

Abstract—Current parallel platforms are increasingly

equipped with additional accelerators leading to hybrid system

architectures. Parallel applications for these platforms can be

implemented using a task-based programming approach. Such

an approach facilitates the exploitation of all available

execution units including the processor cores and the

accelerators. The execution of a task-based application requires

scheduling decisions, which may be provided by a suitable

scheduling tool.

This article discusses the extensions of the scheduling toolkit

SEParAT to support hybrid cluster architectures. In particular,

it first defines the extended programming model for hybrid

platforms and the corresponding scheduling problem. The

second part of the article describes the integration of this model

into SEParAT. A particular focus lies on the extension of

SEParAT's input and output interfaces.

Index Terms—Hybrid architectures, parallel tasks,

scheduling, software tool.

I. INTRODUCTION

Many current high performance platforms are equipped

with additional accelerators leading to hybrid system

architectures. Examples for accelerators are graphics

processing units (GPUs) such as the Nvidia Tesla product

line or the Intel Many Integrated Core (MIC) architecture

including the Intel Xeon Phi.

Complex applications are often composed of multiple

program parts where some parts may benefit from an

execution on accelerators and other parts may be more suited

for an execution on the main processor cores (CPU cores). In

this case, a task-based programming approach that

decomposes the application into a set of tasks and maps the

individual tasks to the most appropriate execution units can

help to reduce the execution time of the application.

Examples for such applications are linear algebra routines

implemented in the MAGMA library [1] like the Hessenberg

Reduction [2] and Map-Reduce frameworks designed for

hybrid target systems [3]-[5].

The execution of a task-based application requires a

schedule that takes the dependencies between the tasks and

platform-specific details such as the type and number of

available accelerators as well as their computational

performance into account. Such a schedule can be obtained

dynamically at runtime of the application or statically before

the execution of the application. The advantages of the

dynamic approach include the support for dynamic task

creation at runtime and the availability of dynamic load

Manuscript received October 30, 2014; revised March 11, 2015.

J. Dümmler and M. Schulze are with Technische Universität Chemnitz,

Department of Computer Science, 09107 Chemnitz, Germany (e-mail:

{djo, schulm}@hrz.tu-chemnitz.de).

information when making scheduling decisions. The StarPU

system [6] provides runtime support for this approach

including dynamic scheduling algorithms. The static

approach permits the use of more sophisticated scheduling

techniques, which can operate on the entire task graph and

provide a runtime estimate for the application that can guide

performance optimizations.

This article focuses on the static scheduling for hybrid

architectures. In particular, it proposes appropriate extensions

to the scheduling framework SEParAT [7], which provides a

uniform infrastructure for scheduling algorithms for

homogeneous and heterogeneous architectures. The

extensions are built atop a programming model for hybrid

target architectures that consists of an application model, a

platform model, and a corresponding scheduling problem.

The application model is based on parallel tasks that can

either be executed by an accelerator or by a set of CPU cores.

The platform model supports clusters consisting of hybrid

compute nodes, which may be equipped with multiple

(possibly different) accelerators. The scheduling problem

consists of the determination of a feasible schedule that leads

to the minimum execution time of a given application on a

specific hybrid platform.

SEParAT exhibits a component-based software

architecture. The components include user interfaces, input

and output components, transformation components for the

processing of internal data structures, a generator component

to create synthetic scheduling problems, a validation

component, and an extensible scheduling algorithm library

with support for homogeneous and heterogeneous target

architectures. The integration of the programming model for

hybrid architectures requires the extension of most of these

components. The article especially focuses on the extended

input and output components and illustrates the extended

interfaces using example specifications. The extensions to

SEParAT guarantee backwards compatibility to the already

existing model for heterogeneous platforms.

The structure of the article is as follows. Section II gives a

short overview of SEParAT. Section III presents the

task-based programming model for hybrid platforms that has

been incorporated into SEParAT. Section IV describes the

extensions to SEParAT in detail. Section V discusses related

work and Sect. VI concludes the article.

