

Abstract—Software development and modelling cannot be

seperated in today’s software life cycle. A different model is

produced in every step of the way, starting from requirements

all the way up to analysis. This creates a plethora of

non-communicating, heterogeneous models. Multi-paradigm

modelling promotes an interoperability between these models,

extending the usability of the models and reducing the number

of redundant models. This paper presents an alternative

framework for Multi-paradigm modelling using XSLT to

support various XML-based models used in software

development.

Index Terms—Modelling, multi-paradigm, transformation,

XSLT.

I. INTRODUCTION

Modelling is becoming more and more common in today’s

software development, be it as a requirement specification

model, a configuration model, an activity model or even a

more formal model intended for analysis. These models are

often created for specific stakeholders and do not

communicate with one another creating an influx of

heterogeneous models. This presents a hefty challenge to the

software developers of today — needing to be well-versed in

multiple modelling languages in order to be able to work with

the various models involved in the process of developing the

software.

Multi-paradigm modelling brings forward a platform of

interoperability between the various models centered on

model transformation. This interoperability creates a

seamlessness for the developers where one type of model

may be transformed into another, independent of the level of

abstraction or level of formalism involved. One such example

is the model transformation algorithm SD2PN [1] that creates

interoperability between UML [2] Sequence Diagrams and

Petri Nets [3], models with clearly differing levels of

formalism.

Fig. 1 presents an example of Multi-paradigm modelling

[4]-[11] where a model is designed in a semi-formal

language, analysed in a formal language and the feedback

from the model analysis is presented in natural language;

three levels of formalism, working together seamlessly for

the benefit of software developers.

One drawback of using model transformation as the basis

of interoperability is the dependance on too many tools.

Manuscript received November 19, 2014; revised May 12, 2015. This
work is supported in part by the Department of Higher Education, Ministry

of Education, Malaysia under the Fundamental Research Grant Scheme

(FRGS), RDU130116 through Universiti Malaysia Pahang.
M. A. Ameedeen is with the IBM Centre of Excellence, Universiti

Malaysia Pahang, Malaysia, and the he is also with the Faculty of Computer

Systems & Software Engineering, Universiti Malaysia Pahang, Malaysia

(e-mail: mohamedariff@ump.edu.my).

Fig. 1. Example of model design and model analysis via multi-paradigm

modelling.

Fig. 2. Example of model transformation tools creating a multi-paradigm

modelling framework.

Fig. 2 presents a Multi-paradigm modelling scenario with

three types of models. Each model transformation in this

scenario requires a set of three tools (an object parser to parse

the source model into objects of the tools chosen

programming language, a model transformer that

thransforms one set of objects into another, and a format

writer that writes the objects into the format specified by the

destination model). In this scenario of three models, a total of

nine tools are used for interoperability between there models.

This paper presents an alternative platform for

Multi-paradigm modelling using a pre-existing framework;

XSLT [12] or Extensible Stylesheet Language

Transformations.

II. FOUNDATION

In this section, preliminary information of the framework

and technique used in this paper is provided to ease the

readers’ comprehension of the work.

A. Multi-paradigm Modelling

Multi-paradigm Modellingis a platform that promotes

interoperability between heterogeneous models. Vangheluwe

et al. [13] described Multi-paradigm modelling in modelling

and simulation as a field that addresses three directions of

research; multi-formalism modelling, model abstraction and

metamodelling.

Multi-formalism Modelling. Multi-formalism modelling

provides an interoperability platform for models with

differing levels of formalisms on the basis of model

transformation. Model transformation is the process of

translating one model into another using a set of

Multi-paradigm Modelling via XSLT

Mohamed Ariff Ameedeen

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

332DOI: 10.7763/IJCTE.2016.V8.1067

predetermined rules.

Currently, model transformation plays a key role in Model

Driven Development (MDD) [14]. Based on a survey on

model transformation [15], the intended application of model

transformation include generating low-level models from

higher level models, synchronizing models with different

levels of formalisms and reverse engineering higher level

models from low-level models. There are various

frameworks available for model transformation, among

others VIATRA (Visual Automated model Transformations)

[16], [17], Kent Model Transformation Language [18], ATL

[19], Kermeta [20] and SiTra [21], [22]. A common way to

express a model transformation is using QVT relational

language [23]. QVT is a standard for model transformation

defined by Object Management Group (OMG).

