
  

 

Abstract—Current parallel platforms are increasingly 

equipped with additional accelerators leading to hybrid system 

architectures. Parallel applications for these platforms can be 

implemented using a task-based programming approach. Such 

an approach facilitates the exploitation of all available 

execution units including the processor cores and the 

accelerators. The execution of a task-based application requires 

scheduling decisions, which may be provided by a suitable 

scheduling tool. 

This article discusses the extensions of the scheduling toolkit 

SEParAT to support hybrid cluster architectures. In particular, 

it first defines the extended programming model for hybrid 

platforms and the corresponding scheduling problem. The 

second part of the article describes the integration of this model 

into SEParAT. A particular focus lies on the extension of 

SEParAT's input and output interfaces. 

 
Index Terms—Hybrid architectures, parallel tasks, 

scheduling, software tool.  

 

I. INTRODUCTION 

Many current high performance platforms are equipped 

with additional accelerators leading to hybrid system 

architectures. Examples for accelerators are graphics 

processing units (GPUs) such as the Nvidia Tesla product 

line or the Intel Many Integrated Core (MIC) architecture 

including the Intel Xeon Phi.  

Complex applications are often composed of multiple 

program parts where some parts may benefit from an 

execution on accelerators and other parts may be more suited 

for an execution on the main processor cores (CPU cores). In 

this case, a task-based programming approach that 

decomposes the application into a set of tasks and maps the 

individual tasks to the most appropriate execution units can 

help to reduce the execution time of the application. 

Examples for such applications are linear algebra routines 

implemented in the MAGMA library [1] like the Hessenberg 

Reduction [2] and Map-Reduce frameworks designed for 

hybrid target systems [3]-[5].  

The execution of a task-based application requires a 

schedule that takes the dependencies between the tasks and 

platform-specific details such as the type and number of 

available accelerators as well as their computational 

performance into account. Such a schedule can be obtained 

dynamically at runtime of the application or statically before 

the execution of the application. The advantages of the 

dynamic approach include the support for dynamic task 

creation at runtime and the availability of dynamic load 
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information when making scheduling decisions. The StarPU 

system [6] provides runtime support for this approach 

including dynamic scheduling algorithms. The static 

approach permits the use of more sophisticated scheduling 

techniques, which can operate on the entire task graph and 

provide a runtime estimate for the application that can guide 

performance optimizations. 

This article focuses on the static scheduling for hybrid 

architectures. In particular, it proposes appropriate extensions 

to the scheduling framework SEParAT [7], which provides a 

uniform infrastructure for scheduling algorithms for 

homogeneous and heterogeneous architectures. The 

extensions are built atop a programming model for hybrid 

target architectures that consists of an application model, a 

platform model, and a corresponding scheduling problem. 

The application model is based on parallel tasks that can 

either be executed by an accelerator or by a set of CPU cores.  

The platform model supports clusters consisting of hybrid 

compute nodes, which may be equipped with multiple 

(possibly different) accelerators. The scheduling problem 

consists of the determination of a feasible schedule that leads 

to the minimum execution time of a given application on a 

specific hybrid platform. 

SEParAT exhibits a component-based software 

architecture. The components include user interfaces, input 

and output components, transformation components for the 

processing of internal data structures, a generator component 

to create synthetic scheduling problems, a validation 

component, and an extensible scheduling algorithm library 

with support for homogeneous and heterogeneous target 

architectures. The integration of the programming model for 

hybrid architectures requires the extension of most of these 

components. The article especially focuses on the extended 

input and output components and illustrates the extended 

interfaces using example specifications. The extensions to 

SEParAT guarantee backwards compatibility to the already 

existing model for heterogeneous platforms.  

The structure of the article is as follows. Section II gives a 

short overview of SEParAT. Section III presents the 

task-based programming model for hybrid platforms that has 

been incorporated into SEParAT. Section IV describes the 

extensions to SEParAT in detail. Section V discusses related 

work and Sect. VI concludes the article. 

 

II. THE SCHEDULING TOOLKIT SEPARAT 

This section gives a short overview of the scheduling 

framework SEParAT (Scheduling Support Environment for 

Parallel Application Task Graphs) [7], [8] that supports the 

scheduling of parallel applications in various ways. The main 

focus of SEParAT lies on static scheduling of applications 
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consisting of precedence-constrained parallel tasks, i.e., 

tasks that can be executed by multiple execution units 

cooperatively. The supported target platforms of SEParAT 

include homogeneous clusters and heterogeneous 

clusters-of-clusters, i.e., large heterogeneous clusters that are 

composed of multiple homogeneous subclusters. The 

extensions for hybrid platforms are outlined in the following 

sections.  

