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Abstract—The layout between the processor and memory in 

parallel bus is very complex and difficult to place and route. 

The expansion of memory capacity and bandwidth is limited. A 

new memory system using an optical connection is proposed. 

We designed a serial interface using packet communication, and 

implemented a protocol engine to be executed on the interface. 

To test the feasibility of the protocol engine, we implemented a 

video system using an embedded processor on FPGA. The 

master and slave protocol engines were on the same FPGA, but 

used the clock differently. We conducted an experiment on the 

function of the proposed protocol engine between the video 

frame buffer and memory using a 2×10-Gbps serial link. 

 
Index Terms—Memory channel, protocol, main memory. 

 

I. INTRODUCTION 

Recently, due to the development of the internet and 

personal communication, a large amount of data and 

information have been produced and circulated. Since a large 

amount of data requires faster networks and more effective 

processing, there has been the need for a more computing 

power and more memory. The processor's memory access is 

made through a memory channel. In order to transfer a 

normal data signal using parallel channels on a board, the 

propagation delay time of its inter-signals should be constant. 

This is the reason why meticulous P&R is required. If you 

need more memory capacity and more bandwidth at 

server-class data centers, you should attach the memory 

closely to the server processor [1]. In addition, the issues of 

more required memory bandwidth and capacity are emerging 

from "multi-core and many-core" that has been evolving 

recently [2], [3]. 

In this environment, there are several requirements to 

improve the performance of memory systems: the growth of 

memory capacity, the decrease of memory latency, the 

expansion of memory bandwidth, and the increased speed of 

the memory I/O operation, among others [4]-[6].  

Firstly, the stacked structure has been exploited to increase 

the memory capacity. There are several memory structures. 

HMC (hybrid memory cube) [7] has a stacked structure, and 

now consists of 4 stacks. HBM uses the interposer to expand 

the bandwidth between DRAM and GPU or CPU, and Wide 

IO also has a stacked structure, and so on. But it is known that 

there is a problem with the formation and reliability of the 

TSV and the micro-bump inside a stacked die [8], [9].  
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Secondly, the decrease of memory latency has been 

studied to reduce the access delay, which is carried out 

mainly on SDRAM that has a relatively long latency time. 

The internal cell I/O or external I/O of memory connected by 

an optical-fibre are being studied [10]. External optical IO is 

especially converted from electrical IO on a one-to-one basis.  

Lastly, to increase the memory bandwidth, while I/O 

operation speed still has the limits of 200Mbps, I/O pin count 

is increased to 512 and 1024 similar to Wide IO (2) or HBM. 

They could be connected directly using external IO 

connections or the connection between the memory and the 

processor could be configured on SiP. 

DDR SDRAM is generally used as main memory, and the 

data width between the memory controller in the processor 

and the memory is generally 32-bit or 64-bit. In addition to 

the 40-bit address and control information, more than 100 

signal lines are required (not including the power lines). In 

the case of the latest processors, the memory channel (dual) 

bus occupies about 40% of all package pins [11]. Also, the 

operating speed of DQs is a 3.2-Gbps/pin in DDR4 [12].  

But as the memory I/O speed increases, the stability of the 

signal between the memory and processor is influenced by 

both the length and crosstalk. The data lines of the parallel 

bus between the processor and memory causes difficulty in 

minimizing the skew of the inter-line. For these reasons, we 

can see a relationship where the number of DIMMs decrease 

as the data rate increases [13]. 

The focus of this paper is related to a memory I/O. Using 

high-speed serial communication and applying a packet 

based protocol engine, we designed protocol engines that are 

able to communicate with each other, a processor and the 

memory [1], [14]. We implemented a video system to test the 

feasibility of the protocol engines. This system used a 

2×10-Gbps transceiver in each protocol, one used for the 

control packet, and another used for the data packet. 

 

II. DESIGN OF MEMORY SYSTEMS AND PROTOCOLS 

A. Proposed Memory Systems 

We proposed a memory system to deal with 

communication problems between a processor and memory 

controller or between a memory controller and memory as 

shown in Fig. 1. Earlier studies had dealt with a memory 

controller and the processor or a memory controller and the 

memory. In [14], the memory controller was installed in the 

in/out side of the processor, and overrode these functional 

systems.  

The proposed memory system does not use parallel 

communication as the conventional method between the 

memory controller and the memory bus, and some parts of 

the functions of the memory controller would be built inside 
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the memory. Instead, the proposed memory system uses the 

transceiver in serial. The transceiver may use an optical 

transceiver, if a silicon-nano photonics transceiver is used, 

and the results should be better. However, in this paper the 

test system used QSFP as a socket and 40 Gigabit Ethernet as 

the physical layer of the transceiver. 