A few key features that are common to all model

transformation as described in [15] include specification,

such as the pre and post conditions for a model

transformation, the set of transformation rules, the

directionality of the transformation as well as the source and

target relationship. In an MDD model transformation, a

source metamodel and a target metamodel are also required,

whereby each source and target model should conform to the

respective metamodels.

Model Abstraction. Model abstraction is the process of

removing a certain low-level detail from the model while

preserving the construct and general behaviour of the system.

Similarly to multi-formalism modelling, model abstraction

also uses model transformation. However, a significant

difference between the two model transformations is that for

model abstraction, the source and destination models are of

the level of formalism.

Model abstraction is often used in removing various

complicated low-level behaviours in the system, according

the requirements of a specific perspective. For example, a

complete model of the system filled with low-level behaviour

might be too complicated for distribution to various

stakeholders. However using model abstraction, the model

could be simplified up to a certain level without losing its

structural properties and vital behaviours. The same concept

can also be used for optimization [9] of models. Using a base

model that is filled with all the details, less detailed models

can be automatically derived from it for various operation

tasks such as control design and performance assessment.

Metamodelling. Metamodelling refers to the modelling of

models. Metamodel or model of models is itself a model that

defines other models. For example, suppose a modelling

language L has a metamodel L. As such, L is a

model that describes the constructs of the language L anLd

every model that is written with the language L must be an

instance of the metamodel .

Mosterman and Vangheluwe [9] describe the advantages

of metamodelling as numerous. The metamodel of a

modelling language can be regarded as a specification for the

language which can either be used for documentation

purposes or as a basis for model analysis. Metamodelling also

allows new languages to be born just by modifying or

tweaking parts of existing metamodels. This allows

customization of the modelling languages to serve a specific

purpose.

B. SD2PN

SD2PN [1] is an MDD Model Transformation that

performs transformation from Sequence Diagrams to Petri

Nets.SD2PN uses a subset of the UML metamodel and a

rule-based approach to transform Sequence Diagrams into a

class of Petri Nets called Free Choice Petri Nets, an

especially well-studied class of Petri Nets. The accuracy of

the model transformation has also been established in [24]

where LES was used as a common semantic domain between

Sequence Diagrams and Petri Nets. Sequence Diagrams were

mapped into LES using an algorithm obtained from [25]

while Petri Nets were unfolded into LES using a technique

from [26]. By comparing the LES, it was established that

SD2PN preserves the semantics of the original Sequence

Diagram throughout the transformation.

C. XSLT

XSLT or Extensible Stylesheet Language Transformations

is itself a language that transforms one XML document into

other XML documents, HTML documents or even plain text.

In its infacy, XSLT was mostly used for interpretation of

XML documents. However more recently, XSLT is used in

transforming between different styles of XML documents

and as a code generation language that could generate

programming source code from multiple XML stylesheet

documents.

III. XSLT MODEL TRANSFORMATION

In this section, the ideology of using XSLT as the basis of

Multi-paradigm modelling is presented with the aid of

SD2PN as an example. With reference to Fig. 2 where

interoperability between three different model types is shown

to require nine separate tools, Fig. 3 presents a similar

interoperability scenario with one stark difference; it does not

require all those tools.

Fig. 3. Example of multi-paradigm modelling via XSLT.

Fig. 3 depicts three types of models that have XML

representations as its basis. These XML documents could

then be made interoperable through XSLT, where three

XSLT specification could be implemeted in order to

transform the stylesheet documents from one type to another.

This scenario, ideal as it may seem, depends on one

fundamental requirement; the ability to represent said model

in XML. Fortunately, the emergence and continuous

evolvement of XML translates to more and more modelling

languages adopting XML (or its equivalent) as its base

language. The most widely accepted modelling language,

UML uses XML Metadata Interchange (XMI) [27] as a

format to represent its models. XMI is also adopted by

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

333

SysML [28] and is extensively used in various tools

[29]-[31]. Other modelling languages such as Service

Modelling Language (SML) [32], Business Process

Modelling Language (BPML) [33], Educational Modelling

Language (EML) [34], as well as formal languages such as

Petri Nets (which uses a specilaization of XML called

PNML) [35], Alloy [36] and also Common Logic [37] all use

XML as its chosen format for representation.

To illustrate Multi-paradigm modelling via XSLT as

presented in this paper, an example using SD2PN is

presented.

Fig. 4. Model driven development model transformation framework.