SEParAT supports two modes of operations: 

 Auxiliary tool with command line interface and  

 Stand-alone application with graphical user interface 

(GUI). 

The command line interface is mainly intended to facilitate 

the integration into other programming support tools that 

require scheduling decisions like, for example, parallelizing 

compilers or tools that translate parallel specifications into 

executable code [9]. The GUI assists the user in the 

evaluation of existing scheduling algorithms and the 

development of new scheduling algorithms. For example, the 

GUI can visualize intermediate steps of the scheduling 

process, internal states and the results of benchmarking runs 

that can be performed using synthetic scheduling problems 

and various user-defined parameters. 

The main usage scenario of SEParAT is the scheduling of a 

given application for a particular target platform using a 

specific scheduling algorithm. In this case, the required input 

consists of 3 parts: the application structure in form of a task 

graph with annotated cost information, the specification of 

the parameters of the parallel target platform, and 

problem-specific parameters like the problem size. The task 

graph is hierarchical, i.e., each node may consist of a task 

graph itself, and there may be multiple implementation 

variants for each parallel task. The cost information are 

specified using symbolic runtime formulas that may depend 

on problem-specific and platform-specific parameters 

provided by the other two input files. The output of SEParAT 

is a schedule that defines the execution order of the parallel 

tasks, the selected implementation variants, and the assigned 

execution units of the target platform. 

 

 
Fig. 1. Software architecture and workflow of SEParAT. 

 

The software architecture of SEParAT is based on 

components where the core component is an extensible 

scheduling algorithm library that provides a uniform 

interface to different scheduling algorithms and includes a 

plug-in mechanism to add further algorithms. Currently, 

SEParAT supports 18 scheduling algorithms for 

homogeneous and 6 algorithms for heterogeneous target 

platforms. 

Fig. 1 gives an overview of the components and shows the 

workflow of a scheduling pass, which consists of the 

following 5 steps: 

1) The Input parser reads the provided input files and 

creates the corresponding internal data structures. 

2) The Internal graph processor transforms the given 

hierarchical task graph into a flat graph and selects 

appropriate implementation variants for the parallel 

tasks. 

3) The Scheduling algorithm library computes a schedule 

using the algorithm specified by the user. 

4) The computed schedule is validated (optional) and 

postprocessed, i.e., information regarding the 

hierarchical graph structure and selected implementation 

variants are added. 

5) The Output generator creates the output files. 

 

III. PARALLEL PROGRAMMING MODEL FOR HYBRID 

PLATFORMS 

This section presents the programming model of SEParAT 

for hybrid architectures that consists of a submodel for the 

parallel target platform (see Subsect. III.A), a submodel for 

the parallel application (see Subsect. III.B), the annotation of 

cost information (see Subsect. III.C), and the corresponding 

scheduling problem (see Subsect. III.D). 

A. Platform Model 

The target platform is a heterogeneous distributed memory 

cluster consisting of   compute nodes          . Each node 

may have two types of execution resources: the cores of the 

central processing unit (CPU) and additional accelerators 

(called submachines in the following), such as graphics 

processors (GPUs) or the Intel Xeon Phi. This means, the 

execution resources of node            encompass 

 The nonempty set                   of            

CPU cores and 

 The set                   of    submachines. 

Fig. 2(a) shows an example for a hybrid cluster platform 

consisting of 2 compute nodes. 

The CPU cores are assumed to be identical, but the set    

may include different types of submachines and may also be 

empty in case a compute node is not equipped with 

submachines. The compute performance of the execution 

units is captured by the average execution time of an 

arithmetical operation, which is denoted by   
  for the CPU 

cores of node    and by   
   for submachine      of node 

          .  

The interconnection network between the execution units 

of the entire cluster are modeled on two levels. On the lower 

level, there is the node-internal network that connects all 

CPU cores and all submachines of the same compute node. 

