
Virtualization at File System Level: A New Approach to

Secure Data in Shared Environment

Thi Thu Giang Tran, Duc Quang Le, and Trung Dung Tran

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

223 DOI: 10.7763/IJCTE.2016.V8.1048

Abstract—The growth of networking services has led to an

increase of users using these services. Because of the limitation

of network infrastructure, each physical server is typically

used for deploying a networking service for a group of users. In

this model, data is centrally stored; As a result, ensuring its

privacy is a critical requirement. In current systems, an

administrator could use access control mechanisms provided

by operating systems to prevent illegal access. However, these

solutions are difficult to deploy and operate. Because of this

issue, the administrator has difficulty comprehensively

handling data security issues in a shared environment. In this

paper, we propose a new approach using virtualization concept

for securing data in this shared environment. The approach

has been successfully implemented in the Linux environment,

and has shown positive results. It can properly solve data

security problems in the shared environment and surmount the

weaknesses found in current solutions.

Index Terms—Access control, data security, shared

environment, virtualization.

I. INTRODUCTION

A. Shared Environment

There are two models for deploying the shared computer

hardware resources: the Virtual Private Server (VPS)

hosting model and the Shared Server hosting model. In the

VPS hosting model, a single physical server is partitioned

into a number of virtual machines which known as VPS by

using virtualization technologies. Each VPS is allocated to a

single user. The advantage of this model is total isolation

between VPSs; problems with one VPS cannot affect the

others. However, using this model can create a resource-

consumption problem. Each VPS must have a full operating

system to operate. Since the operating systems may be the

same between VPSs, the cost of maintaining and running

these redundant operating systems is extremely high and

unnecessary. Consequently, the VPS hosting model cannot

and should not be used when the number of customers is

large. By contrast, only one operating system is needed in a

shared hosting model. Applications will be installed in the

operating system and multiple users will be served based on

the support of these applications. The Shared hosting model

is widely used because of its cost efficiency and ease of

Manuscript received December 1, 2014; revised February 10, 2015.

Thi Thu Giang Tran, Duc Quang Le, and Trung Dung Tran are with the
Department, Faculty of Information Technology, VNUHCM-University of

Science, Vietnam (e-mail: {tttgiang2510, ducquang92}@gmail.com,

ttdung@fit.hcmus.edu.vn).

deployment and management. The Shared hosting model

has these following characteristics:

1) Each customer is mapped to a user in the operating

system and permission of the customer depends on

permission of the user. All customer processes have to

run with permission of his/her representative user.

2) Data of all customers is stored in the same file system.

Each customer is allocated a folder for storing their

data. From the operating system perspective, data of

each customer is owned by its representative user.

3) Services operate under permission of a system user. In

order to run services normally, a system user has to

access to data of all other users.

B. Data Security Problem in Shared Environment

Because data of all customers is stored in the same file

system, data of a customer can be accessed by other

customers if the system administrator does not apply a

proper security mechanism. For example, in a shared web

hosting environment [1], if the attacker successfully

compromises a website, other customers in the same server

may also be vulnerable to data theft risk. After

compromising the website, attackers may try to access data

on the server by using various web attack techniques, such

as: local file inclusion, remote file inclusion, directory

traversal [2]. If the data of other websites can be accessed by

the attacker’s scripts, then he or she can search for sensitive

data and use it for further the attack. The principle

consequence and danger of these attacks is that one user can

access all other users’ data.

Nowadays, system administrators use access control

mechanisms for preventing illegal access between users in

the system. In this solution, data of each user will be

assigned a permission according to the rule: data of a user

must be only accessed by their owner and system users.

There are three main access control models: discretionary

access control, mandatory access control, and role-based

access control. Each access control model has its limitation

which make it difficult to completely solve the data security

issues in a shared environment. In [3], authors pointed out

some weaknesses of these access control models.