II. THE SCHEDULING TOOLKIT SEPARAT

This section gives a short overview of the scheduling

framework SEParAT (Scheduling Support Environment for

Parallel Application Task Graphs) [7], [8] that supports the

scheduling of parallel applications in various ways. The main

focus of SEParAT lies on static scheduling of applications

Extending the Scheduling Toolkit SEParAT to Support

Hybrid Parallel Platforms

Jörg Dümmler and Martin Schulze

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

265DOI: 10.7763/IJCTE.2016.V8.1056

consisting of precedence-constrained parallel tasks, i.e.,

tasks that can be executed by multiple execution units

cooperatively. The supported target platforms of SEParAT

include homogeneous clusters and heterogeneous

clusters-of-clusters, i.e., large heterogeneous clusters that are

composed of multiple homogeneous subclusters. The

extensions for hybrid platforms are outlined in the following

sections.

SEParAT supports two modes of operations:

 Auxiliary tool with command line interface and

 Stand-alone application with graphical user interface

(GUI).

The command line interface is mainly intended to facilitate

the integration into other programming support tools that

require scheduling decisions like, for example, parallelizing

compilers or tools that translate parallel specifications into

executable code [9]. The GUI assists the user in the

evaluation of existing scheduling algorithms and the

development of new scheduling algorithms. For example, the

GUI can visualize intermediate steps of the scheduling

process, internal states and the results of benchmarking runs

that can be performed using synthetic scheduling problems

and various user-defined parameters.

The main usage scenario of SEParAT is the scheduling of a

given application for a particular target platform using a

specific scheduling algorithm. In this case, the required input

consists of 3 parts: the application structure in form of a task

graph with annotated cost information, the specification of

the parameters of the parallel target platform, and

problem-specific parameters like the problem size. The task

graph is hierarchical, i.e., each node may consist of a task

graph itself, and there may be multiple implementation

variants for each parallel task. The cost information are

specified using symbolic runtime formulas that may depend

on problem-specific and platform-specific parameters

provided by the other two input files. The output of SEParAT

is a schedule that defines the execution order of the parallel

tasks, the selected implementation variants, and the assigned

execution units of the target platform.

Fig. 1. Software architecture and workflow of SEParAT.

The software architecture of SEParAT is based on

components where the core component is an extensible

scheduling algorithm library that provides a uniform

interface to different scheduling algorithms and includes a

plug-in mechanism to add further algorithms. Currently,

SEParAT supports 18 scheduling algorithms for

homogeneous and 6 algorithms for heterogeneous target

platforms.

Fig. 1 gives an overview of the components and shows the

workflow of a scheduling pass, which consists of the

following 5 steps:

1) The Input parser reads the provided input files and

creates the corresponding internal data structures.

2) The Internal graph processor transforms the given

hierarchical task graph into a flat graph and selects

appropriate implementation variants for the parallel

tasks.

3) The Scheduling algorithm library computes a schedule

using the algorithm specified by the user.

4) The computed schedule is validated (optional) and

postprocessed, i.e., information regarding the

hierarchical graph structure and selected implementation

variants are added.

5) The Output generator creates the output files.

III. PARALLEL PROGRAMMING MODEL FOR HYBRID

PLATFORMS

This section presents the programming model of SEParAT

for hybrid architectures that consists of a submodel for the

parallel target platform (see Subsect. III.A), a submodel for

the parallel application (see Subsect. III.B), the annotation of

cost information (see Subsect. III.C), and the corresponding

scheduling problem (see Subsect. III.D).

A. Platform Model

The target platform is a heterogeneous distributed memory

cluster consisting of compute nodes . Each node

may have two types of execution resources: the cores of the

central processing unit (CPU) and additional accelerators

(called submachines in the following), such as graphics

processors (GPUs) or the Intel Xeon Phi. This means, the

execution resources of node encompass

 The nonempty set of

CPU cores and

 The set of submachines.

