



Abstract—Due to disjoint memory references and non-aligned

memory references, existing SIMD compilers can’t vectorize

loops containing indirect array utilizing SIMD (single

instruction multiple data) instructions. However, addressing

this problem is inevitable, since many important applications

extensively use this program pattern to reduce memory and

computation requirement. In this paper, we propose a new

efficient code generation technique for indirect array. For an

irregular indirect array access, we adopt two separately

registers to store the array base and the index address. It

significantly contributes to the performance improvement by

vectorizing more loops and reducing the overheads. We also

developed this method in our auto-vectorization compiler

SW-VEC. The experimental results show that the proposed

method can translate applications within direct array access into

high-performance targeted vectorized codes, thereby advancing

the execution efficiency adequately.

Index Terms—Code generation, indirect array, vectorization.

I. INTRODUCTION

Most modern processor architectures employ SIMD (single

instruction multiple data) units. By using SIMD instructions,

processors can simultaneously execute the same operation on

multiple data packed into one register as illustrated in Fig. 1.

For programmers, the SIMD processor, with a low power and

low complexity processor design, is very effective in

executing programs containing large data-level parallelism

such as multimedia applications [1], [2].

In recent years, several auto-vectorizing compilers such as

IBM’s XL compiler, INTEL’s icc compiler, ARM’s

RealView compiler, GNU’s Open64 compiler and GCC

compiler have been introduced for efficient SIMD code

generation [3]-[7]. Various impactful techniques have been

applied to automatically generate SIMD code and to address

the difficulties during vectorizing such as data permutations

[8], interleaved data [9], etc. However, the optimizing

approaches employed by those compilers still cannot

drastically eliminate the irregular and non-aligned obstacles.

Consider an indirect array reference [[]]X idx i , where the

accesses to array X are dictated by the value computed by

array idx . The actual element of array X which is accessed

with an index variable i is unknown at compile time. As a

consequence, compilers are hardly able to infer any useful

properties of indirect reference pattern such as alignment,

Manuscript received November 3, 2014; revised March 2, 2015.

The authors are with State Key Laboratory of Mathematical Engineering

and Advanced Computing, China (email: {pengyuan_li, pengyuan_li,

strollerlin}@163.com, rczhao126@126.com).

adjacency, and dependence information.

In our proposed efficient code generation method for loops

containing indirect memory references, the array base and

array index are separately packed into two vector register

variable, and conduct a vector with the input operands of the

base register and the index register variable by one special

SIMD ADD operation.

CU

PU1

PU2

PUn

...

MM1

MM2

MMn

...

DS1

DS2

DSn

CS

SM

IS

Fig. 1. Structure of SIMD unit.

The rest of this paper is organized as follows. Section II

briefly describes the related work. Then explaining a new

efficient code generation technique detailed in Section III.

Section IV syllabify bewrites one benefit model to guarantee

the basic yield. The performance evaluation results are shown

in Section V. Finally concluding remarks are made in Section

VI.

II. RELATED WORKS

There have been several research works on optimizing

loops with indirect array reference. One SIMD compilation

method is employed to address the problems discussed in the

previous sections in [10]. This proposed method examines the

data-flow graph (DFG) of the loop body to exploit parallelism

with Superword Level Parallelism (SLP) [11] algorithm and

is designed to replace unnecessary gather and scatter

operations by scalar operations. It is often use full when the

data reorganization costs are lower than the SIMD instruction

benefits. Another efficient method is applied in [12] by

utilizing a special hardware to improve the performance of

SIMD processors. This SIMD processor is only designed with

the hardware support on ARMv4 architecture [13] without

universality. Xin et al. [14] try to vectorize an irregular

reduction kernel with a large number of gather and scatter

operations. Wu et al. [15] try to resolve a coalesced memory

access problem within the context of the GPU architecture.

Recently, the SIMdD (Single Instruction Multiple disjoint

Data) architecture contains a multi-port memory unit which

allows accessing disjoint data [16]. Although the SIMdD

supports non-aligned and irregular data access efficient, it is

based on costly multi-port memory.

