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Abstract—Due to disjoint memory references and non-aligned 

memory references, existing SIMD compilers can’t vectorize 

loops containing indirect array utilizing SIMD (single 

instruction multiple data) instructions. However, addressing 

this problem is inevitable, since many important applications 

extensively use this program pattern to reduce memory and 

computation requirement. In this paper, we propose a new 

efficient code generation technique for indirect array. For an 

irregular indirect array access, we adopt two separately 

registers to store the array base and the index address. It 

significantly contributes to the performance improvement by 

vectorizing more loops and reducing the overheads. We also 

developed this method in our auto-vectorization compiler 

SW-VEC. The experimental results show that the proposed 

method can translate applications within direct array access into 

high-performance targeted vectorized codes, thereby advancing 

the execution efficiency adequately. 

 

Index Terms—Code generation, indirect array, vectorization.  

 

I. INTRODUCTION 

Most modern processor architectures employ SIMD (single 

instruction multiple data) units. By using SIMD instructions, 

processors can simultaneously execute the same operation on 

multiple data packed into one register as illustrated in Fig. 1. 

For programmers, the SIMD processor, with a low power and 

low complexity processor design, is very effective in 

executing programs containing large data-level parallelism 

such as multimedia applications [1], [2]. 

In recent years, several auto-vectorizing compilers such as 

IBM’s XL compiler, INTEL’s icc compiler, ARM’s 

RealView compiler, GNU’s Open64 compiler and GCC 

compiler have been introduced for efficient SIMD code 

generation [3]-[7]. Various impactful techniques have been 

applied to automatically generate SIMD code and to address 

the difficulties during vectorizing such as data permutations 

[8], interleaved data [9], etc. However, the optimizing 

approaches employed by those compilers still cannot 

drastically eliminate the irregular and non-aligned obstacles. 

Consider an indirect array reference [ [ ]]X idx i , where the 

accesses to array X are dictated by the value computed by 

array idx . The actual element of array X which is accessed 

with an index variable i  is unknown at compile time. As a 

consequence, compilers are hardly able to infer any useful 

properties of indirect reference pattern such as alignment, 
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adjacency, and dependence information. 

In our proposed efficient code generation method for loops 

containing indirect memory references, the array base and 

array index are separately packed into two vector register 

variable, and conduct a vector with the input operands of the 

base register and the index register variable by one special 

SIMD ADD operation. 
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Fig. 1. Structure of SIMD unit. 

 

The rest of this paper is organized as follows. Section II 

briefly describes the related work. Then explaining a new 

efficient code generation technique detailed in Section III. 

Section IV syllabify bewrites one benefit model to guarantee 

the basic yield. The performance evaluation results are shown 

in Section V. Finally concluding remarks are made in Section 

VI. 

 

II. RELATED WORKS 

There have been several research works on optimizing 

loops with indirect array reference. One SIMD compilation 

method is employed to address the problems discussed in the 

previous sections in [10]. This proposed method examines the 

data-flow graph (DFG) of the loop body to exploit parallelism 

with Superword Level Parallelism (SLP) [11] algorithm and 

is designed to replace unnecessary gather and scatter 

operations by scalar operations. It is often use full when the 

data reorganization costs are lower than the SIMD instruction 

benefits. Another efficient method is applied in [12] by 

utilizing a special hardware to improve the performance of 

SIMD processors. This SIMD processor is only designed with 

the hardware support on ARMv4 architecture [13] without 

universality. Xin et al. [14] try to vectorize an irregular 

reduction kernel with a large number of gather and scatter 

operations. Wu et al. [15] try to resolve a coalesced memory 

access problem within the context of the GPU architecture. 

Recently, the SIMdD (Single Instruction Multiple disjoint 

Data) architecture contains a multi-port memory unit which 

allows accessing disjoint data [16]. Although the SIMdD 

supports non-aligned and irregular data access efficient, it is 

based on costly multi-port memory. 

In addition, several SIMD processors provide pack, 

permutation and shuffle instructions to arrange data within 

vector registers in various patterns. The methods for 
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generating pack or permutation instructions are presented in 

paper [8]. 

 

III. AN EFFICIENT SIMD CODE GENERATION TECHOLOGY 

In this section, we propose an SIMD code generating 

method to address the problems discussed in previous 

sections. Fig. 2 shows the SW_VEC compiler’s code 

generation infrastructure. First, we rely on the front_end to 

parse the source code, perform pre_optimization and emit the 

WHIRL intermediate representation (IR) [17], [18] which is 

binary tree form [19]. Then, turn to each innermost loop, we 

analysis the loop form to search the illegal loop and test the 

data dependency relations among loop iterations that might 

prohibit vectorization. After that, we analysis the scalar and 

SIMD operations based on the targeted SIMD instructions. 

Next, the benefit analysis phase is performed to determine 

whether the code generating operation is profitable or not. At 

last, compiler translates the scalar WHIRL IR into SIMD 

WHIRL IR automatically. 