Fig. 2(a) shows an example for a hybrid cluster platform

consisting of 2 compute nodes.

The CPU cores are assumed to be identical, but the set

may include different types of submachines and may also be

empty in case a compute node is not equipped with

submachines. The compute performance of the execution

units is captured by the average execution time of an

arithmetical operation, which is denoted by
 for the CPU

cores of node and by
 for submachine of node

 .

The interconnection network between the execution units

of the entire cluster are modeled on two levels. On the lower

level, there is the node-internal network that connects all

CPU cores and all submachines of the same compute node.

This network is assumed to be homogeneous, i.e., data

transfers between main memory and individual submachines

and data transfers between different submachines are

performed at the same speed. To model the performance of

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

266

the internal network of node we use the

startup time
 and the byte-transfer time

 .

Compute node N1

C1,1 C1,2 C1,3 C1,m... CPU

cores

Internal

 network

S1,1 S1,2 S1,n
... Sub-

machines

Compute node N2

C2,1 C2,2 C2,3 C2,k... CPU

cores

Internal

 network

S2,1 S2,2 S2,l
... Sub-

machines

External

 network

q

1 2 3

4 5 6 7

8 109

r

 (a) (b)

Fig. 2(a) Example for a hybrid cluster platform consisting of 2 compute

nodes and . (b) Example for an application task graph consisting of the

entry node , the exit node , and the set of parallel tasks .

On the upper level, there is the network that interconnects

different compute nodes. This network is assumed to be

heterogeneous and the communication performance between

nodes and , is captured by the startup

time
 on , the startup time

 on and the

byte-transfer time
 .

B. Application Model

The parallel application consists of a set of parallel tasks

with dependencies that are modeled in form of a hierarchical

annotated directed acyclic graph . The nodes of

the graph include a unique entry node that represents the

input of the application, a unique exit node that represents

the output of the application, and a set of task nodes that

represent the parallel tasks of the application. The entry (exit)

node is an ancestor (descendant) of all other nodes. An

example for an application task graph is shown in Fig. 2(b).

Each parallel task of the application can be either basic or

complex. A complex parallel task is represented by an entire

directed acyclic graph that describes how the complex task is

built up from other parallel tasks. A basic parallel task is not

further decomposed and represents the smallest unit visible to

SEParAT.

Each parallel task may have multiple implementation

variants, where each implementation variant is suited for one

or more specific target architectures, i.e., the CPU cores or

specific submachines. For example, a parallel task may

have two implementation variants and where may

only be executable on CPU cores and the Intel Xeon Phi

whereas implementation variant may only be executable

on Nvidia GPUs. As a consequence, parallel task cannot be

executed on Radeon GPUs, since there is no available

implementation variant.

The edges of the task graph represent control and data

dependencies between the parallel tasks that restrict the

possible execution order. A data dependency between

parallel tasks and may lead to communication operations

at runtime of the application if and are assigned to

different execution units, e.g., to different nodes of the cluster

or to different submachines of the same node. These

communication operations have to be taken into account

when determining a suitable schedule for the entire

application.

C. Cost Annotations

The nodes and edges of the application task graph are

annotated with cost information that provide an estimate of

the execution time of the corresponding computation or

communication operations depending on the assigned

execution units.

The computation costs of the parallel tasks on node

 of the cluster are captured by two functions

where
 denotes the execution time of parallel task

 using CPU cores of node and
 denotes

the execution time of on submachine . If a task has

multiple implementation variants, the function values of

 and

 represent the minimum execution time over

all variants on the respective execution units. In case a

parallel task cannot be executed on CPU cores or on a

specific submachine, the respective function values of

or are set to infinity. For example, if parallel task

cannot be executed on CPU cores, then
 for

all nodes and all processor numbers .
The unique entry node and the unique exit node have an

execution time of zero on each execution unit, i.e.,

for each , all processor numbers and

all submachines .
The costs for the communication operations arising from

data dependencies between parallel tasks depend on the

amount of data to be transferred and the execution resources

assigned to the respective parallel tasks. The set of functions

captures these costs where
 denotes the

communication costs arising from edge assuming

task is executed on execution units of cluster node

and task is executed on execution units of cluster node

 . We do not distinguish between an execution on a single

CPU core and on a single submachine here, since the

assumed homogeneous node-internal network leads to

identical communication costs for both cases.