In addition, several SIMD processors provide pack,

permutation and shuffle instructions to arrange data within

vector registers in various patterns. The methods for

An SIMD Code Generation Technology for Indirect Array

Pengyuan Li, Rongcai Zhao, Qinghua Zhang, and Lin Han

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

218 DOI: 10.7763/IJCTE.2016.V8.1047

generating pack or permutation instructions are presented in

paper [8].

III. AN EFFICIENT SIMD CODE GENERATION TECHOLOGY

In this section, we propose an SIMD code generating

method to address the problems discussed in previous

sections. Fig. 2 shows the SW_VEC compiler’s code

generation infrastructure. First, we rely on the front_end to

parse the source code, perform pre_optimization and emit the

WHIRL intermediate representation (IR) [17], [18] which is

binary tree form [19]. Then, turn to each innermost loop, we

analysis the loop form to search the illegal loop and test the

data dependency relations among loop iterations that might

prohibit vectorization. After that, we analysis the scalar and

SIMD operations based on the targeted SIMD instructions.

Next, the benefit analysis phase is performed to determine

whether the code generating operation is profitable or not. At

last, compiler translates the scalar WHIRL IR into SIMD

WHIRL IR automatically.

In this work, the validity and correctness of SIMD codes

which are generated with a better method is our aim. Thereby

we study the benefit analysis phase and the vectorization

transform phase with most energy. Here, how to transform the

scalar code to SIMD code is described in detail. The other

phase will be bewrited in next section.

In order to vectorize loops containing indirect array

references, we employ one effective code generating method

during vectorization transform phase. The foundational

principle of translating SIMD programs is shown in Fig. 3.

For an irregular data access array such as [[]]X idx i , we store

the base address in a base_register which is one vector

variable, and store the array index into the index_register,

then conduct the object vector through an special SIMD ADD

instruction.

Front End
Conducting then WHIRL intermediate representation

Loop Form Analysis

Dependence Analysis

Scalar and SIMD operation
Analysis

SIMD Benefit Analysis

Vectorization Transform
Generate targeted codes with SIMD instructions

SIMD Analysis

Fig. 2. SIMD code generation infrastructure in SW_VEC.

When the SIMD ADD instruction is executed, each data

element of the base_register and the index_register execute

the add operation parallel, the corresponding values in

memory are extracted at the same time as well. It is success to

get the vector unit of [[]]X idx i .

IV. BENEFIT ANALYSIS

In this section, we will use one benefit model to make sure

the profit of our method. Comprehensive consideration of

various factors in the processing of SIMD program, we

describe the model as follows:

_int _ _
()     simdopt vec r vec load vec store s ac c c c c c (1)

In this model, simdoptC indicates the total income which is

obtained from the vectorization, _ intvec rC represents the

benefits getting from each vector intrinsic which is not load or

store and _vec loadC represents the vector load’s profits and

_vec storeC is SIMD store’s benefits.

In addition, sC expresses the costs of data regrouping for

disjoint memory accesses, aC indicate the cost of align

optimization for non-aligned accesses. We hypothesized

that vloadC expresses the overhead of regrouping one load

intrinsic and vstoreC expresses the overhead of recomposing

one store intrinsic, the cost of shift and merge operation for

vectorizing non-aligned codes are indicated with
vshiftC and

vmergeC . So, aC and sC can be described as:

()
s vload vstorec c c  (2)

()
a vshift vmergec c c  (3)

If there are no discrete accesses and non aligned accesses,

0sC and 0aC .

X

X

X

X

idx[i] idx[i+1] idx[i+2] idx[i+3]

SIMD ADD

base register index register

*(X+idx[i]) *(X+idx[i+1]) *(X+idx[i+2]) *(X+idx[i+3])

++++

Fig. 3. SIMD Code generation principle for indirect array reference.