In discretionary access control model, each file/folder in

system is owned by a user, either owner of a file/folder or

root can assign file permission. If a user does not understand

the access control mechanism and interaction between

processes in the system, they cannot properly assign

permission for their data. For example, in shared web

hosting environment, if user is careless or does not fully

understand file permission, their data can be not assigned

truly permission. As a result, this user may also be

vulnerable to data theft risk. In other case, user can secure

their data by preventing all access from other users in

system. However, this may lead to a mistake: the system

user cannot access that data, then services are corrupted for

this user. Therefore, overall security of system is determined

by security knowledge of all users in the system.

In mandatory access control model, only the system

administrator can decide the access permission of users in

the system. The system administrator defines a policy set

which ensures the system’s security. The complex

interaction between components in system requires a tough

policy definition set. One example of mandatory access

control is SELinux [4] in Linux operating system. In

SELinux, all subjects (processes) and objects (files, sockets)

in system are assigned a security label. System administrator

must define a security policies set that determines the

interaction among security labels. For instance, subjects

with a specific security label can access objects with the

corresponding security label. When a subject (e.g. a process)

accesses an object (e.g. a file), the kernel will check whether

this access is valid or not based on the predefined rule sets.

This strict policy model make SELinux difficult to deploy,

so most system administrators disable it [5].

Role-based access control model is the permission model

which combines several roles, each role is defined as a set of

access permissions. Each user is assigned some particular

roles which imply the user’s access permissions. In a large

environment, a role-based access control model meets the

difficulty of assigning permission to each role, and mapping

each user to his/her respective roles. Moreover, each user

can belong to several roles which leads to complexity in

managing overall system security.

In summary, the approach using access control

mechanism to strengthen data security in a shared

environment is not a comprehensive solution. These

methods have several major disadvantages: effectiveness of

solution depends on users’ security level, complexity and

difficulty in implementation. Moreover, these solutions are

not specifically designed for use in a shared environment, so

they must be implemented in a way that conforms to the

security characteristics of the shared environment, which is

not native and often unintentionally creates mistakes. One

can rightly conclude that having a dedicated solution for

data security in a shared environment is very important.

Through this paper, we propose a new approach which is

designed for this environment: using virtualization at file

system level techniques. Firstly, we clarify requirements for

data security in a shared environment based on the provided

characteristics of the session. Secondly, we propose a

security model complying with these requirements. Third,

an implementation of the suggested model in the Linux

Operating System is introduced. In addition, we also explain

how this implementation conforms to these requirements.

Finally, we evaluate the approach and suggest some future

works.

II. RELATED WORKS

Existing approaches have applied virtualization

technology for solving data security issues because a major

advantage of these techniques is resource isolation ability. If

data is stored in two different virtualized environments,

security of data will be guaranteed. Virtualization

techniques can be classified into two groups: hypervisor-

based virtualization including VMWare, Microsoft Virtual

Server and Xen; and container-based virtualization including

Linux Container (LXC) in Linux operating system, and

FreeBSD Jail in FreeBSD Operating System.

However, in shared environment, container-based

virtualization is more popular because its performance cost

is much lower than hypervisor-based virtualization’s [6].

In container-based virtualization, operating systems have

some special features which allow running multiple isolated

user space instances, known as containers. Each container

can have some particular processes, and each process is only

assigned to one container. Because all containers are in the

same operating system, the performance of this model is

much better than those of the hypervisor-based virtualization

model. However, the purpose of these studies mainly

focuses on isolating malicious processes [7], not for

securing data in the shared environment; the object of these

solutions is a group of processes from which the system

administrator will manually choose a set of processes to run

in a container. These processes are isolated and cannot

affect any other resource in the system. In order to apply this

model for securing data in the shared environment, we have

to make a container for each user and put all processes of a

user in his/her corresponding container. In a shared

environment, all processes of users are created automatically

by the application running services; we cannot manually set

containers for these processes. The services need to be

modified in order to integrate with this model. In practice,

the cost of modifying source code discourages application

developers from supporting this model.