D. Scheduling Problem

A schedule assigns each parallel task a

cluster node
, a set of execution resources , and a

starting point in time . The set is either a subset of

the CPU cores of cluster node
, i.e.,

, or one

of the submachines on cluster node
, i.e.,

for an
 . An example for a schedule is shown

in Fig. 3.

The execution time
 of parallel task is computed

depending on the assigned execution resources by

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

267

The finish time of parallel task is the sum of its

starting time and its execution time, i.e.,

A schedule is called feasible, if it fulfills the following

three constraints.

1) Before a parallel task is started, all predecessors

of must have finished their execution and all required

communication operations must have been carried out,

i.e., for each edge the following inequality

has to be fulfilled:

where and .

2) Parallel tasks with an overlapping execution time

interval have to be executed on disjoint sets of execution

units, i.e., for each pair of parallel tasks
 with follows

 .

3) Each parallel task has to be assigned to execution

resources that are capable of executing it, i.e., for each

parallel task it is
 .

The makespan of a schedule

 denotes the point in time when all computations and

communication operations of the entire applications have

been terminated. This is achieved at the finish time of the exit

node , i.e., . The scheduling problem

is to determine a feasible schedule with a minimum

makespan. This is a strongly NP-hard problem as has been

shown for the special case of a platform consisting of

homogeneous processors and precedence constraints in the

form of chains [10].

10

1 3

4 5
7

T
im

e

9

2

8

6

CPU cores Sub. 1 Sub. 2
Fig. 3. Example schedule for the application task graph from Fig. 2(b) on a

platform consisting of a single node with 2 submachines.

IV. SUPPORT FOR HYBRID PLATFORMS IN SEPARAT

This section describes the extensions to SEParAT to

support hybrid platforms according to the programming

model presented in Sect. III. An overview of all extensions is

given in Subsect. IV.I.A and Subsect. IV.B discusses the

extended input and output interfaces.

Fig. 4. Properties of a hybrid parallel platform displayed by the graphical user interface of SEParAT.

Fig. 5. Fragment of a schedule shown by the graphical user interface of SEParAT. The green boxes illustrate communication operations resulting from data

dependencies and the colored boxes symbolize the execution of parallel tasks.

A. Overview of the Extensions for Hybrid Platforms

To support scheduling for hybrid platforms, several

components of SEParAT had to be extended, see Fig. 1 for an

overview of the software structure. In particular, the

following extensions have been made.

 The input and output interfaces are modified to account

for the additional submachines of hybrid platforms and

the additional cost information for the different

architectures. The modified interfaces require extensions

to the Input parser and Output generator components of

SEParAT, see Subsect. IV.B for details.

 The internal interfaces and data structures have been

extended according to the modified input and output

interfaces.

 Specifically adapted scheduling algorithms have to be

included in the Scheduling algorithm library. Currently,

there exists a simple list scheduler that assigns parallel

tasks to the next free execution unit that can execute the

task. This can either be a submachine or all available

processors of a compute node. Further scheduling

algorithms will be added in the future.

 The Graph generator that is used to create synthetic

scheduling problems for benchmarking scheduling

algorithms is extended to create cost information for

hybrid platforms. Furthermore, this component now also

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

268

supports the generation of synthetic hybrid platform

configurations based on user-provided parameters like

the average number of submachines per cluster node and

a heterogeneity factor where a low factor produces rather

similar cluster nodes (same type and number of

submachines) and a high factor produces completely

different cluster node configurations.

