


Abstract—The layout between the processor and memory in

parallel bus is very complex and difficult to place and route.

The expansion of memory capacity and bandwidth is limited. A

new memory system using an optical connection is proposed.

We designed a serial interface using packet communication, and

implemented a protocol engine to be executed on the interface.

To test the feasibility of the protocol engine, we implemented a

video system using an embedded processor on FPGA. The

master and slave protocol engines were on the same FPGA, but

used the clock differently. We conducted an experiment on the

function of the proposed protocol engine between the video

frame buffer and memory using a 2×10-Gbps serial link.

Index Terms—Memory channel, protocol, main memory.

I. INTRODUCTION

Recently, due to the development of the internet and

personal communication, a large amount of data and

information have been produced and circulated. Since a large

amount of data requires faster networks and more effective

processing, there has been the need for a more computing

power and more memory. The processor's memory access is

made through a memory channel. In order to transfer a

normal data signal using parallel channels on a board, the

propagation delay time of its inter-signals should be constant.

This is the reason why meticulous P&R is required. If you

need more memory capacity and more bandwidth at

server-class data centers, you should attach the memory

closely to the server processor [1]. In addition, the issues of

more required memory bandwidth and capacity are emerging

from "multi-core and many-core" that has been evolving

recently [2], [3].

In this environment, there are several requirements to

improve the performance of memory systems: the growth of

memory capacity, the decrease of memory latency, the

expansion of memory bandwidth, and the increased speed of

the memory I/O operation, among others [4]-[6].

Firstly, the stacked structure has been exploited to increase

the memory capacity. There are several memory structures.

HMC (hybrid memory cube) [7] has a stacked structure, and

now consists of 4 stacks. HBM uses the interposer to expand

the bandwidth between DRAM and GPU or CPU, and Wide

IO also has a stacked structure, and so on. But it is known that

there is a problem with the formation and reliability of the

TSV and the micro-bump inside a stacked die [8], [9].

Manuscript received December 2, 2014; revised February 27, 2015. This

work was supported by the ICT R&D program of MSIP/IITP, Korea.

[10038764, Silicon Nano Photonics Based Next Generation Computer
Interface Platform Technology].

Hyukje Kwon and Yongseok Choi are with the Electronics and

Telecommunications Research Institute, Korea (e-mail: {heavenwing,

shine24}@etri.re.kr).

Secondly, the decrease of memory latency has been

studied to reduce the access delay, which is carried out

mainly on SDRAM that has a relatively long latency time.

The internal cell I/O or external I/O of memory connected by

an optical-fibre are being studied [10]. External optical IO is

especially converted from electrical IO on a one-to-one basis.

Lastly, to increase the memory bandwidth, while I/O

operation speed still has the limits of 200Mbps, I/O pin count

is increased to 512 and 1024 similar to Wide IO (2) or HBM.

They could be connected directly using external IO

connections or the connection between the memory and the

processor could be configured on SiP.

DDR SDRAM is generally used as main memory, and the

data width between the memory controller in the processor

and the memory is generally 32-bit or 64-bit. In addition to

the 40-bit address and control information, more than 100

signal lines are required (not including the power lines). In

the case of the latest processors, the memory channel (dual)

bus occupies about 40% of all package pins [11]. Also, the

operating speed of DQs is a 3.2-Gbps/pin in DDR4 [12].

But as the memory I/O speed increases, the stability of the

signal between the memory and processor is influenced by

both the length and crosstalk. The data lines of the parallel

bus between the processor and memory causes difficulty in

minimizing the skew of the inter-line. For these reasons, we

can see a relationship where the number of DIMMs decrease

as the data rate increases [13].

The focus of this paper is related to a memory I/O. Using

high-speed serial communication and applying a packet

based protocol engine, we designed protocol engines that are

able to communicate with each other, a processor and the

memory [1], [14]. We implemented a video system to test the

feasibility of the protocol engines. This system used a

2×10-Gbps transceiver in each protocol, one used for the

control packet, and another used for the data packet.

