in system simulator. His research interests

ranging from microarchitecture, hardware

implementation to software development.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

384

http://www.accellera.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6407127
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6407127
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=296
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=296