 

 CPU

M
em

o
ry

 
co

n
tr

o
ll

er

m
em

o
ry

P
ro

to
co

l 
en

g
in

e

P
ro

to
co

l 
en

g
in

e

S
er

ia
l 

I/
O

S
er

ia
l 

I/
O

 
Fig. 1. Proposed memory system including the protocol engine. 

 

We implemented the video system to test the feasibility of 

our design. As shown in Fig. 2, the master protocol engine 

connects to the video frame buffer instead of the CPU. And 

the slave protocol engine operates as the memory. The video 

frame buffer gets the 65-byte data from the video input 

module, and it executes the write access to memory. In 

addition, the video output module requests the data from the 

video frame buffer. The color depth is 24-bit/pixel. The video 

frame buffer accesses the read operation of the memory and 

has a dual clock buffer inside. This procedure always occurs 

in the video system.  
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Fig. 2. The block diagram of an implemented system. 

 

B. Protocol’s Function and Roles 

As shown in Fig. 1, the function of the memory controller 

can be separated. The master protocol engine of the main 

control processor is in charge of a function in the memory 

controller. Its role is a packetizer of the memory address and 

data generated by the processor. In memory side, there is also 

a control (slave) protocol engine. The memory system can be 

configured with master and slave protocol engines.  

There are three main roles of the protocol engines. The 

first is data collection and sorting. The second is data error 

detection and the retransmission process. The last is the 

packetizing of the memory command and the data. The 

master protocol engine is responsible for the packetizing of 

the memory-related commands, data and addresses generated 

by the processor. Another main role of the master protocol 

engine is to manage the detection and correction of errors 

about the data collected, and if re-transmission is required, it 

has to retransmit the packet that has been previously 

transmitted to the memory chip. The slave protocol engine 

passes the requested data to the internal logic of the memory, 

generates the corresponding response packet, and then 

transmits it to the master control protocol engine. Also, if the 

slave engine has decided that re-transmission is required, it 

has to retransmit the packet that had previously been 

transmitted to the master protocol engine. 

C. Controlling Buffers 

In a protocol engine, the plurality of the buffer may reside. 

The control modules and buffers in each engine may be 

built-in. We can express the relationship with the controlling 

buffers of a protocol engine as shown in Fig. 3 and Fig. 4. A 

buffer controller (1) controls the input and output of each 

buffer accessed by the protocol engine, manages the state of 

each buffer, and is responsible for communicating with the 

external logic device. 
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Fig. 3. Control buffer in the master protocol engine. 

 

(2)~(5) in Fig. 3 and Fig. 4 are the buffers, and (6)~(9) is 

the place that the packets are generated and processed for 

reading or writing information. The update flow control 

buffer (2) generates a packet for controlling the flow of data. 

The request header (3) and data (4) buffer generate a packet 

for a header and data. The completion data buffer (5) receives 

the data and generates data for completion. It also does (6) 

and (7) for transmission by using a packet buffer, and the 

received data may be checked and interpreted in (8) and (9). 
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Fig. 4. Control buffer in the slave protocol engine. 

The important information for operating the protocol 

engine's internal buffer is the state of the buffers and whether 
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there is a request for read/write. In order to process read/write 

access, we should create packets which are stored 

temporarily in a buffer. When there is a request for a header 

and data buffer, if the buffer’s space is full, the protocol 

engine waits until it has free space. After generating and 

transmitting the packet read request, and the engine waits for 

a response. The received data when responding is written into 

the completion (master) or request (slave) buffer and then the 

engine can access the data in the buffers, depending on the 

state of buffer and the data, and may be transferred to the next 

level module. 
 

 
Fig. 5. Flow chart of retry sequence. 

 

D. Packet Re-transmission 

The packet retransmission means that the destination 

device requests for the source device to resend the packet 

when an error occurs in the packet’s communication. For this 

purpose, both protocol engines should keep the transmitted 

packets in the buffer. If there is a retransmission request 

generated by either engine in accordance with error detection, 

that engine should resend the packet that was transmitted in 

the order used before. If the normal memory access process is 

completed without the retransmission request, the data in that 

buffer is to be deleted or classified as not being used, and the 

data are then replaced with new data. The retry sequence 

appears as shown in Fig. 5. 

 

III. COMPARE WITH OTHER SYSTEMS 

In Table I, we summarize the features of each memory 

system: pins, data rates, bandwidths, etc. The DIMM was 

configured as the memory channel in the conventional 

processor, which uses about 40% of the number of pins in the 

processor as described above. Through these proposals, if the 

protocol engine and the memory controller can be mounted 

on the individual memory chip, the channel interface can be 

simplified. If the Intel CPU can be configured in memory 

channel 1 to 3, DDR3/4 DIMM needs 140 pins per channel 

(excluding the power pins: Micron MT41J128M16HA-125, 

MT41J128MP8JP-126, 16M×72×8 bank). In the case that 

three memory channels are used, and the total pin count to be 

assigned to the CPU was 420 pins. 