(X+idx[i]) (X+idx[i+1]) (X+idx[i+2]) (X+idx[i+3])

*(X+idx[i])

*(X+idx[i+1])

*(X+idx[i+2])

*(X+idx[i+3])

*simd_vextract

*(X+idx[i]) *(X+idx[i+1]) *(X+idx[i+2]) *(X+idx[i+3])

simd_set

Fig. 4. Special SIMD ADD using regrouping instruction.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

219

V. EXPERIMENTAL RESULTS

In this section, we will test the performance of this SIMD

code generation method. We implement this method on the

SW_VEC vectorizing tool and run the program on Red hat

Enterprise AS 5.0. Runtime environment is Sunway

BlueLight Server, and the processor is SW-1600. We compile

three benchmarks from the SPEC2006 [21] benchmark unites.

A. SPEC2006 Benchmarks

Table I lists the benchmarks used in this experiment. Since

this work addresses challenges due to array indirections, we

only collect programs whose inner-most loops contain array

indirections, by examining the most time-consuming

functions of the floating applications from SPEC CPU2006

[21]. In Table I, each kernel has several indirect references for

both read and write accesses. The nature of the indirect

references in the kernels is similar to the example in Fig. 5.

We named the kernels after their enclosing functions. The

third column of Table I shows the fraction of each function’s

execution time. Except for FORMS, each function consists

only of a single loop nest that contains the extracted kernel. In

case of FORMS, the function has nine loop nests in similar

form.

……
for(k = nj0; k<nj1; k++)
{
 ……;
#1 j = b * jjnr[k];
#2 jx = pox[j];
 ……;
}

……
for(k = nj0; k<nj1; k=k+4)
{
 ……;
#1 v_0 = simd_set(b,b,b,b);
#2 simd_load(v_1, jjnr+k);
#3 index_register=simd_mul(v_0, v_1);
#4 base_register=simd_set(pox,pox,pox,pox);
#4 v_3 = simd_add(base_register, index_register);
 ……;
}C source code

Generated code

pox[j] <=> pox[b*jjnr[k]]

pox

base_register

pox pox pox b*jjnr[k] b*jjnr[k+1] b*jjnr[k+2] b*jjnr[k+3]

index_register

pox b jjnr[k]

b b b b jjnr[k] jjnr[k+1] jjnr[k+2] jjnr[k+3]

Fig. 5. SIMD code generation flow for indirect array reference.

TABLE I: THE SPEC2006 BENCHMARK KERNELS

APPLICATION KERNEL EXTRACTED FROM(FUNCTION) EXEC. TIME GENERAL CATEGORY

435.GROMACS INL INL1130() 66.11% CHEMISTRY/MOLECULAR DYNAMICS

444.NAMD CPEF CALC_PAIR_ENERGY_FULLELECT() 10.76% STRUCTURAL BIOLOGY

416.GAMES FORMS FORMS() 16.09% QUANTUM CHEMICAL COMPUTATIONS

B. Speedups from Our Framework

Fig. 7 shows the speedup factors achieved by the proposed

SIMD optimization technique that is compared with the

conventional SIMD code generation method.

But, modern SIMD units can’t execute this SIMD ADD by

an easy SIMD instruction as previous said. We must do that

with indirect ways. Regrouping instructions are widely

implemented in Most SIMD processors such as extracting and

inserting instructions. Some special regrouping operations

such as pack and unpack is mapped directly to vec_pack and

vec_unpack on AltiVec platform [8], [20]. In Fig. 4, we use a

set of extracting instruction to resolve this problem and

improve the applicability.

With this proposed way, the compilers can even vectorize

loops containing irregular indirect array references. The

vectorization procedure of this access pattern is described in

Fig. 5. Firstly, the compiler searches for the statements in loop

that contain the indirect access pattern. Secondly, compiler

generates base_register and index_register for the indirect

array. Thirdly, we conduct the SIMD codes with these special

registers.

Moreover, the algorithm of this advanced technique is

characterized in Fig. 6.

 SRC: Compiler execute each benchmark’s source code.

 Conventional SIMD: Conventional SIMD code generation

method is applied when compiler execute each

benchmark.

 Special SIMD: The proposed SIMD code generation

technique applied when compiler execute each

benchmark.