III. VIRTUALIZATION AT FILESYSTEM LEVEL APPROACH

A. Problem Formulation

Basing on the characteristics of the shared environment,

we propose a new approach which is designed with the

purpose of ensuring users’ data security and surmounting

weak points with existing current solutions. The approach

has to satisfy four following requirements.

1) Data is isolated between users in the system.

2) There is a flexible method of sharing data among users

in group.

3) Impact on overall system performance is minimized.

4) Integration of the new solution can be made easily into

the existing system without any changes in operations of

applications on the system.

Our new approach is virtualization at the file system level

over users in the system, which is illustrated in Fig. 1.

In this model, each user has a different view of the file

system hierarchy from the others. Users are able to see only

data that they have privileges to access. In order to satisfy

the first three requirements: 1), 2), and 3), the file system is

divided into three parts:

 The first part is shares the data of all users in the system,

such as the OS, libraries, system files, data of

applications, etc. All users in the system use this part of

data together in order to reduce unnecessary data storage

and data processing cost 3).

 The second part is to share data with other groups of

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

224

users. Defining how directories and files can be shared

among users in a group. This must be flexible with

configuration files and is dependent on the demands of

the users; a user might belong to several groups 2).

 The last part is the privacy of user data. Each set of data

must be totally isolated from the others. Moreover, the

shared data of a group of users can be seen only by users

in the group. This will guarantee the privacy of each

user’s data in the system 1).

Hardware

Host OS

Shared File System

Shared File System

User1
FS

User2
FS

User3
FS

Fig. 1. Virtualization at file system level.

B. Our Solution

We deployed the model on the Linux operating system.

First of all, to create the isolated view of the file system

hierarchy for each single user, we must use mount

namespace [8], which is a feature of the Linux kernel.

Mount namespace isolates the set of mount points seen by a

group of processes. One process belongs to a unique mount

namespace. The file system hierarchy is a set of mount

points. Thus, processes in different mount namespaces can

have different views of the file system hierarchy.

Fig. 2. Mount namespace.

Fig. 2 illustrates two different namespaces in a system

which has its own mount points set. For example, mount

point / in the first mount namespace is mounted from

partition sda1 and / in the other is mounted from sda3.

Because the mount points set of each namespace is isolated

from the other and the mount operations of them are

dissimilar. Process P1 which belongs to namespace 1 has

different view of system from P2 which belongs to

namespace 2. In the other words, P1 and P2 will see

different contents although they access to the same

directory. In this case, P1 will see data of partition sda1 and

P3 will see data of sda3.

In the original Linux OS, all processes belong to the only

namespace – global namespace. That is the reason why all

processes in the system have the same view of the file

system. Any operation within the file system, such as

mounting, un-mounting or moving data, has the same effect

on all of them. Hence, to isolate the view of file system of

each user from the others in the system, each user must have

its own dedicated mount namespace which distinguishes it

from others’ namespaces. This means all processes of a user

belong to a unique mount namespace and the processes of

different users are in their own, discrete namespaces. A

process’s UID is used to determine the system resources it

can access, so that defining the namespace that a process

belongs to is based on the UID of the process. In Linux, the

init process is the parent of all processes. Its UID is zero

(UID of root). When a new process is created, it copies the

UID and namespaces from its parent process. In this case,

there is no need to change a namespace for a child process.

In order to ensure that all processes of a user are in the

unique namespace which is different from other users’

namespaces, we have to change namespace of a process

whenever its UID is changed. The process can only change

its UID by calling system calls set*uid()
1
. Therefore, we

handle the transformation of processes’ namespace only

when they invoke set*uid(). We overwrite the system calls

set*uid() in order to move processes to suitable namespaces.

The new namespace is decided based on the new UID of

process. The comparison between original system call and

modified system call is shown in Fig. 3 and Fig. 4.

system call

P0
uid = 0

P1
uid = 2

P2
uid = 1

P4
uid = 1

P3
uid = 2

P2
uid = 0

P3
uid = 0

P1
uid = 0

P4
uid = 0

P0
uid = 0

Namespacce 0

Namespacce 0

Fig. 3. Original system calls.