This network is assumed to be homogeneous, i.e., data 

transfers between main memory and individual submachines 

and data transfers between different submachines are 

performed at the same speed. To model the performance of 
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the internal network of node             we use the 

startup time   
  and the byte-transfer time   
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Fig. 2(a) Example for a hybrid cluster platform consisting of 2 compute 

nodes    and   . (b) Example for an application task graph consisting of the 

entry node  , the exit node  , and the set of parallel tasks         . 

 

On the upper level, there is the network that interconnects 

different compute nodes. This network is assumed to be 

heterogeneous and the communication performance between 

nodes    and               , is captured by the startup 

time     
   on   , the startup time     

   on    and the 

byte-transfer time     
 . 

B. Application Model 

The parallel application consists of a set of parallel tasks 

with dependencies that are modeled in form of a hierarchical 

annotated directed acyclic graph        . The nodes of 

the graph include a unique entry node   that represents the 

input of the application, a unique exit node   that represents 

the output of the application, and a set of task nodes that 

represent the parallel tasks of the application. The entry (exit) 

node is an ancestor (descendant) of all other nodes. An 

example for an application task graph is shown in Fig. 2(b). 

Each parallel task of the application can be either basic or 

complex. A complex parallel task is represented by an entire 

directed acyclic graph that describes how the complex task is 

built up from other parallel tasks. A basic parallel task is not 

further decomposed and represents the smallest unit visible to 

SEParAT.  

Each parallel task may have multiple implementation 

variants, where each implementation variant is suited for one 

or more specific target architectures, i.e., the CPU cores or 

specific submachines. For example, a parallel task   may 

have two implementation variants    and    where    may 

only be executable on CPU cores and the Intel Xeon Phi 

whereas implementation variant    may only be executable 

on Nvidia GPUs. As a consequence, parallel task   cannot be 

executed on Radeon GPUs, since there is no available 

implementation variant. 

The edges of the task graph represent control and data 

dependencies between the parallel tasks that restrict the 

possible execution order. A data dependency       between 

parallel tasks   and   may lead to communication operations 

at runtime of the application if   and   are assigned to 

different execution units, e.g., to different nodes of the cluster 

or to different submachines of the same node. These 

communication operations have to be taken into account 

when determining a suitable schedule for the entire 

application. 

C. Cost Annotations 

The nodes and edges of the application task graph are 

annotated with cost information that provide an estimate of 

the execution time of the corresponding computation or 

communication operations depending on the assigned 

execution units. 

The computation costs of the parallel tasks on node 

           of the cluster are captured by two functions 

 

  
                 

  
                 

 

 

where   
         denotes the execution time of parallel task 

    using   CPU cores of node    and   
         denotes 

the execution time of   on submachine     . If a task has 

multiple implementation variants, the function values of 

  
    and   

    represent the minimum execution time over 

all variants on the respective execution units. In case a 

parallel task cannot be executed on CPU cores or on a 

specific submachine, the respective function values of      

or      are set to infinity. For example, if parallel task   

cannot be executed on CPU cores, then   
           for 

all nodes         and all processor numbers         .  
The unique entry node and the unique exit node have an 

execution time of zero on each execution unit, i.e.,  

  
           

           
           

            

for each        , all processor numbers          and 

all submachines         . 
The costs for the communication operations arising from 

data dependencies between parallel tasks depend on the 

amount of data to be transferred and the execution resources 

assigned to the respective parallel tasks. The set of functions 

    
                            

captures these costs where     
                  denotes the 

communication costs arising from edge         assuming 

task   is executed on    execution units of cluster node    

and task   is executed on    execution units of cluster node 

  . We do not distinguish between an execution on a single 

CPU core and on a single submachine here, since the 

assumed homogeneous node-internal network leads to 

identical communication costs for both cases.  

D. Scheduling Problem 

A schedule       assigns each parallel task     a 

cluster node     
, a set of execution resources   , and a 

starting point in time      . The set    is either a subset of 

the CPU cores of cluster node     
, i.e.,        

, or one 

of the submachines on cluster node     
, i.e.,             

for an            
 . An example for a schedule is shown 

in Fig. 3. 

The execution time   
    of parallel task   is computed 

depending on the assigned execution resources by 
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The finish time     of parallel task   is the sum of its 

starting time and its execution time, i.e., 

 

          
     

 

A schedule is called feasible, if it fulfills the following 

three constraints. 

1) Before a parallel task     is started, all predecessors 

of   must have finished their execution and all required 

communication operations must have been carried out, 

i.e., for each edge         the following inequality 

has to be fulfilled: 

 

            
                      

 

where       and      . 