1: producedure SIMDCodeGeneration(G = (N))
2: N <- {n | n ∈ N，n is one node in loop}
3: IA //represent the indirect Array
4: Vci <- Ø //Vci candidates to SIMD for indirect array access nodes
5: Vcr <- Ø //Vcr candidates to SIMD for formal nodes
6: for n ∈ N do
7: if n ∈ IA then
8: Vci <- Vci∪{n}
9: else
10: Vcr <- Vcr∪{n}
11: end if
12: end for
13: for n ∈ N do
14： if n ∈ Vci then
15: // use the proposed code generation method
16: SCALAR LOAD -> SIMD LOAD
17: SCALAR STORE -> SIMD STPRE
18: SCALAR COMPUTE -> SIMD COMPUTE
19: else if n ∈ Vcr then
20: //use the conventional code generation method
21: SCALAR LOAD -> SIMD LOAD
22: SCALAR STORE -> SIMD STPRE
23: SCALAR COMPUTE -> SIMD COMPUTE
24: else
25: continue
26: end if
27: end for
28: end producedure

Fig. 6. Algorithm for this optimization technology.

C. Evaluation

To evaluate the performance of the proposed technique, we

measure the RPCC of each benchmark. Table II shows the test

result. Data in Table II show, compared to the conventional

SIMD vectorization method, the proposed technique can

obviously improve the performance of INL, CPFE and

FORMS by 160%, on average. However, in Fig. 7, the

speedup of each benchmark is lower than the corresponding

kernel in Table II. The reasons of this actuality can be

summarized as follows:

 Each kernel is only part of the corresponding benchmark.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

220

 The proposed technique may reduce the performance of

some part of the benchmark.

 The outer loops consume maybe balance out the score of

inner-most loop.

In addition, the implementation of this proposed method is

controlled by a transformation option -vectorize_indirect in

compiler.

Fig. 7. Speedup factors achieved for three benchmarks.

TABLE II: THREE KERNELS’S RPCC TEST RESULT

KERNEL SRC CONVENTIONAL

SIMD

SPECIAL

SIMD

SPEEDUP

INL 1430420 1430420 397388 3.59

CPFE 1862646 1862646 980340 1.90

FORMS 304076 304076 126699 2.39

VI. CONCLUSION AND FUTURE WORK

Array indirection causes several important challenges for

SIMD compilation including disjoint memory references,

unknown alignment, etc. Due to those challenges, most

modern auto-vectorization algorithm is hardly able to achieve

a certain performance improvement in the presence of array

indirection. Several code generation methods are proposed to

address the challenges arisen from array indirection [12],

[14].

In this work, we proposed a new SIMD code generation

technique to address the proposed challenges. The indirect

array is separated into two independent parts, the base part

and the index part. Then, the two different parts are

corresponding packed into two vector registers, the base

register and the index register. After that, we regroup the

result of one SIMD add operation, and conduct the ideal

codes. Our experiments on SW-1600 show that our proposed

technique can improve the performance of several kernels in

SPEC CPU2006 with the average speedup of 2.60.

The proposed framework can further be improved by

integrating the other optimizing techniques such as alignment

optimization [22], data permutation optimization [8] and loop

transformation optimizations [23]. Since those techniques can

reduce some obstacles that impede the exploration of SIMD

parallelism.

REFERENCES

[1] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology

challenges,” in Proc. International Meeting on High Performance

Computing for Computational Science, Lecture Notes in Computer

Science, 2011, vol. 6449, pp. 1-25.

[2] L. Bachega, S. Chatterjee, K. A. Dockserz, et al., “A high-performance

SIMD floating point unit for BlueGene/L: Architecture, compilation,

and algorithm design,” in Proc. the 13th International Conference on

Parallel Architecture and Compilation Techniques, September 2004,

pp. 85-96.

[3] J. Lorenz, S. Kral, F. Franchetti, and C. W. Ueberhuber, “Vectorization

techniques for the blue Gene/L double FPU,” IBM Journal of Research

and Development, vol. 49, no. 2/3, pp. 437-446, 2005.

[4] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian, “Automatic

intra-register vectorization for the intel architecture,” International

Journal of Parallel Programming, vol. 30, no. 2, pp. 65-98.

[5] R. Cravotta, “ARM updates realview development suit; Adds

cortex-m1 Support,” EDN Network, 2007.