II. DESIGN OF MEMORY SYSTEMS AND PROTOCOLS

A. Proposed Memory Systems

We proposed a memory system to deal with

communication problems between a processor and memory

controller or between a memory controller and memory as

shown in Fig. 1. Earlier studies had dealt with a memory

controller and the processor or a memory controller and the

memory. In [14], the memory controller was installed in the

in/out side of the processor, and overrode these functional

systems.

The proposed memory system does not use parallel

communication as the conventional method between the

memory controller and the memory bus, and some parts of

the functions of the memory controller would be built inside

Feasibility Test of Protocol Engines for a New Video

System in Packet Communication

Hyukje Kwon and Yongseok Choi

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

207 DOI: 10.7763/IJCTE.2016.V8.1045

the memory. Instead, the proposed memory system uses the

transceiver in serial. The transceiver may use an optical

transceiver, if a silicon-nano photonics transceiver is used,

and the results should be better. However, in this paper the

test system used QSFP as a socket and 40 Gigabit Ethernet as

the physical layer of the transceiver.

 CPU

M
em

o
ry

co

n
tr

o
ll

er

m
em

o
ry

P
ro

to
co

l
en

g
in

e

P
ro

to
co

l
en

g
in

e

S
er

ia
l

I/
O

S
er

ia
l

I/
O

Fig. 1. Proposed memory system including the protocol engine.

We implemented the video system to test the feasibility of

our design. As shown in Fig. 2, the master protocol engine

connects to the video frame buffer instead of the CPU. And

the slave protocol engine operates as the memory. The video

frame buffer gets the 65-byte data from the video input

module, and it executes the write access to memory. In

addition, the video output module requests the data from the

video frame buffer. The color depth is 24-bit/pixel. The video

frame buffer accesses the read operation of the memory and

has a dual clock buffer inside. This procedure always occurs

in the video system.

Master
Protocol engine

20G
Transceiver

Display
Port Tx

Video
Frame
Buffer

(Dual clock)

Video
Input

Video
Output

Display
Port Rx

Slave
Protocol engine

20G
Transceiver

Memory

Operating clock
156.25MHz

Memory Operating clock
400MHz

Reference clock
644MHz

Operating clock
154MHz

Operating clock
156.25MHz

Fig. 2. The block diagram of an implemented system.

B. Protocol’s Function and Roles

As shown in Fig. 1, the function of the memory controller

can be separated. The master protocol engine of the main

control processor is in charge of a function in the memory

controller. Its role is a packetizer of the memory address and

data generated by the processor. In memory side, there is also

a control (slave) protocol engine. The memory system can be

configured with master and slave protocol engines.

There are three main roles of the protocol engines. The

first is data collection and sorting. The second is data error

detection and the retransmission process. The last is the

packetizing of the memory command and the data. The

master protocol engine is responsible for the packetizing of

the memory-related commands, data and addresses generated

by the processor. Another main role of the master protocol

engine is to manage the detection and correction of errors

about the data collected, and if re-transmission is required, it

has to retransmit the packet that has been previously

transmitted to the memory chip. The slave protocol engine

passes the requested data to the internal logic of the memory,

generates the corresponding response packet, and then

transmits it to the master control protocol engine. Also, if the

slave engine has decided that re-transmission is required, it

has to retransmit the packet that had previously been

transmitted to the master protocol engine.

C. Controlling Buffers

In a protocol engine, the plurality of the buffer may reside.

The control modules and buffers in each engine may be

built-in. We can express the relationship with the controlling

buffers of a protocol engine as shown in Fig. 3 and Fig. 4. A

buffer controller (1) controls the input and output of each

buffer accessed by the protocol engine, manages the state of

each buffer, and is responsible for communicating with the

external logic device.

Master Protocol
Engine

Buffer Controller

Request
Header Buffer

Completion
Data Buffer

Completion
Process control

Request
Process control

Completion
Process Data

Request
Process Data

Other Logic Device

Update Flow
Control Buffer

Request
Data Buffer

Data
Control

Transceiver

(1)(2)

(3) (4) (5)

(7)

(8)

(9)(6)

Fig. 3. Control buffer in the master protocol engine.