2) Parallel tasks with an overlapping execution time 

interval have to be executed on disjoint sets of execution 

units, i.e., for each pair of parallel tasks         
      with                       follows 

       . 

3) Each parallel task has to be assigned to execution 

resources that are capable of executing it, i.e., for each 

parallel task     it is   
     . 

The makespan             of a schedule 

      denotes the point in time when all computations and 

communication operations of the entire applications have 

been terminated. This is achieved at the finish time of the exit 

node  , i.e.,                . The scheduling problem 

is to determine a feasible schedule with a minimum 

makespan. This is a strongly NP-hard problem as has been 

shown for the special case of a platform consisting of 

homogeneous processors and precedence constraints in the 

form of chains [10]. 
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Fig. 3. Example schedule for the application task graph from Fig. 2(b) on a 

platform consisting of a single node with 2 submachines. 

 

IV. SUPPORT FOR HYBRID PLATFORMS IN SEPARAT 

This section describes the extensions to SEParAT to 

support hybrid platforms according to the programming 

model presented in Sect. III. An overview of all extensions is 

given in Subsect. IV.I.A and Subsect. IV.B discusses the 

extended input and output interfaces.  

 

 
Fig. 4. Properties of a hybrid parallel platform displayed by the graphical user interface of SEParAT. 

 

 
Fig. 5. Fragment of a schedule shown by the graphical user interface of SEParAT. The green boxes illustrate communication operations resulting from data 

dependencies and the colored boxes symbolize the execution of parallel tasks. 

 

A. Overview of the Extensions for Hybrid Platforms 

To support scheduling for hybrid platforms, several 

components of SEParAT had to be extended, see Fig. 1 for an 

overview of the software structure. In particular, the 

following extensions have been made. 

 The input and output interfaces are modified to account 

for the additional submachines of hybrid platforms and 

the additional cost information for the different 

architectures. The modified interfaces require extensions 

to the Input parser and Output generator components of 

SEParAT, see Subsect. IV.B for details. 

 The internal interfaces and data structures have been 

extended according to the modified input and output 

interfaces. 

 Specifically adapted scheduling algorithms have to be 

included in the Scheduling algorithm library. Currently, 

there exists a simple list scheduler that assigns parallel 

tasks to the next free execution unit that can execute the 

task. This can either be a submachine or all available 

processors of a compute node. Further scheduling 

algorithms will be added in the future. 

 The Graph generator that is used to create synthetic 

scheduling problems for benchmarking scheduling 

algorithms is extended to create cost information for 

hybrid platforms. Furthermore, this component now also 
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supports the generation of synthetic hybrid platform 

configurations based on user-provided parameters like 

the average number of submachines per cluster node and 

a heterogeneity factor where a low factor produces rather 

similar cluster nodes (same type and number of 

submachines) and a high factor produces completely 

different cluster node configurations.  

 The illustration of scheduling problems and generated 

schedules for hybrid platforms is incorporated into the 

Graphical user interface. Fig. 4 shows the properties of a 

hybrid platform and Fig. 5 shows a computed schedule in 

the GUI. 

B. Extensions of the Input and Output Interfaces 

The input of SEParAT consists of a platform specification 

(see Subsect. IV.B.1), a specification of the application task 

graph (see Subsect. IV.B.2), and a definition of application 

specific parameters like the problem size. The output of 

SEParAT is a feasible schedule for the provided input 

scheduling problem (see Subsect. IV.B.3). 

1) Specification of hybrid platforms 

The input specification for hybrid platforms has been 

designed to be backward compatible to the specification of 

heterogeneous cluster-of-cluster platforms in SEParAT. An 

example for a hybrid cluster specification is given in Fig. 6. A 

complete specification consists of a list of compute nodes 

(lines 3–24) and the communication performance of the 

interconnection network between the compute nodes, which 

is defined by the network startup times     and      and the 

network byte-transfer time    (lines 27–33). 

 

 
Fig. 6. Example for a hybrid cluster platform specification. 

 

A single cluster node is defined by the number of CPU 

cores (line 6), the communication performance of the 

node-internal interconnection network (lines 7–8) and the 

compute performance of the processor cores (line 9). 