 The illustration of scheduling problems and generated

schedules for hybrid platforms is incorporated into the

Graphical user interface. Fig. 4 shows the properties of a

hybrid platform and Fig. 5 shows a computed schedule in

the GUI.

B. Extensions of the Input and Output Interfaces

The input of SEParAT consists of a platform specification

(see Subsect. IV.B.1), a specification of the application task

graph (see Subsect. IV.B.2), and a definition of application

specific parameters like the problem size. The output of

SEParAT is a feasible schedule for the provided input

scheduling problem (see Subsect. IV.B.3).

1) Specification of hybrid platforms

The input specification for hybrid platforms has been

designed to be backward compatible to the specification of

heterogeneous cluster-of-cluster platforms in SEParAT. An

example for a hybrid cluster specification is given in Fig. 6. A

complete specification consists of a list of compute nodes

(lines 3–24) and the communication performance of the

interconnection network between the compute nodes, which

is defined by the network startup times and and the

network byte-transfer time (lines 27–33).

Fig. 6. Example for a hybrid cluster platform specification.

A single cluster node is defined by the number of CPU

cores (line 6), the communication performance of the

node-internal interconnection network (lines 7–8) and the

compute performance of the processor cores (line 9).

Additionally, each cluster node contains a list of zero or more

submachines (lines 10–17) where each submachine has a

unique identifier and a submachine type, which is used to

determine whether a given parallel task is executable on this

submachine. The compute performance of a submachine is

specified by the average execution time of an arithmetic

instruction (lines 12 and 16).

For the incorporation of other cost models, the platform

specification also supports additional user-defined constants

and functions in the definition of cluster nodes or

submachines like, for example, the execution time of a

broadcast operation depending on the number of participating

CPU cores. These constants and functions may then be used

in the runtime formulas of the parallel tasks in the application

specification.

Fig. 7. Example for a specification of a parallel application.

1 <!-- definition of external parameters -->

2 <!-- problem size -->

3 <ProblemParam Name="n" DefaultValue="1024"/>

4 <!-- compute power -->

5 <MachineParam Name="t_C"/>

6

7 <!-- data types and data distrib types -->

8 <DataType Name="myMatrix" DataType="matrix"

9 C-Type="double" Dimension="2" Size="n;n">

10 <DataDistrib Name="block"

11 Description="BLOCK"/>

12 </DataType>

13

14 <!-- basic parallel task definition -->

15 <Module Name="myNode" Id="1">

16 <Param Name="in" Id="1" Type="myMatrix"/>

17 <Param Name="out" Id="2" Type="myMatrix"/>

18 <Implementation Name="mod1_block" Id="1">

19 <Distrib ParamRef="1" Type="block"/>

20 <Distrib ParamRef="2" Type="block"/>

21 <BasicModule>

22 <Runtime Formula="T_par(p,n,t_C)=

23 0.1*t_C*n^2+(0.9*t_C*n^2)/p"/>

24 <Runtime Type="GTX780" Formula=

25 "T_par(n,t_C)=0.05*t_C*n^2"/>

26 </BasicModule>

27 </Implementation>

28 </Module>

29

30 <!-- complex parallel task definition -->

31 <Module Name="task graph" Id="2">

32 <Param Name="in" Id="1" Type="myMatrix"/>

33 <Param Name="out" Id="2" Type="myMatrix"/>

34 <Implementation Name="main impl" Id="1">

35 <Distrib ParamRef="1" Type="block"/>

36 <Distrib ParamRef="2" Type="block"/>

37 <ComplexModule>

38 <!-- nodes of the task graph -->

39 <StartNode Name="entry" Id="1"/>

40 <Node Name="n1" Id="2" ModuleRef="1"/>

41 <StopNode Name="exit" Id="3"/>

42 <!-- edges of the task graph -->

43 <Edge Id="1" SourceNodeId="1"

44 SourceParamId="1" TargetNodeId="2"

45 TargetParamId="1"/>

46 <Edge Id="2" SourceNodeId="2"