Fig. 4 depicts the framework that is used by SD2PN in its

model transformation where the metamodels of Sequence

Daigrams and Petri Nets are established, and a set of five

transformation rules are presented together with two local

functions in order transform all Sequence Diagrams into Petri

Nets with the help of a Java tool.

The process of model transformation starts with parsing

the XMI documents created with UML tools into Java

objects. The tool then transform the Sequence Diagram Java

objects into Petri Net Java objects based on the

transformation rules. The Petri net Java objects are the writen

into PNML documents using a specially designed format

writer.

Alternatively as proposed in this paper, using XSLT

minimizes the processes involved in the model

transformation as presented in Fig. 5.

Fig. 5. SD2PN via XSLT.

Well established UML tools such as Rational Rose [29],

Poseidon [30] as well as various Eclipse [31] based tools are

all XMI ready. Sequence Diagrams created using such tools

are saved in XMI format, and ready for transformation using

XSLT. The XSLT is the defined to transform the XMI into

PNML (a specialization of XML) which is a known standard

for Petri Net tools such as CPNTools [38], ePNK [39] and

various other tools.

This approach reduces the number of processes involved in

the model transformation to a singular process as opposed to

the three processes involved in the former approach. Any or

all performance benefits that relates to this reduction of

process is currently ignored since there are no formal

performance analysisconducted as yet. Nonetheless, this

approach reduces the possibility of errors in future

transformations based solely on the lower number of process

involved.

IV. DISCUSSION AND CONCLUSION

This paper has presented an alternative framework for

Multi-paradigm modelling through XSLT as well as an

example of XSLT based model operability using SD2PN.

Neither the effectiveness of this alternative framework, nor

the efficiency of it has been extensively studied in order to

make a viable comparison with the existing method. This

approach only provides an alternative framework for

Multi-paradigm modelling between multiple models that uses

XML as its base format. The effects and performance

consequences of choosing this framework will have to be

studied further before any recommendation could be made.

REFERENCES

[1] M. A. Ameedeen and B. Bordbar, “A model driven approach to

represent sequence diagrams as free choice petri nets,” in Proc. 12th
International IEEE Enterprise Distributed Object Computing

Conference (EDOC), München, Germany, 2008, pp. 213-221.

[2] OMG. (2007). OMG Unified Modelling Language (UML)
Superstructure 2.1. [Online]. Available: http://www.omg.org

[3] T. Murata, “Petri nets: properties, analysis and applications,”

Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.
[4] F. Villa and R. Costanza, “Design of multi-paradigm integrating

modelling tools for ecological research,” Environmentla Modelling &

Software, 2000.
[5] The OsMoSys approach to multi-formalism modeling of systems,

Software and Systems Modeling (SoSyM), vol. 3, pp. 68-81, 2004.

[6] H. Vangheluwe and E. Kerckhoffs, “Computer automated modelling of
complex systems,” in Proc. 15th European Simulation

Multi-Conference, Prague, Czech Republic, 2001.

[7] J. de Lara and H. Vangheluwe, “Computer aided multi-paradigm
modelling to process petri-nets and statecharts,” in Proc. First

International Conference on Graph Transformation, 2002.

[8] J. de Lara, H. Vangheluwe, and M. Alfonseca, “Computer aided
multi-paradigm modelling of hybrid systems with AToM3,” in Proc.

Summer Computer Simulation Conference: Society for Computer

Simulation International (SCS), Montreal, Canada, 2003.
[9] P. J. Mosterman and H. Vangheluwe, “Computer automated multi

paradigm modeling in control system design,” in Proc. IEEE
International Symposium on Computer-Aided Control System Design,

Alaska, 2002.

[10] P. J. Mosterman and H. Vangheluwe, “Guest editorial: Special issue on
computer automated multi-paradigm modeling,” ACM Transactions on

Modeling and Computer Simulation, vol. 12, no. 4, pp. 249-255, 2002.

[11] S. Ralf, “Multi-paradigm modeling,” Computer-Based Environmental
Management, pp. 97-110.

[12] W3C. (2007). XSLT Specification 2.0. [Online]. Availabe:

http://www.w3.org
[13] H. Vangheluwe, J. D. Lara, and P. J. Mosterman, “An introduction to

multi-paradigm modelling and simulation,” AI, Simulation and

Planning in High Autonomy Systems, Lisboa, Portugal, 2002.
[14] MDA. (2005). Model Driven Architecture. Object Management Group.