[6] B. Chapman, O. Hernandez et al., “An open64-based interactive

program analysis tool for large application,” in Proc. the 4th

International Conference on Parallel and Distributed Computing,

Applications and Technologies, 2003.

[7] M. Levy, “Autovectorization for GCC compiler,” EDN Network, vol. 7,

2007.

[8] G. Ren, P. Wu, and D. Padua, “Optimizing data permutations for

SIMD devices,” in Proc. the 2006 ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2006, pp.

118-131.

[9] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved

data for SIMD,” in Proc. the 2006 ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2006, pp.

132-143.

[10] S. Kim and H. Han, “Efficient simd code generation for irregular

kernels,” ACM Sigplan Notices, vol. 47, no. 8, pp. 55-64, 2012.

[11] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism

with multimedia instruction sets,” in Proc. the Conference on

Programming Language Design and Implementation, 2000, pp.

145-156.

[12] H. Chang and W. Sung, “Efficient vectorization of SIMD programs

with non-aligned and irregular data access hardware,” in Proc. the

2008 International Conference on Compilers, Architectures and

Synthesis for Embedded Systems, 2008, pp. 167-176.

[13] Cortex-A8 Technical Reference Manual, ARM, 2007.

[14] X. Huo, B. Ren, and G. Agrawal, “A programming system for Xeon

Phis with runtime SIMD parallelization,” in Proc. the 28th ACM

international Conference on Supercomputing, 2014, pp. 283-92.

[15] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, “Complexity

analysis and algorithm design for reorganizing data to minimize

non-coalesced memory accesses on gpu,” in Proc. the SIGPLAN

Symposium on Principles and Practice of Parallel Programming,

2013.

[16] D. Naishlos, M. Biberstein, A. Zaks et al., “Vectorizing for a SIMdD

DSP architecture,” in Proc. the 2003 International Conference on

Compilers, Architecture and Synthesis for Embedded Systems, San

Jose, California, USA, ACM.

[17] M. Kong, R. Veras, and K. Stock, “When polyhedral transformations

meet SIMD code generation,” in Proc. the 2013 Conference on

Programming Language Design and Implementation, 2013.

[18] Overview of the open64 compiler infrastructure [EB/OL]. [Online].

Available: http://open64.sourceforge.net

[19] T. Hafer and W. Thomas, “Computation tree logic CTL* and path

quantifiers in the monadic theory of the binary tree,” Automata,

Languages and Programming, 1987.

[20] J. Stewart, “An investigation of SIMD instruction sets,” University of

Ballarat School of Information Technology and Mathematical

Sciences, 2005.

[21] Silicon Graphic International. (2010). WHIRL intermediate language

specification [EB/OL]. [Online]. Available:

http://cdnetworks-kr-l.dl.sourceforge.net/project/open64/open64/Doc

umentation/whirl.pdf

[22] S. Larsen, E. Witchel, and S. P. Amarasin, “Increasing and detecting

memory address congruence,” in Proc. the 2002 International

Conference on Parallel Architectures and Compilation Techniques,

2002, pp. 18-29.

[23] J. L. Henning, “SPEC CPU2006 benchmark,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

Pengyuan Li was born on 18 December, 1989 in China.

He received the undergraduate degree in information

warfare from Nanjing University of Science &

Technology in 2012. Now, he is studying for the

master’s degree. He is working in the State Key

Laboratory of Mathematical Engineering and Advanced

Computing. His research area is advanced compilation

technology.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

221

Rongcai Zhao was born in 1957. His main research

fields are in parallel compilation, high performance

computing and decompile technology. He is a tutor, a

professor, and the senior member of CCF. Now, he is

working in the State Key Laboratory of Mathematical

Engineering and Advanced Computing.

Qinghua Zhang was born on 19 October, 1991 in China.

She received the undergraduate degree in Qingdao

University of Science and Technology. Now, she is

studying for the master’s degree. She is working in the

State Key Laboratory of Mathematical Engineering and

Advanced Computing. Her research area is advanced compilation

technology.

Lin Han was born in 1978. His main research field is

advanced compilation technology, and he is working in

the State Key Laboratory of Mathematical Engineering

and Advanced Computing.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

222