In this work, the validity and correctness of SIMD codes 

which are generated with a better method is our aim. Thereby 

we study the benefit analysis phase and the vectorization 

transform phase with most energy. Here, how to transform the 

scalar code to SIMD code is described in detail. The other 

phase will be bewrited in next section. 

In order to vectorize loops containing indirect array 

references, we employ one effective code generating method 

during vectorization transform phase. The foundational 

principle of translating SIMD programs is shown in Fig. 3. 

For an irregular data access array such as [ [ ]]X idx i , we store 

the base address in a base_register which is one vector 

variable, and store the array index into the index_register, 

then conduct the object vector through an special SIMD ADD 

instruction.  
 

Front End
Conducting then WHIRL intermediate representation 

Loop Form Analysis

Dependence Analysis

Scalar and SIMD operation 
Analysis

SIMD Benefit Analysis

Vectorization Transform
Generate targeted codes with SIMD instructions

SIMD Analysis

 
Fig. 2. SIMD code generation infrastructure in SW_VEC. 

 

When the SIMD ADD instruction is executed, each data 

element of the base_register and the index_register execute 

the add operation parallel, the corresponding values in 

memory are extracted at the same time as well. It is success to 

get the vector unit of [ [ ]]X idx i . 

IV. BENEFIT ANALYSIS 

In this section, we will use one benefit model to make sure 

the profit of our method. Comprehensive consideration of 

various factors in the processing of SIMD program, we 

describe the model as follows: 

_int _ _
( )     simdopt vec r vec load vec store s ac c c c c c    (1) 

In this model, simdoptC  indicates the total income which is 

obtained from the vectorization, _ intvec rC represents the 

benefits getting from each vector intrinsic which is not load or 

store and _vec loadC  represents the vector load’s profits and 

_vec storeC  is SIMD store’s benefits. 

In addition, sC expresses the costs of data regrouping for 

disjoint memory accesses, aC  indicate the cost of align 

optimization for non-aligned accesses. We hypothesized 

that vloadC expresses the overhead of regrouping one load 

intrinsic and vstoreC  expresses the overhead of recomposing 

one store intrinsic, the cost of shift and merge operation for 

vectorizing non-aligned codes are indicated with 
vshiftC and 

vmergeC . So, aC and sC can be described as:  

 

( )
s vload vstorec c c                           (2) 

 

( )
a vshift vmergec c c                           (3) 

If there are no discrete accesses and non aligned accesses, 

0sC  and 0aC . 
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Fig. 3. SIMD Code generation principle for indirect array reference. 
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Fig. 4. Special SIMD ADD using regrouping instruction. 
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V. EXPERIMENTAL RESULTS 

In this section, we will test the performance of this SIMD 

code generation method. We implement this method on the 

SW_VEC vectorizing tool and run the program on Red hat 

Enterprise AS 5.0. Runtime environment is Sunway 

BlueLight Server, and the processor is SW-1600. We compile 

three benchmarks from the SPEC2006 [21] benchmark unites. 

A. SPEC2006 Benchmarks 

Table I lists the benchmarks used in this experiment. Since 

this work addresses challenges due to array indirections, we 

only collect programs whose inner-most loops contain array 

indirections, by examining the most time-consuming 

functions of the floating applications from SPEC CPU2006 

[21]. In Table I, each kernel has several indirect references for 

both read and write accesses. The nature of the indirect 

references in the kernels is similar to the example in Fig. 5. 

We named the kernels after their enclosing functions. The 

third column of Table I shows the fraction of each function’s 

execution time. Except for FORMS, each function consists 

only of a single loop nest that contains the extracted kernel. In 

case of FORMS, the function has nine loop nests in similar 

form.

……
for(k = nj0; k<nj1; k++)
{
  ……;  
#1  j = b * jjnr[k];
#2  jx = pox[j];
  ……;
}

……
for(k = nj0; k<nj1; k=k+4)
{
  ……;  
#1  v_0 = simd_set(b,b,b,b);
#2  simd_load(v_1, jjnr+k);
#3  index_register=simd_mul(v_0, v_1);
#4  base_register=simd_set(pox,pox,pox,pox);
#4  v_3 = simd_add(base_register, index_register);
  ……;
}C source code

Generated code

pox[j] <=> pox[b*jjnr[k]]

pox

base_register

pox pox pox b*jjnr[k] b*jjnr[k+1] b*jjnr[k+2] b*jjnr[k+3]

index_register

pox b jjnr[k]

b b b b jjnr[k] jjnr[k+1] jjnr[k+2] jjnr[k+3]

 

Fig. 5. SIMD code generation flow for indirect array reference. 

 
TABLE I: THE SPEC2006 BENCHMARK KERNELS 

APPLICATION KERNEL EXTRACTED FROM(FUNCTION) EXEC. TIME GENERAL CATEGORY 

435.GROMACS INL INL1130()                 66.11% CHEMISTRY/MOLECULAR DYNAMICS 

444.NAMD CPEF CALC_PAIR_ENERGY_FULLELECT()    10.76% STRUCTURAL BIOLOGY 

416.GAMES FORMS FORMS()                   16.09% QUANTUM CHEMICAL COMPUTATIONS 

 

B. Speedups from Our Framework 

Fig. 7 shows the speedup factors achieved by the proposed 

SIMD optimization technique that is compared with the 

conventional SIMD code generation method. 