We show the available channel & pin count of memory 

systems if the total bandwidth is 320GBps, which is the 

maximum bandwidth of HMC. If the memory system is 

configured at OP10, we can remove 90% of DDR3 pins, 83% 

of DDR4 pins, 50% of HMC pins and 90% of HBM pins. 

And if the memory system is configured as OP25, we can 

remove 96% of DDR3 pins, 94% of DDR4 pins, 80% of 

HMC pins, and 96% of HBM pins. 

 
TABLE I: FEATURES COMPARE OF THE MEMORY SYSTEMS 

Feature DDR3 DDR4 HMC HBM OP10 OP25 

Pins/ch. 140 140 64 128 16 8 16 

Data rate (Gbps) 0.8~3.0 1.6~3.2 10 1 10 25 25 

Ch.BW (GBps) 6.4~17 12.8~25.6 40 16 20 25 50 

Channel 1~3 1~3 8 8 1~26 1~52 1~26 

Total BW (GBps) 6.4~34 12.8~51.2 320 128 20~520 25~1300 50~1300 

Total Pins 140~420 140~420 512 1024 16~416 8~416 16~416 

HMC consist of a link using Tx(16 lane) and Rx(16 lane). The lane consists of a differential pair. In this paper, the channel is same as the link of HMC. 

OP is Optical Fiber, which consist of Tx/Rx signal pair. OP's pin limits to maximum DDR3/4's pin. OP10’s data rate is 10Gbps, OP25 is 25Gbps. 

 

IV. FEASIBILITY TEST  

A. Test Setup 

To test the feasibility of the protocol engine between 

memory and video, the embedded processor on Altera Stratix 

V FPGA was emulated. The maximum operating speed of the 

embedded processor was 200MHz, the width of system bus 

was 32-bit, and the processor (video) system was configured 

with inner program memory, DisplayPort logic, general I/O, 

JTAG UART, and the master protocol engine. In addition, 

the memory system was a memory controller, memory, and 

slave protocol engine as is shown in Fig. 6. 

We constructed a single FPGA system for ease of testing 

on a single FPGA. This means the processor (video) system 

and memory system were on a single FPGA. They were 

connected by an optical line, but the internal connection was 

not, and used a QSFP loopback module. Each system used 

20Gbps I/O for communication. In the video system the 

master protocol engines were connected to the video frame 

buffer and the DisplayPort was connected. The raw 

maximum bandwidth of DisplayPort was 5.4Gbps/lane, and 

the DisplayPort was configured to lanes 1, 2, and 4. 

B. Memory Access Test 

For read access, as shown in Fig. 7, the master protocol 

engine generates a request packet for the read access (1). The 

generated packet is transmitted to the slave protocol engine 

that receives (2) and analyses (3) the read request. And the 

memory controller executes a memory access using that 

packet over the DFI interface and the data is transmitted to 

the master protocol engine (4). When the master protocol 

engine knows that the read request has been completely 

transmitted from the read response packet, the response-ACK 

corresponding to the read response packet is transmitted to 

the slave protocol engine (5). The memory data is then passed 

to the processor (6). If the slave protocol engine receives a 

response-ACK generated by the master protocol engine, both 
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protocol engines complete the read access and then wait for 

the next access (7). 

For write access, as shown in Fig. 8, the master protocol 

engine generates a request packet for the write access (1). The 

generated packet is transmitted to the slave protocol engine 

and then delivers a write-ACK packet (slave protocol engine) 

to the master protocol engine that will inform it that a normal 

packet has been received (2). The slave protocol engine 

delivers this data to the memory controller (3). And the 

memory controller executes a memory access using that data 

on the DFI interface (4). If the master protocol engine 

receives a write-ACK generated by the slave protocol engine, 

both protocol engines complete the write access and then wait 

for the next access (5). 

C. Retransmission of Protocol Engines 

We can see the retransmission sequence shown in Fig. 9. 

The slave protocol engine sends the memory data, 

corresponding to the read access request of the master 

protocol engine (1), to the master protocol engine with the 

sequence numbers, 0xF3, 0xF4, 0xF5, 0xF6 (1)-1. However, 

if the master protocol engine doesn’t receive the memory 

data, it sends NAK to the slave protocol engine. Then the 

slave protocol engine receives NAK (2) and re-transmits the 

transmitted data in the retry buffer (3). We can see the same 

sequence number as (1) at (4)-1. After that, the slave protocol 

engine receives ACK from the master protocol engine (4). 