(2)~(5) in Fig. 3 and Fig. 4 are the buffers, and (6)~(9) is

the place that the packets are generated and processed for

reading or writing information. The update flow control

buffer (2) generates a packet for controlling the flow of data.

The request header (3) and data (4) buffer generate a packet

for a header and data. The completion data buffer (5) receives

the data and generates data for completion. It also does (6)

and (7) for transmission by using a packet buffer, and the

received data may be checked and interpreted in (8) and (9).

Slave Protocol
Engine

Buffer Controller

Request
Header Buffer

Request
Data Buffer

Request
Process control

Completion
Process control

Request
Process Data

Completion
Process Data

Other Logic Device

Update Flow
Control Buffer

Completion
Data Buffer

Data
Control

Transceiver

(1)(2)

(3) (4) (5)

(7) (8) (9)(6)

Fig. 4. Control buffer in the slave protocol engine.

The important information for operating the protocol

engine's internal buffer is the state of the buffers and whether

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

208

there is a request for read/write. In order to process read/write

access, we should create packets which are stored

temporarily in a buffer. When there is a request for a header

and data buffer, if the buffer’s space is full, the protocol

engine waits until it has free space. After generating and

transmitting the packet read request, and the engine waits for

a response. The received data when responding is written into

the completion (master) or request (slave) buffer and then the

engine can access the data in the buffers, depending on the

state of buffer and the data, and may be transferred to the next

level module.

Fig. 5. Flow chart of retry sequence.

D. Packet Re-transmission

The packet retransmission means that the destination

device requests for the source device to resend the packet

when an error occurs in the packet’s communication. For this

purpose, both protocol engines should keep the transmitted

packets in the buffer. If there is a retransmission request

generated by either engine in accordance with error detection,

that engine should resend the packet that was transmitted in

the order used before. If the normal memory access process is

completed without the retransmission request, the data in that

buffer is to be deleted or classified as not being used, and the

data are then replaced with new data. The retry sequence

appears as shown in Fig. 5.

III. COMPARE WITH OTHER SYSTEMS

In Table I, we summarize the features of each memory

system: pins, data rates, bandwidths, etc. The DIMM was

configured as the memory channel in the conventional

processor, which uses about 40% of the number of pins in the

processor as described above. Through these proposals, if the

protocol engine and the memory controller can be mounted

on the individual memory chip, the channel interface can be

simplified. If the Intel CPU can be configured in memory

channel 1 to 3, DDR3/4 DIMM needs 140 pins per channel

(excluding the power pins: Micron MT41J128M16HA-125,

MT41J128MP8JP-126, 16M×72×8 bank). In the case that

three memory channels are used, and the total pin count to be

assigned to the CPU was 420 pins.

We show the available channel & pin count of memory

systems if the total bandwidth is 320GBps, which is the

maximum bandwidth of HMC. If the memory system is

configured at OP10, we can remove 90% of DDR3 pins, 83%

of DDR4 pins, 50% of HMC pins and 90% of HBM pins.

And if the memory system is configured as OP25, we can

remove 96% of DDR3 pins, 94% of DDR4 pins, 80% of

HMC pins, and 96% of HBM pins.

TABLE I: FEATURES COMPARE OF THE MEMORY SYSTEMS

Feature DDR3 DDR4 HMC HBM OP10 OP25

Pins/ch. 140 140 64 128 16 8 16

Data rate (Gbps) 0.8~3.0 1.6~3.2 10 1 10 25 25

Ch.BW (GBps) 6.4~17 12.8~25.6 40 16 20 25 50

Channel 1~3 1~3 8 8 1~26 1~52 1~26

Total BW (GBps) 6.4~34 12.8~51.2 320 128 20~520 25~1300 50~1300

Total Pins 140~420 140~420 512 1024 16~416 8~416 16~416

HMC consist of a link using Tx(16 lane) and Rx(16 lane). The lane consists of a differential pair. In this paper, the channel is same as the link of HMC.

OP is Optical Fiber, which consist of Tx/Rx signal pair. OP's pin limits to maximum DDR3/4's pin. OP10’s data rate is 10Gbps, OP25 is 25Gbps.