47 SourceParamId="2" TargetNodeId="3"

48 TargetParamId="2"/>

49 </ComplexModule>

50 </Implementation>

51 </Module>

52

53 <!-- definition of the application root -->

54 <MainModule ModuleRef="2"/>

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

269

2) Application specification

The specification of the application task graph for

SEParAT has been extended to include cost information for

different types of submachines. An example specification is

shown in Fig. 7. It consists of 4 parts:

1) The definition of external parameters that are provided

as part of the platform specification or problem

description (lines 3–5);

2) Definitions of the data types and data distribution types

used within the specification (lines 8–12);

3) Definitions of basic and complex parallel tasks (lines

15–51);

4) The indication of a specific complex parallel task that

represents the entire application (line 54).

The specification of a parallel task consists of a set of input

and output parameters with a corresponding data type (lines

16–17, 32–33) and a list of implementation variants. Each

implementation variant defines the data distributions for the

input and output parameters (lines 19–20, 35–36) and either

defines a runtime prediction (basic parallel tasks that are not

further decomposed) or includes an entire task graph

(complex parallel tasks). In the case of a basic parallel task, a

set of symbolic runtime formulas is given (lines 22–25). Each

runtime formula has a type attribute, which defines the target

architecture (CPU cores or a specific type of submachine). To

guarantee backward compatibility, a missing type attribute

refers to CPU cores. If there is no runtime formula for a

specific architecture, SEParAT assumes that this basic task

cannot be executed on this type of submachine. For example,

the basic parallel task in lines 15–28 can be executed on CPU

cores and on submachines of type GTX780, but not on

submachines with type IntelPhi.

The task graph specification of a complex parallel task

consists of a set of nodes (lines 39–41) and a set of edges

(lines 43–48). Each node (except the unique start and stop

node) refers to one of the parallel tasks in the application

specification and each edge connects an output parameter of

the source parallel task with an input parameter of the target

parallel task.

3) Schedule specification

The output format for schedules produced by SEParAT has

been extended to account for the execution of parallel tasks

on the additional submachines of the target platform. Fig. 8

shows an example schedule for a hybrid platform. A schedule

consists of communication operations (lines 2–12) and the

execution of parallel tasks (lines 13–19) where each

operation has an associated start time and an associated finish

time. A communication operation additionally contains the

identifiers of the source and target nodes in the underlying

task graph and the definition of the source and target

execution units. The execution of a parallel task includes the

identifier of the parallel task, the selected implementation

variant and the assigned execution units.

The execution units can be either a set of CPU cores or a

specific submachine. In the former case, a list of the global

core numbers is included where the cores are numbered

consecutively over all compute nodes of the target platform

(line 6). In the latter case, the global identifier of the

submachine is given where the global identifier is obtained

by consecutively numbering all submachines of the platform

(line 10).

Fig. 8. Example for a schedule produced by SEParAT.

V. RELATED WORK

The execution of a parallel application on a hybrid

platform can either be based on a data parallel or a task

parallel approach. In the data parallel case, the input data is

partitioned over the available execution units and processed

according to the owner-computes rule. Examples for such

implementations are the Jacobi method [11], the FFT [12],

and the determination of connected components in graphs

[13]. The partitioning can be based on profiling information

[14], [15] or on static source code analysis in a compiler [16].

The task parallel approach decomposes the application into

a set of tasks where each task is assigned to one or more

execution units. This assignment can be performed statically

or dynamically at runtime. The static approach has been used,

for example, for many hybrid implementations of linear

algebra routines in the MAGMA library [1], the Hessenberg

Reduction [2], [11], or Continuous Collision Detection [12].

The dynamic approach has been used for Map-Reduce

frameworks [3]-[5] and for image processing [17]. This

implementation approach is supported by runtime systems

like StarPU [6], Harmony [20] and Merge [21], and dynamic

scheduling algorithms [22], [23]. In contrast to these

approaches, SEParAT offers tool support for the static

scheduling, which is especially beneficial for regular

applications with a static task structure.