P2
uid = 0

P3
uid = 0

P1
uid = 0

P4
uid = 0

P0
uid = 0

P1
uid = 0

P2
uid = 1

P4
uid = 1

P1
uid = 2

Namespacce 0 Namespacce 1

Namespacce 2

P3
uid = 2

system call*

Namespacce 0

Fig. 4. Modified system calls.

1 set*uid() includes all system calls that used for changing at least one of

UID types (RUID, EUID, SUID) such as setuid(), setresuid(), setreuid().

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

225

The result of a modified system call is all processes of

each user belong to the dedicated mount namespace for that

user.

After the first milestone — creating dedicated namespace

for each user mount points set of each user are isolated from

the others. However, mount operations set in dedicated

mount namespace of each user are still the same with the

original mount operations set of root so all of the users still

see the same view of the file system. Consequently, we need

a second milestone — remounting all necessary mount

points in user’s own namespace to make data that the user

does not have the privilege to access become invisible. The

unprivileged data of a user includes data of other users and

data which is not shared with them. User cannot see or

access this data because it is totally invisible to them. How

mount points are remounted depends on the users’ demands.

Which directories and files have to be isolated from other

users and which ones are shared among several users can be

configured easily in the configuration file. Necessary mount

points are remounted after following these three steps.

Step 1: In directories which need to be virtualized, we

mount all data that user is allowed to access to a

corresponding directory: /.vdir/<UID>/<name of original

directory>. After finishing this step, directory /.vdir/<UID>

includes all data which that user with the appropriate UID is

allowed to access.

For example, a simple web server in which /home and

/var/www contain data of all users (Fig. 5). After finishing

the first milestone — isolating mount points set of user, we

need to remount data in /home and /var/www in the user’s

namespace in order to ensure that the private data of users

cannot be seen by any others. In terms of user ldquang, its

own data is in directories named “ldquang”. In addition,

directory named “shared data” is configured to share with

ldquang. In the first step, all data on which ldquang has

access to is mounted to /.vdir/1 (1 is the UID of ldquang).

Data in /var/www/ldquang is mounted to

/.vdir/1/var/www/lquang, and that in /var/www/shared_data

to /.vdir/1/var/www/shared_data. As a result, /.vdir/1

includes all privileged data of ldquang.

P1
uid = 0

/

... homelibvar

ldquanguserXtttgiang... www

userXtttgiang

Mount namespace 0
(root)

/.vdir

home

ldquang

var
www

ldquang

1

shared data

shared
data

ldquang

Fig. 5. Step 1 — Mount data to/.vdir.

Step 2: We remount data in /.vdir/<UID>/<name of

directory need to be virtualized> into the correlative

directories. As a result, the private data of other users is

concealed from this user.

P1
uid = 0

/

... homelibvar

ldquanguserXtttgiang... www

userXtttgiang

Mount namespace 0
(root)

P2
uid = 1

/

... homelibvar

ldquang... www

ldquang

Mount namespace 1
(ldquang)

/.vdir

home

ldquang

var
www

ldquang

1

shared data

shared
data

ldquang shared
data

Fig. 6. Step 2 — Remount to virtualized directories.

As illustrated in Fig. 6, data in /.vdir/1 is remounted to

/var/www and /home/ldquang respectively inside the

dedicated namespace of ldquang. Consequently, ldquang’s

view of the file system hierarchy is different from its

original one and ldquang can only access its own data and

shared data.

Step 3: We create an empty directory

/.vdir/<UID>/EmptyDir and then remount it to /.vdir.

Therefore, all current data in /.vdir disappears.

Thus, view of file system hierarchy of a user is changed

though two milestones with many steps, which is

demonstrated in Fig. 7.