IV. FEASIBILITY TEST

A. Test Setup

To test the feasibility of the protocol engine between

memory and video, the embedded processor on Altera Stratix

V FPGA was emulated. The maximum operating speed of the

embedded processor was 200MHz, the width of system bus

was 32-bit, and the processor (video) system was configured

with inner program memory, DisplayPort logic, general I/O,

JTAG UART, and the master protocol engine. In addition,

the memory system was a memory controller, memory, and

slave protocol engine as is shown in Fig. 6.

We constructed a single FPGA system for ease of testing

on a single FPGA. This means the processor (video) system

and memory system were on a single FPGA. They were

connected by an optical line, but the internal connection was

not, and used a QSFP loopback module. Each system used

20Gbps I/O for communication. In the video system the

master protocol engines were connected to the video frame

buffer and the DisplayPort was connected. The raw

maximum bandwidth of DisplayPort was 5.4Gbps/lane, and

the DisplayPort was configured to lanes 1, 2, and 4.

B. Memory Access Test

For read access, as shown in Fig. 7, the master protocol

engine generates a request packet for the read access (1). The

generated packet is transmitted to the slave protocol engine

that receives (2) and analyses (3) the read request. And the

memory controller executes a memory access using that

packet over the DFI interface and the data is transmitted to

the master protocol engine (4). When the master protocol

engine knows that the read request has been completely

transmitted from the read response packet, the response-ACK

corresponding to the read response packet is transmitted to

the slave protocol engine (5). The memory data is then passed

to the processor (6). If the slave protocol engine receives a

response-ACK generated by the master protocol engine, both

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

209

protocol engines complete the read access and then wait for

the next access (7).

For write access, as shown in Fig. 8, the master protocol

engine generates a request packet for the write access (1). The

generated packet is transmitted to the slave protocol engine

and then delivers a write-ACK packet (slave protocol engine)

to the master protocol engine that will inform it that a normal

packet has been received (2). The slave protocol engine

delivers this data to the memory controller (3). And the

memory controller executes a memory access using that data

on the DFI interface (4). If the master protocol engine

receives a write-ACK generated by the slave protocol engine,

both protocol engines complete the write access and then wait

for the next access (5).

C. Retransmission of Protocol Engines

We can see the retransmission sequence shown in Fig. 9.

The slave protocol engine sends the memory data,

corresponding to the read access request of the master

protocol engine (1), to the master protocol engine with the

sequence numbers, 0xF3, 0xF4, 0xF5, 0xF6 (1)-1. However,

if the master protocol engine doesn’t receive the memory

data, it sends NAK to the slave protocol engine. Then the

slave protocol engine receives NAK (2) and re-transmits the

transmitted data in the retry buffer (3). We can see the same

sequence number as (1) at (4)-1. After that, the slave protocol

engine receives ACK from the master protocol engine (4).

D. Video System Test

We illustrated the process of the read request between the

master and slave protocol engine based on XGMII clock as

shown in Fig. Fig. 10, and we can see the waveforms of read

access in the video system as shown in Fig. 11. This

waveform is a part of the video operation to read and write

the memory and is one horizontal synch in duration. The

master protocol engine is requests read access (A). This

access comes from a video frame buffer to the output video

transceiver. The master protocol engine generates and

transmits the packet for read access (B) along with the ACK

packets for the previous data packet. The latency of

transceiver used in this video system is about 36 clocks. The

slave protocol engine receives the packet transmitted by the

master protocol engine, and then generates the ACK packet

for the read access packets and transmits them (C). In

addition, the slave protocol engine accesses the memory from

the read data. This occurs before sending the ACK packets. A

data packet from the slave protocol engine takes as long as 36

clocks (D). After the master protocol engine receives

memory data, ACK packets are sent (E). If the slave protocol

engine gets the ACK packets from the master protocol engine,

the read request process ends.

(a) Testing system diagram.

Video
Source

Video
output

Protocol
engines

Video system

Console

Video Daughter Card
(DisplayPort)

CPU
Master protocol
engine (FPGA)

Slave protocol
engine

Memory
10Gx4

Transceiver
Loopback

Protocol engines Video
system

(b) Testing board setup.

Fig. 6. Test system diagram and board setup.