VI. CONCLUSION

This article has presented the extensions made to the

scheduling framework SEParAT to support hybrid cluster

platforms. The underlying platform model supports arbitrary

heterogeneous cluster systems where each cluster node can

be equipped with multiple accelerators. The application

model of SEParAT assumes a hierarchical task-based

application with precedence constraints between the parallel

tasks, which can be either executed on accelerators or on a

subset of the processor cores of a cluster node. The support

for hybrid platforms requires the extensions of the internal

components of SEParAT. The article has shown examples for

extended input and output specifications.

1 <Schedule Id="2" Makespan="0.218">

2 <DataRedistribution Id="1"

3 SourceNodeId="1" TargetNodeId="2"

4 StartTime="0.0" FinishTime="0.00374">

5 <SourceMachine>

6 <ProcessorGroup>1 2 3 4 5 6 7 8

7 </ProcessorGroup>

8 </SourceMachine>

9 <TargetMachine>

10 <SubMachine>0</SubMachine>

11 </TargetMachine>

12 </DataRedistribution>

13 <ModuleCall Id="2" Name="n1"

14 ModuleRef="1" ImplementationRef="1"

15 StartTime="0.00374" FinishTime="0.218">

16 <TargetMachine>

17 <SubMachine>0</SubMachine>

18 </TargetMachine>

19 </ModuleCall>

20 </Schedule>

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

270

Future work encompasses the development and

implementation of scheduling algorithms for the extended

programming model in SEParAT and the evaluation of these

algorithms using different applications from scientific

computing.

REFERENCES

[1] MAGMA Version 1.5. (2014). [Online]. Available:
http://icl.cs.utk.edu/magma

[2] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear

algebra for hybrid GPU accelerated manycore systems,” Parallel
Computing, vol. 36, no. 5-6, pp. 232-240, 2010.

[3] W. Jiang and G. Agrawal, “MATE-CG: A Map Reduce-Like

Framework for Accelerating Data-Intensive Computations on
Heterogeneous Clusters,” in Proc. the 26th IEEE Int. Parallel

Distributed Processing Symposium (IPDPS'12), IEEE, 2012, pp.

644-655.
[4] K. Shirahata, H. Sato, and S. Matsuoka, “Hybrid map task scheduling

for GPU-based heterogeneous clusters,” in Proc. the 2nd IEEE Int.

Conf. on Cloud Computing Technology and Science

(CLOUDCOM'10), Washington, DC, USA: IEEE Computer Society,

2010, pp. 733-740.

[5] L. Chen, X. Huo, and G. Agrawal, “Accelerating MapReduce on a
coupled CPU-GPU architecture,” in Proc. the Int. Conf. on High

Performance Computing, Networking, Storage and Analysis (SC'12),

Los Alamitos, CA, USA: IEEE Computer Society, 2012.
[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A

unified platform for task scheduling on heterogeneous multicore

architectures,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 2, pp. 187-198, 2011.

[7] J. Dümmler, R. Kunis, and G. Rünger, “SEParAT: Scheduling Support

Environment for Parallel Application Task Graphs,” Cluster
Computing, vol. 15, no. 3, pp. 223-238, 2012.

[8] SEParAT project web site. [Online]. Available:
http://www.tu-chemnitz.de/informatik/PI/forschung/projekte/genMTS

[9] J. Dümmler, T. Rauber, and G. Rünger, “Programming support and

scheduling for communicating parallel tasks,” Journal of Parallel and
Distributed Computing, vol. 73, no. 2, pp. 220-234, 2013.

[10] J. Du and J.-T. Leung, “Complexity of scheduling parallel task

systems,” SIAM Journal on Discrete Mathematics, vol. 2, no. 4, pp.
473-487, 1989.

[11] S. Venkatasubramanian and R. W. Vuduc, “Tuned and wildly

asynchronous stencil kernels for hybrid CPU/GPU systems,” in Proc.
the 23rd Int. Conf. on Supercomputing (ICS'09), Yorktown Heights,

NY, USA: ACM, 2009, pp. 244-255.