Yes

Process P changes its own UID
u0 u1

Is there any dedicated
namespace for u1?

Create new namespace for u1

Change namespace of P to
the namespace for u1

End

No

Return to original system call

Remount all necessary mount
points in new namespace

Fig. 7. Process of the approach.

Whenever a process change its own UID from u0 to u1,

the modified system call will change the process’s

namespace to namespace of u1 immediately if there is a

dedicated namespace for u1. Otherwise, a new namespace

will be created for u1, then all necessary mount points of the

new namespace will be remounted. After that, the process’s

namespace will be change to a dedicated namespace for u1.

In the final step, the result will be returned to the original

system call to continue processing.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

226

In summary, our implementation meets requirement (1)

based on its virtualization characteristic. Because a user can

only access his data, data is isolated among users in system.

The flexible configuration feature is best suited to the

requirement (2). In our module, administrator can decide

which directories will be virtualized. In the best practice,

directories storing common data (library, system file) should

not be virtualized, so they can be shared between all users.

Moreover, in each virtualized directory, administrator can

specify users who are not affected by virtualization, so these

users can access data normally.

Because all users use the same operating system and

essential data is shared between them, the cost for

maintaining and running new system is minimized, which

satisfies requirement (3).

The requirement (4) is satisfied by using kernel module to

modify necessary system calls. Our implementation operates

in kernel space, so all applications in system do not need to

be modified and normal operations of the system is not

affected.

IV. EVALUATION

A. Security

The new approach — virtualization at file system level

has been deployed successfully on two popular Linux

distributions as CentOS and Fedora. As can be seen in the

real experiments, systems on which have deployed the new

kernel module can completely isolate users’ file systems. On

the new system, users are not able to see or access data

which does not belong to them, or is not shared with them

by other users.

In order to prove the effectiveness of our solution on real-

world attack scenarios, we have built a web server running

PHP framework on CentOS operating system and hosting

two websites called website A and website X. Website X

has some security vulnerabilities. As an attacker, we

exploited the vulnerabilities of website X, and successfully

compromised it. Then, we uploaded a popular malicious

PHP script named C99 to website X and executed the script

to find all sensitive files of website A. Before deploying our

solution, all files of website A and some sensitive system

files can be accessed by the malicious script. However, after

applying the solution, the attacker could only browse files of

website X and could not access files of website A. We have

also tried two other web-based attack techniques including

file inclusion attack and directory traversal attack on website

X and obtained the same result: attacker cannot access files

of website A by performing these attacks.

B. Adaptability

Moreover, the easy integration of the new module and

existing shared servers which are providing networking

services to customers is one of its most striking features. We

have successfully deployed our solution to existing Linux

servers running commonly Linux distributions such as

CentOS, Fedora, and Debian. There is no need to change

any component in the servers, as well as no error detected in

these systems. Besides that, working well with existing

applications, especially applications that are usually used to

deploy services for customer such as cPanel, DirectAdmin is

also ensured by this new module.

C. Performance Impact

One of the most concerns about the solution is whether

adding codes to an existing system affects its performance

or not. Therefore, we have conducted several experiments

on different common Linux distributions to measure the

performance impacts after integrating our solution to the

existing systems.

As can be seen from these experiences’ results, there are

not any considerable impacts on system performance after

applying this new approach. For more details, the

performance comparison between the original servers and

the integrated servers had been implemented and shown

positive results. The test scenario on a CentOS server is

detailed below.

A web server is implemented on a virtual machine created

by Vmware. Virtual machine specification includes CentOS

operating system, 1GB RAM, and 20GB HDD. Virtual

hosts’ names in turn are www.host1.local…

www.host20.local, and these virtual hosts are granted to

users named host1... host20, respectively.

We use Apache Jmeter to evaluate web server’s

performance. For more details, HTTP requests are

constantly sent and HTTP Responses are constantly

received. After that, throughput and error rate will be

measured. This process will cover two cases involving the

web server before and after integrating with our new

module. In each case, there are eight stages with different

numbers of HTTP Requests vary between 600 requests and

2400 requests.