Additionally, each cluster node contains a list of zero or more 

submachines (lines 10–17) where each submachine has a 

unique identifier and a submachine type, which is used to 

determine whether a given parallel task is executable on this 

submachine. The compute performance of a submachine is 

specified by the average execution time of an arithmetic 

instruction    (lines 12 and 16).  

For the incorporation of other cost models, the platform 

specification also supports additional user-defined constants 

and functions in the definition of cluster nodes or 

submachines like, for example, the execution time of a 

broadcast operation depending on the number of participating 

CPU cores. These constants and functions may then be used 

in the runtime formulas of the parallel tasks in the application 

specification. 

 

 
Fig. 7. Example for a specification of a parallel application. 

1  <!-- definition of external parameters --> 

2  <!-- problem size --> 

3  <ProblemParam Name="n" DefaultValue="1024"/>  

4  <!-- compute power --> 

5  <MachineParam Name="t_C"/> 

6   

7  <!-- data types and data distrib types --> 

8  <DataType Name="myMatrix" DataType="matrix"  

9    C-Type="double" Dimension="2" Size="n;n"> 

10   <DataDistrib Name="block"  

11       Description="BLOCK"/> 

12 </DataType> 

13  

14 <!-- basic parallel task definition --> 

15 <Module Name="myNode" Id="1"> 

16   <Param Name="in"  Id="1" Type="myMatrix"/> 

17   <Param Name="out" Id="2" Type="myMatrix"/> 

18   <Implementation Name="mod1_block" Id="1"> 

19     <Distrib ParamRef="1" Type="block"/> 

20     <Distrib ParamRef="2" Type="block"/> 

21     <BasicModule> 

22       <Runtime Formula="T_par(p,n,t_C)= 

23          0.1*t_C*n^2+(0.9*t_C*n^2)/p"/> 

24       <Runtime Type="GTX780" Formula= 

25           "T_par(n,t_C)=0.05*t_C*n^2"/> 

26     </BasicModule> 

27   </Implementation> 

28 </Module> 

29  

30 <!-- complex parallel task definition --> 

31 <Module Name="task graph" Id="2"> 

32   <Param Name="in"  Id="1" Type="myMatrix"/> 

33   <Param Name="out" Id="2" Type="myMatrix"/> 

34   <Implementation Name="main impl" Id="1"> 

35     <Distrib ParamRef="1" Type="block"/> 

36     <Distrib ParamRef="2" Type="block"/> 

37     <ComplexModule> 

38       <!-- nodes of the task graph --> 

39       <StartNode Name="entry" Id="1"/> 

40       <Node Name="n1" Id="2" ModuleRef="1"/> 

41       <StopNode Name="exit" Id="3"/> 

42       <!-- edges of the task graph --> 

43       <Edge Id="1" SourceNodeId="1"  

44          SourceParamId="1" TargetNodeId="2"  

45          TargetParamId="1"/>  

46       <Edge Id="2" SourceNodeId="2"  

47          SourceParamId="2" TargetNodeId="3"  

48          TargetParamId="2"/> 

49     </ComplexModule> 

50   </Implementation> 

51 </Module> 

52  

53 <!-- definition of the application root --> 

54 <MainModule ModuleRef="2"/> 
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2) Application specification 

The specification of the application task graph for 

SEParAT has been extended to include cost information for 

different types of submachines. An example specification is 

shown in Fig. 7. It consists of 4 parts: 

1) The definition of external parameters that are provided 

as part of the platform specification or problem 

description (lines 3–5); 

2) Definitions of the data types and data distribution types 

used within the specification (lines 8–12); 

3) Definitions of basic and complex parallel tasks (lines 

15–51); 

4) The indication of a specific complex parallel task that 

represents the entire application (line 54). 

The specification of a parallel task consists of a set of input 

and output parameters with a corresponding data type (lines 

16–17, 32–33) and a list of implementation variants. Each 

implementation variant defines the data distributions for the 

input and output parameters (lines 19–20, 35–36) and either 

defines a runtime prediction (basic parallel tasks that are not 

further decomposed) or includes an entire task graph 

(complex parallel tasks). In the case of a basic parallel task, a 

set of symbolic runtime formulas is given (lines 22–25). Each 

runtime formula has a type attribute, which defines the target 

architecture (CPU cores or a specific type of submachine). To 

guarantee backward compatibility, a missing type attribute 

refers to CPU cores. If there is no runtime formula for a 

specific architecture, SEParAT assumes that this basic task 

cannot be executed on this type of submachine. For example, 

the basic parallel task in lines 15–28 can be executed on CPU 

cores and on submachines of type GTX780, but not on 

submachines with type IntelPhi.  