(1) Master protocol engine
generates Read_Request.

(5) A read ACK is
received from the
slave protocol engine,
and then a response
ACK is sent to the
slave protocol engine.

(2) Slave protocol engine
receives the packet for
read memory access.

(7) Received the
response ACK
from master
protocol engine.

(3) Memory
access (DFI)
in memory
system.

(4) Slave protocol engine got valid data
(reading data), and packet is generated
and sent to master protocol engine.

(6) Send data
to CPU.

Fig. 7. Captured read access waveforms of Signal-Tap.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

210

(1) Master protocol engine
generates Write_Request.

(3) Slave protocol engine
receives the packet for
write memory access.

(4) Memory access (DFI)
in memory system.

(2) Generates a write
ACK in slave protocol
engine.

(5) Received the
write ACK from
slave protocol
engine.

Fig. 8. Captured write access waveforms of Signal-Tap.

(1)-1 sequence number

(1) Slave protocol
engine sends the
memory data with
the sequence
number

(2) Slave protocol
engine receives NAK

(3) Retry buffer in slave
protocol engine re-transmits
the transmitted data

(4) Slave protocol
engine receives
ACK from master
protocol engine

(4)-1 Same with (1)-1
sequence number

Fig. 9. Captured retransmission waveforms in slave protocol engine.

As shown in Fig. 10, we can see more detailed timing in

the video system. Furthermore, the memory reading process

time for one horizontal synch is approximately in total,

and the operating clock frequency is 156.25MHz, 6.4ns. This

system reads 520-byte from memory. We can also ideally

read about 1577-byte for as in Eq. (1). In this case, the

utilization of accessing time for data can be estimated as

similar to Eq. (2), at about 33%. TAB is total of bytes in read

access time. ORT is one reading access time. OBT is one byte

time. The total bandwidth of one read access is not the

bandwidth of the memory but that of the transceiver.

 (1)

 (2)

However, the latency of the transceiver using this system is

about 36 clocks (based on XGMII clocks) and the protocol

also has redundancy elements like acknowledgment packets.

If there are not any redundancies in reading access from

memory, the bandwidth of the data can be calculated as Eq.

(3), at 8.125Gbps. Therefore, the real bandwidth of the data is

2.68Gbps as in Eq. (4). AU is accessing utilization, TB is

total of bytes reading from memory. TBR is total bandwidth

of one reading access, TbitM is total of bits reading from

memory, FRQ is operating clock frequency. SB is the support

bandwidth.

 (3)

SB=TBR×AU=8.125Gbps×0.3297≌2.6788Gbps (4)

To support the maximum bandwidth of the DisplayPort,

21.6Gbps (5.2Gbps/lane × 4 lane), this system has to reduce

the latency of the transceiver and to increase accessing

utilization through more bandwidth from the transceiver. If

this system uses a transceiver that doesn’t have a media

access control layer (MAC), and instead its uses a 40Gbps

transceiver to access memory data, these factors could be

reduced and increased. The latency of the transceiver using

this system is about 36 clocks (based on a XGMII clock). If

the MAC layer is omitted, the latency is about 10 clocks

(based on a XGMII clock). As shown in Fig. 10, we can

reduce the duration time until the read valid signal is 56

clocks (base on a XGMII clock).

 (5)

 (6)

(7)

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

211

11

25
10

36

(A
)

R
ea

d

re
q

u
es

t(
0)

(B
)

P
ac

k
et

g

en
er

at
e(

11
)

Transmits on transceiver

(C) ACK
send(47)

(D) Data
send(72)

Master

Slave

D
at

a
re

ce
iv

ed
(1

08
)

(F
)

R
ea

d
 d

at
a

v
al

id
(1

22
)

(G) ACK
received(154

)

(E
)

A
C

K
 s

en
d

(1
18

)

Read request timing flow

36

36 Transmits on transceiver

Transmits on transceiver

Memory access &
packet gen.

Fig. 10. Read request timing flow in video system, (A) xxx (0): (A) is the number Fig. 11, (0) is clock count in XGMII.

(A) Request :
read access.