Fig. 8. Performance comparison.

Result of the test shows that the error rate is 0% in both

cases and the throughput of the server before and after

integrating with our new solution has been illustrated in the

line chart above (Fig. 8). As shown in the chart, disparities

between the two test cases are insignificant. Hence, the

integration of our new solution causes neither error nor

considerable influence on the overall system’s performance

In order to measure the repercussion of the new module

on regular operations of the kernel and system services, we

used LTP (Linux Test Project) test tool [9, 10]. Results of

testing on server before and after deploying our new

solution are similar. Consequently, this proves that the

modified system calls on our kernel module do not cause

any problem in kernel functions and system services.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

227

V. CONCLUSION

The virtualization at file system level approach not only

ensures security for user’s data but also overcomes the

problem of users’ carelessness with a low cost. Besides that,

our new kernel module is able to be integrated into existing

server without moving data and changing it from current

applications’ operations. This is a completely new approach

which can be considered by service providers or companies

in order to increase the privacy of users’ data in shared

server.

In the future, this solution will be fully developed to

become a more comprehensive solution with the lowest cost.

The development involves virtualizing files containing

users’ information on system such as /etc/passwd and

/etc/shadow, and limiting resources used by each user.

ACKNOWLEDGMENT

Our thanks to DTS Communication Technology

Corporation for supporting us real testing environment.

REFERENCES

[1] C. Jame. (November 2013). White paper: Hosting solutions
compared. [Online]. Available: http://www.cjonlinedesign.com

[2] Imperva Corporation. (2013). White paper: Web Application Attack

Report. [Online]. Available: http://www.imperva.com
[3] A.-C. Ryan (2006). Methods for access control: advances and

limitations. [Online]. Available:

http://www.cs.hmc.edu/~mike/public_html/courses/security/s06/proje
cts/ryan.pdf. Accessed 9 Oct 2013.

[4] S. Stephen, C. Vance, and W. Salamon. "Implementing SELinux as a

Linux security module," NAI Labs Report 1, vol. 43, 2001.
[5] V. Fernando, T. Horie, and T. Harada, The Need for Setuid Style

Functionality in SELinux Environment, 2004.

[6] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin, “Performance
evaluation of virtualization technologies for server consolidation,” HP

Labs Tec. Report, 2007.

[7] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,

“Container-based operating system virtualization: A scalable, high-

performance alternative to hypervisors,” in Proc. the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, 2007.

[8] M. Kerrisk, Namespaces in Operation, Part 1: Namespaces Overview,

August 2014.

Thi Thu Giang Tran was born in Vietnam in 1992. She

received the B.S. degree in information technology from

VNUHCM-University of Science, Vietnam, in 2014.
She has worked as a developer in Miracle Linux

Corporation-Asianux HCMC development center ℅

UTS, since 2014. Her research interests are focus on
network security, cloud platform and distributed

systems.

Duc Quang Le was born in Vietnam in 1992. He

received the B.S. degree in information technology
from VNUHCM-University of Science, Vietnam in

2014. He has worked as a security instructor in Saigon

Institue for Technique and Technology, a local
vocational training center in Vietnam, since 2014. His

research interests are focus on network security and

system security.

Trung Dung Tran was born in Khanh Hoa, Vietnam in
1978. He received his PhD degree from UT at Dallas and

his Msc degree from SUNY at Buffalo in 2010 and 2006,

respectively. He is the head of Computer Networks and
Telecommunications Dept., University of Science since

2012. His research interests are focus on network

performance, network protocols, and the line between

Computer networks and Game Theory.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

228

[9] P. Larson, “Testing linux with the linux test project,” in Proc. Ottawa

Linux Symposium, 2001, pp. 265-273.

[10] N. Hinds, “Kernel korner: The Linux test project,” Linux Journal,
August 2014.