D. Video System Test 

We illustrated the process of the read request between the 

master and slave protocol engine based on XGMII clock as 

shown in Fig.  Fig. 10, and we can see the waveforms of read 

access in the video system as shown in Fig. 11. This 

waveform is a part of the video operation to read and write 

the memory and is one horizontal synch in duration. The 

master protocol engine is requests read access (A). This 

access comes from a video frame buffer to the output video 

transceiver. The master protocol engine generates and 

transmits the packet for read access (B) along with the ACK 

packets for the previous data packet. The latency of 

transceiver used in this video system is about 36 clocks. The 

slave protocol engine receives the packet transmitted by the 

master protocol engine, and then generates the ACK packet 

for the read access packets and transmits them (C). In 

addition, the slave protocol engine accesses the memory from 

the read data. This occurs before sending the ACK packets. A 

data packet from the slave protocol engine takes as long as 36 

clocks (D). After the master protocol engine receives 

memory data, ACK packets are sent (E). If the slave protocol 

engine gets the ACK packets from the master protocol engine, 

the read request process ends.  

 

 
(a) Testing system diagram. 
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(b) Testing board setup. 

Fig. 6. Test system diagram and board setup. 
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Fig. 7. Captured read access waveforms of Signal-Tap. 
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(1) Master protocol engine   
generates Write_Request.

(3) Slave protocol engine
receives the packet for 
write memory access.

(4) Memory access (DFI) 
in memory system.

(2) Generates a write 
ACK in slave protocol 
engine.

(5) Received the 
write ACK from 
slave protocol 
engine.

 
Fig. 8. Captured write access waveforms of Signal-Tap. 
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Fig. 9. Captured retransmission waveforms in slave protocol engine. 

 

As shown in Fig. 10, we can see more detailed timing in 

the video system. Furthermore, the memory reading process 

time for one horizontal synch is approximately      in total, 

and the operating clock frequency is 156.25MHz, 6.4ns. This 

system reads 520-byte from memory. We can also ideally 

read about 1577-byte for      as in Eq. (1). In this case, the 

utilization of accessing time for data can be estimated as 

similar to Eq. (2), at about 33%. TAB is total of bytes in read 

access time. ORT is one reading access time. OBT is one byte 

time. The total bandwidth of one read access is not the 

bandwidth of the memory but that of the transceiver. 
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However, the latency of the transceiver using this system is 

about 36 clocks (based on XGMII clocks) and the protocol 

also has redundancy elements like acknowledgment packets. 

If there are not any redundancies in reading access from 

memory, the bandwidth of the data can be calculated as Eq. 

(3), at 8.125Gbps. Therefore, the real bandwidth of the data is 

2.68Gbps as in Eq. (4). AU is accessing utilization, TB is 

total of bytes reading from memory. TBR is total bandwidth 

of one reading access, TbitM is total of bits reading from 

memory, FRQ is operating clock frequency. SB is the support 

bandwidth. 
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SB=TBR×AU=8.125Gbps×0.3297≌2.6788Gbps       (4) 

 
To support the maximum bandwidth of the DisplayPort, 

21.6Gbps (5.2Gbps/lane × 4 lane), this system has to reduce 

the latency of the transceiver and to increase accessing 

utilization through more bandwidth from the transceiver. If 

this system uses a transceiver that doesn’t have a media 

access control layer (MAC), and instead its uses a 40Gbps 

transceiver to access memory data, these factors could be 

reduced and increased. The latency of the transceiver using 

this system is about 36 clocks (based on a XGMII clock). If 

the MAC layer is omitted, the latency is about 10 clocks 

(based on a XGMII clock). As shown in Fig. 10, we can 

reduce the duration time until the read valid signal is 56 

clocks (base on a XGMII clock). 
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Fig. 10. Read request timing flow in video system, (A) xxx (0): (A) is the number Fig. 11, (0) is clock count in XGMII. 
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Fig. 11. Captured read request waveform in video system of Signal-Tap, sampled by XGMII clock, 156.2 MHz. 

 

V. CONCLUSION 

In this paper, we designed and tested the protocol in the 

proposed structure, and configured a video frame buffer and 

memory system connected by optical fibers. The video 

system included the master protocol engine and the video 

buffer system including the processor, and the memory 

system was composed of the slave protocol engine and the 

memory controller. We adapted to the video system to test the 

feasibility of the protocol engine’s function. The transceiver 

used in this paper had a MAC layer. The latency may be 

caused by the MAC layer for processing data but this system 

didn’t need. Because the protocol engines also played a role 

of MAC. If we use other transceiver without MAC, the 

accessing utilization is higher.  
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