(B) Packet :
generates and
transmits with
the ACK packet
for the previous
data packet.

(C) Send ACK :
ACK for (B)

(D) Send Data:
memory data

(E) Send ACK :
ACK for (D).

(F) Valid :
for (D)

(G) Receive ACK :
ACK for (E).

Master

Slave

Fig. 11. Captured read request waveform in video system of Signal-Tap, sampled by XGMII clock, 156.2 MHz.

V. CONCLUSION

In this paper, we designed and tested the protocol in the

proposed structure, and configured a video frame buffer and

memory system connected by optical fibers. The video

system included the master protocol engine and the video

buffer system including the processor, and the memory

system was composed of the slave protocol engine and the

memory controller. We adapted to the video system to test the

feasibility of the protocol engine’s function. The transceiver

used in this paper had a MAC layer. The latency may be

caused by the MAC layer for processing data but this system

didn’t need. Because the protocol engines also played a role

of MAC. If we use other transceiver without MAC, the

accessing utilization is higher.

ACKNOWLEDGMENT

This work was supported by the ICT R&D program of

MSIP/IITP, Korea. [10038764, Silicon Nano Photonics

Based Next Generation Computer Interface Platform

Technology].

REFERENCES

[1] A. Okazaki and Y. Katayama, "Optical interconnect opportunities for
future server memory systems," in Proc. HPCA, 2007, pp. 46-50.

[2] L. Li, S. Y. Liu, M. Y. Chen, and J. P. Fan, "Grid memory service

architecture for high perfomance computing," in Proc. Seventh
International Conference on Grid and Cooperative Computing, 2008,

pp. 24-26.

[3] C. Batten, A. Joshi, J. Orcutt, A. Khilo et al., "Building many-core
processor-to-dram networks with monolithic cmos silicon photonics,"

in Proc. HOTI’08, 2009, pp. 21-30.

[4] Y. W. Yin, R. Proietti, X. H. Ye, S. J. B. Yoo, and V. Akella,
"Experimental demonstration of optical processor-memory

interconnection," Advanced Intelligence and Awarenss Internet, pp.

23-25, 2010.

[5] A. Hadke, T. Benavides, R. Amirtharajah, M. Farrens, and V. Akella,
"Desing and evaluation of an optical CPU-DRAM interconnect," in

Proc. ICCD, 2008, pp. 492-497.

[6] C. P. Lai, C. Ware, and D. Brunina, "Building data centers with
optically connected memory," Journal of Optical Society of America,

vol. 3, issue 8, pp. A40-A48, 2011.

[7] H. M. C. Consortium, “Hybrid memory cube specificatiion 1.0,” 2013.
[8] U. Kang, "8Gb 3D DDR3 DRAM using through-Silicon-Via

technology," in Proc. ISSCC, 2009.

[9] W. S. Lee, "A study on the effectiveness of underfill in the high
bandwidth memory with TSV," in Proc. IMAPS, 2013.

[10] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,”
IEEE Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987.

[11] Bit-tech. Intel sandy bridge: Details of the next gen. [Online].

Available:
http://www.bit-tech.net/hardware/cpus/2010/04/21/intel-sandy-bridge

-details-of-the-next-gen/1

[12] JEDEC, DDR4 SDRAM JESD79-4, September 2012.
[13] Rambus, “Challenges and solutions for future main memory,” White

paper, May 26, 2009.
[14] H. T. Jun, B. Chelepalli, N. Xue, and B. C. Lee, "Disintegrated

cControl for energy-efficient and heterogeneous memory systems," in

Proc. IEEE 19th International Symposium on High Performance
Computer Architecture, 2013.

Hyukje Kwon received his MS degree in electronics
engineering in Chonbuk National Univerisity, Korea in

1997. And in 2008, he received PhD degree in the same

university. In 2012, he joined the Server Platform
Research team at the Electronics and

Telecommunications Research Institute (ETRI), Rep. of

Korea.

Yongseok Choi joined the Server Platform Research team
at the Electronics and Telecommunications Research

Institute (ETRI), Rep. of Korea in 2000.

International Journal of Computer Theory and Engineering, Vol. 8, No. 3, June 2016

212