[Online]. Available: http://www.omg.org/mda/

[15] K. Czarnecki and S. Helsen, “Feature-based survey of model
transformation approaches,” IBM Systems Journal, vol. 45, 2006.

[16] D. Varró and A. Pataricza, “Generic and meta-transformations for

model transformation engineering,” in Proc. 7th International
Conference on the Unified Modeling Language, Lisbon, Portugal,

2004.

[17] D. Varró, G. Varró, and A. Pataricza, “Designing the automatic
transformation of visual languages,” Science of Computer

Programming, vol. 44, 2002.

[18] D. H. Akehurst, W. G. Howells, and K. D. McDonald-Maier, “Kent
model transformation language,” in Proc. Model Transformations in

Practice Workshop, Montego Bay, Jamaica, 2005.

[19] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Proc.
Model Transformations in Practice Workshop, Montego Bay, Jamaica,

2005.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

334

[20] Kermeta. (2005). Triskell Metamodelling Kernel. [Online]. Available:

http://www.kermeta.org

[21] D. H. Akehurst et al., “SiTra: Simple transformations in java,” in Proc.
ACM/IEEE 9th International Conference on Model Driven

Engineering Languages and Systems, 2006, Genova, Italy.

[22] SiTra. (2006). Simple Transformer (SiTra): An MDE Tool. [Online].
Available: http://www.cs.bham.ac.uk/~bxb/SiTra.html

[23] OMG. (2008). MOF 2.0 Query/View/Transformation (QVT)

Specification. [Online]. Available: www.omg.org
[24] M. A. Ameedeen, “A model driven approach to analysis and synthesis

of sequence diagrams,” Diss., University of Birmingham, 2012.

[25] J. Küster-Filipe, “Modelling concurrent interactions,” Theoretical
Computer Science, vol. 351, no. 2, pp. 203-220, 2006.

[26] K. L. McMillan, “A technique of state space search based on unfolding,”

Methods Syst. Des., vol. 6, no. 1, pp. 45-65, 1995.
[27] OMG. (2005). XML Metadata Interchange (XMI). v2.0. [Online].

Available: http://www.omg.org

[28] S. Friedenthal, A. Moore, and R. Steiner, “A practical guide to SysML:
The systems modeling language,” Elsevier, 2011.

[29] Process, Rational Unified, Rational Software Corporation, Cupertino,

1999.
[30] Poseidon. (2006). Poseidon for UML. Gentleware. [Online]. Available:

http://www.gentleware.com/

[31] F. Budinsky et al., Eclipse Modeling Framework: A Developer's Guide,
Addison Wesley, 2003.

[32] De Bruijn et al., “The web service modeling language WSML: An

overview,” Springer Berlin Heidelberg, 2006.
[33] R. K. Thiagarajan et al. "BPML: A process modeling language for

dynamic business models," in Proc. Fourth IEEE International

Workshop on Advanced Issues of E-Commerce and Web-Based

Information Systems, 2002.

[34] H. Hermans, J. Manderveld, and H. Vogten, Educational Modelling
Language, 2003.

[35] L. M. Hillah et al., "PNML framework: An extendable reference

implementation of the Petri Net Markup Language," Applications and
Theory of Petri Nets, Springer Berlin Heidelberg, pp. 318-327, 2010.

[36] Alloy Analyzer. (2005). Alloy Analyzer Website. [Online]. Available:

http://www.alloy.mit.edu/beta/
[37] M. Huth and M. Ryan, Logic in Computer Science: Modelling and

Reasoning about Systems, Cambridge University Press, 2004.

[38] CPNTools. Computer Tool for Coloured Petri Nets. [Online].
Available: http://www.wiki.daimi.au.dk/cpntools/

[39] E. Kindler, "The ePNK: An extensible petri net tool for PNML,"

Applications and Theory of Petri Nets, Springer Berlin Heidelberg, pp.
318-327, 2011.

Mohamed Ariff Ameedeen was born in Kuala Lumpur,
Malaysia on July 30, 1983 and obtained his first degree

with honors in computer systems and networking from

Universiti Malaysia Pahang, Malaysia in 2006. He
subsequently obtained his doctorate in computer science

from University of Birmingham, United Kingdom.

He has been a faculty member in the Faculty of
Computer Systems & Software Engineering, Universiti

Malaysia Pahang since 2006, and is currently a senior lecturer in the faculty.

He is also the director of IBM Centre of Excellence in the same university.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

335