[12] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, “An efficient,
model-based CPU-GPU heterogeneous FFT library,” in Proc. the 22nd

IEEE Int. Symp. on Parallel and Distributed Processing (IPDPS'08),

IEEE, 2008.
[13] D.S. Banerjee and K. Kothapalli, “Hybrid algorithms for list ranking

and graph connected components,” in Proc. the 18th Int. Conf. on High

Performance Computing (HiPC'11), Washington, DC, USA: IEEE
Computer Society, 2011.

[14] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping,” in Proc. the

42nd Annual IEEE/ACM Int. Symp. on Microarchitecture

(MICRO’09), New York, NY, USA: ACM, 2009, pp. 45-55.

[15] V.T. Ravi and G. Agrawal, “A dynamic scheduling framework for
emerging heterogeneous systems,” in Proc. the 18th Int. Conf. on High

Performance Computing (HIPC'11), Washington, DC, USA: IEEE

Computer Society, 2011.
[16] D. Grewe and M. O’Boyle, “A static task partitioning approach for

heterogeneous systems using OpenCL,” Compiler Construction,

Lecture Notes in Computer Science, vol. 6601, pp. 286-305, 2011.
[17] J. Muramatsu, T. Fukaya, S.-L. Zhang, K. Kimura, and Y. Yamamoto,

“Acceleration of Hessenberg Reduction for nonsymmetric eigenvalue

problems in a hybrid CPU-GPU computing environment,” Int. Journal
of Networking and Computing, vol. 1, no. 2, pp. 132-143, 2011.

[18] D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon, “HPCCD: Hybrid

parallel continuous collision detection using CPUs and GPUs,”
Computer Graphics Forum, vol. 28, no. 7, pp. 1791-1800, 2009.

[19] G. Teodoro, T. M. Kurc, T. Pan, L. A. D. Cooper, J. Kong, P. Widener,

and J. H. Saltz, “Accelerating large scale image analyses on parallel,
CPU-GPU equipped systems,” in Proc. the 26th IEEE Int. Symp. on

Parallel and Distributed Processing (IPDPS'12), 2012, pp. 1093-1104.

[20] G. F. Diamos and S. Yalamanchili, “Harmony: An execution model
and runtime for heterogeneous many core systems,” in Proc. the 17th

Int. Symp. on High Performance Distributed Computing (HPDC'08),

New York, 2008, pp. 197-200.
[21] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: A

programming model for heterogeneous multi-core systems,” SIGPLAN

Notices, vol. 43, no. 3, pp. 287-296, 2008.
[22] A. P. D. Binotto, B. M. V. Pedras, M. Götz, A. Kuijper, C. E. Pereira,

A. Stork, and D. W. Fellner, “Effective dynamic scheduling on

heterogeneous multi/manycore desktop platforms,” in Proc. the 22nd
Int. Symp. on Computer Architecture and High Performance

Computing Workshops (SBAC-PADW'10), 2010, pp. 37-42.

[23] M. Becchi, S. Byna, S. Cadambi, and S. Chakradhar, “Data-aware
scheduling of legacy kernels on heterogeneous platforms with

distributed memory,” in Proc. the 22nd ACM Symp. on Parallelism in

Algorithms and Architectures (SPAA'10), 2010, pp. 82-91.

Jörg Dümmler received a doctoral degree in
computer science from Technische Universität

Chemnitz, Germany in 2010. Since then, he has been
working as a postdoctoral researcher at this institution.

His current research interests include high-level

parallel programming models, mixed and hybrid
parallel algorithms, scheduling for parallel

applications, and tool support for scientific

programming.

Martin Schulze received the diploma degree from
Technische Universität Chemnitz, Germany, in 2014.

His research interests include optimization and

scheduling.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

271

http://www.tu-chemnitz.de/informatik/PI/forschung/projekte/genMTS