The task graph specification of a complex parallel task 

consists of a set of nodes (lines 39–41) and a set of edges 

(lines 43–48). Each node (except the unique start and stop 

node) refers to one of the parallel tasks in the application 

specification and each edge connects an output parameter of 

the source parallel task with an input parameter of the target 

parallel task. 

3) Schedule specification 

The output format for schedules produced by SEParAT has 

been extended to account for the execution of parallel tasks 

on the additional submachines of the target platform. Fig. 8 

shows an example schedule for a hybrid platform. A schedule 

consists of communication operations (lines 2–12) and the 

execution of parallel tasks (lines 13–19) where each 

operation has an associated start time and an associated finish 

time. A communication operation additionally contains the 

identifiers of the source and target nodes in the underlying 

task graph and the definition of the source and target 

execution units. The execution of a parallel task includes the 

identifier of the parallel task, the selected implementation 

variant and the assigned execution units.  

The execution units can be either a set of CPU cores or a 

specific submachine. In the former case, a list of the global 

core numbers is included where the cores are numbered 

consecutively over all compute nodes of the target platform 

(line 6). In the latter case, the global identifier of the 

submachine is given where the global identifier is obtained 

by consecutively numbering all submachines of the platform 

(line 10). 

 

 
Fig. 8. Example for a schedule produced by SEParAT. 

 

V. RELATED WORK 

The execution of a parallel application on a hybrid 

platform can either be based on a data parallel or a task 

parallel approach. In the data parallel case, the input data is 

partitioned over the available execution units and processed 

according to the owner-computes rule. Examples for such 

implementations are the Jacobi method [11], the FFT [12], 

and the determination of connected components in graphs 

[13]. The partitioning can be based on profiling information 

[14], [15] or on static source code analysis in a compiler [16]. 

The task parallel approach decomposes the application into 

a set of tasks where each task is assigned to one or more 

execution units. This assignment can be performed statically 

or dynamically at runtime. The static approach has been used, 

for example, for many hybrid implementations of linear 

algebra routines in the MAGMA library [1], the Hessenberg 

Reduction [2], [11], or Continuous Collision Detection [12]. 

The dynamic approach has been used for Map-Reduce 

frameworks [3]-[5] and for image processing [17]. This 

implementation approach is supported by runtime systems 

like StarPU [6], Harmony [20] and Merge [21], and dynamic 

scheduling algorithms [22], [23]. In contrast to these 

approaches, SEParAT offers tool support for the static 

scheduling, which is especially beneficial for regular 

applications with a static task structure. 

 

VI. CONCLUSION 

This article has presented the extensions made to the 

scheduling framework SEParAT to support hybrid cluster 

platforms. The underlying platform model supports arbitrary 

heterogeneous cluster systems where each cluster node can 

be equipped with multiple accelerators. The application 

model of SEParAT assumes a hierarchical task-based 

application with precedence constraints between the parallel 

tasks, which can be either executed on accelerators or on a 

subset of the processor cores of a cluster node. The support 

for hybrid platforms requires the extensions of the internal 

components of SEParAT. The article has shown examples for 

extended input and output specifications. 

1  <Schedule Id="2" Makespan="0.218"> 

2    <DataRedistribution Id="1"  

3      SourceNodeId="1" TargetNodeId="2"  

4      StartTime="0.0" FinishTime="0.00374"> 

5      <SourceMachine> 

6        <ProcessorGroup>1 2 3 4 5 6 7 8 

7        </ProcessorGroup> 

8      </SourceMachine> 

9      <TargetMachine> 

10       <SubMachine>0</SubMachine> 

11     </TargetMachine> 

12   </DataRedistribution>   

13   <ModuleCall Id="2" Name="n1"  

14     ModuleRef="1" ImplementationRef="1" 

15     StartTime="0.00374" FinishTime="0.218"> 

16    <TargetMachine> 

17     <SubMachine>0</SubMachine> 

18    </TargetMachine> 

19   </ModuleCall> 

20 </Schedule> 
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Future work encompasses the development and 

implementation of scheduling algorithms for the extended 

programming model in SEParAT and the evaluation of these 

algorithms using different applications from scientific 

computing. 
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