But, modern SIMD units can’t execute this SIMD ADD by 

an easy SIMD instruction as previous said. We must do that 

with indirect ways. Regrouping instructions are widely 

implemented in Most SIMD processors such as extracting and 

inserting instructions. Some special regrouping operations 

such as pack and unpack is mapped directly to vec_pack and 

vec_unpack on AltiVec platform [8], [20]. In Fig. 4, we use a 

set of extracting instruction to resolve this problem and 

improve the applicability. 

With this proposed way, the compilers can even vectorize 

loops containing irregular indirect array references. The 

vectorization procedure of this access pattern is described in 

Fig. 5. Firstly, the compiler searches for the statements in loop 

that contain the indirect access pattern. Secondly, compiler 

generates base_register and index_register for the indirect 

array. Thirdly, we conduct the SIMD codes with these special 

registers. 

Moreover, the algorithm of this advanced technique is 

characterized in Fig. 6. 

 SRC: Compiler execute each benchmark’s source code. 

 Conventional SIMD: Conventional SIMD code generation 

method is applied when compiler execute each 

benchmark. 

 Special SIMD: The proposed SIMD code generation 

technique applied when compiler execute each 

benchmark. 

1: producedure SIMDCodeGeneration(G = (N))
2:   N <- {n | n ∈ N，n is one node in loop}
3:   IA    //represent the indirect Array
4:     Vci <- Ø  //Vci candidates to SIMD for indirect array access nodes
5:     Vcr <- Ø  //Vcr candidates to SIMD for formal nodes
6:     for n ∈ N do
7:       if n ∈ IA then
8:         Vci <- Vci∪{n}
9:       else
10:        Vcr <- Vcr∪{n}
11:      end if
12:    end for
13:    for n ∈ N do
14：     if n ∈ Vci then
15:        // use the proposed code generation method
16:        SCALAR LOAD -> SIMD LOAD
17:        SCALAR STORE -> SIMD STPRE
18:        SCALAR COMPUTE -> SIMD COMPUTE 
19:      else if n ∈ Vcr then
20:        //use the conventional code generation method
21:        SCALAR LOAD -> SIMD LOAD
22:        SCALAR STORE -> SIMD STPRE
23:        SCALAR COMPUTE -> SIMD COMPUTE
24:      else
25:        continue
26:      end if
27:    end for
28: end producedure

 

Fig. 6. Algorithm for this optimization technology. 

 

C. Evaluation 

To evaluate the performance of the proposed technique, we 

measure the RPCC of each benchmark. Table II shows the test 

result. Data in Table II show, compared to the conventional 

SIMD vectorization method, the proposed technique can 

obviously improve the performance of INL, CPFE and 

FORMS by 160%, on average. However, in Fig. 7, the 

speedup of each benchmark is lower than the corresponding 

kernel in Table II. The reasons of this actuality can be 

summarized as follows: 

 Each kernel is only part of the corresponding benchmark. 
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 The proposed technique may reduce the performance of 

some part of the benchmark. 

 The outer loops consume maybe balance out the score of 

inner-most loop. 

In addition, the implementation of this proposed method is 

controlled by a transformation option -vectorize_indirect in 

compiler. 

 

 
Fig. 7. Speedup factors achieved for three benchmarks. 

 
TABLE II: THREE KERNELS’S RPCC TEST RESULT 

KERNEL SRC CONVENTIONAL 

SIMD 

SPECIAL 

SIMD 

SPEEDUP 

INL 1430420 1430420 397388 3.59 

CPFE 1862646 1862646 980340 1.90 

FORMS 304076 304076 126699 2.39 

 

VI. CONCLUSION AND FUTURE WORK 

Array indirection causes several important challenges for 

SIMD compilation including disjoint memory references, 

unknown alignment, etc. Due to those challenges, most 

modern auto-vectorization algorithm is hardly able to achieve 

a certain performance improvement in the presence of array 

indirection. Several code generation methods are proposed to 

address the challenges arisen from array indirection [12], 

[14]. 

In this work, we proposed a new SIMD code generation 

technique to address the proposed challenges. The indirect 

array is separated into two independent parts, the base part 

and the index part. Then, the two different parts are 

corresponding packed into two vector registers, the base 

register and the index register. After that, we regroup the 

result of one SIMD add operation, and conduct the ideal 

codes. Our experiments on SW-1600 show that our proposed 

technique can improve the performance of several kernels in 

SPEC CPU2006 with the average speedup of 2.60. 

The proposed framework can further be improved by 

integrating the other optimizing techniques such as alignment 

optimization [22], data permutation optimization [8] and loop 

transformation optimizations [23]. Since those techniques can 

reduce some obstacles that impede the exploration of SIMD 

parallelism. 
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