



Abstract—The global smartphone market is growing at a

brisk pace. Android, an open source platform of Google has

become one of the most popular mobile operating systems.

Android apps generate lot of revenue which is increasing every

year. The reverse engineering of Android applications is much

easier than owing to the use of open source platform. Therefore,

it becomes important to protect applications running on

Android from attackers. The goal is to minimize software flaws

and use anti-reverse engineering techniques. In this paper, we

present a protection scheme based on obfuscation, code

modification and cryptographic protection that can effectively

counter reverse engineering on the Android platform. Our

approach aims at making it tough for a reverse engineer to get

the business logic performed by an Android application.

Index Terms—Software protection, Android, dalvik bytecode,

reverse engineering, code obfuscation, anti-reverse engineering,

cryptography.

I. INTRODUCTION

The use of software applications has increased a lot in last

few decades and they have become a necessity. From mobiles

and computers to electronic devices, software applications are

all around us. Owing to their wide use, software industry has

become one of the largest and most important businesses that

can generate huge revenue. The importance of software

applications and their unprecedented growth together with the

vulnerabilities found in them, make them a prime target of

attackers resulting in attacks like reverse engineering, illegal

use and distribution and tampering. Thus, software industry is

facing the big threat of piracy. Attacks on software are done

for variety of reasons like economic gains, for fun and even

for satisfaction. Attackers bypass the registration/licensing

process, reverse engineer binaries and files, tamper with them

and redistribute the software. Business Software Alliance

(BSA) reported that software piracy has resulted in a loss of

63.4 billion to software industry [1]. More alarming is the fact

that this loss is on the rise and increasing every year as it

surged from $58.8 billion in 2010 to $63.4 billion in 2011.

In recent years Android platform, which is developed by

the "Android Open Source Project" has become one of the

most popular systems for mobile devices and the market for

Android applications has rapidly grown in variety and

financial volume. This platform is designed in a way that

Manuscript received August 10, 2014; revised February 2, 2015.

All the author are with School of Electrical Engineering and Computer

Science (SEECS) NUST Campus H-12, Islamabad, Pakistan (e-mail:

11msccsmshoaib@seecs.edu.pk, 11msccsnyasin@seecs.edu.pk,

Abdul.ghafoor@seecs.edu.pk).

developers can upload and publish an app on Android market

without a review from Google and users can easily download

and install new applications. The Android’s smartphone

mobile app revenues reached nearly $6.8 billion by the end of

2013, almost doubling its revenues from the previous year [2].

This results in an increasing demand to safeguard intellectual

property of developers and protect Android applications files

from piracy.

Majority of security solutions have been designed and

deployed primarily focusing on the client side interests.

Firewalls, Intrusion Detection & Prevention Systems (IDPS),

antivirus, digitally signed software, etc are few examples of

security applications that provide software protection at the

user end but do not protect against the software vulnerabilities

exploited by attackers and reverse engineers. Therefore we

need solutions that can cater to developers’ needs and protect

their interests against attacks like reverse engineering, Break

Once Run Everywhere (BORE), illegal tampering, and

unauthorized use of software. Security organizations as well

as researchers around the globe are working in three

directions to achieve protection against these attacks. The first

group is working on solutions based on cryptographic and

obfuscation techniques. Second group is working on software

licensing laws and implementing Digital Rights Management

(DRM) to protect the intellectual property rights and the last

group is working on making software secure by design.

Although different techniques and third party tools have

been proposed in the past for the protection of Android apps,

but to the best of our knowledge, no protection scheme is

completely secure and cost effective. Further, if it is assumed

that the attacker has enough time and resources, then any

protection scheme can ultimately be broken. Therefore, the

aim here is to make the process of reverse engineering hard if

not impractical, so that it may introduce enough delay to sell

out legitimate copies of the software and generate substantial

revenue. In this regard, we present a software protection

scheme for Android applications that utilizes the benefits of

encryption and obfuscation. Our solution is capable of

restricting the process of reverse engineering and illegal

distribution for a reasonable amount of time and hence

ensures that desired level of protection of Android

applications is achieved.

The rest of this paper is organized as follows. In Section II

we discuss the Android architecture, sandboxing and Android

application build process. Section III covers current threats to

Android apps, discusses a generic reverse engineering model

and existing methods and tools used for Android app

protection. Section IV introduces our protection method

which is based on encryption and obfuscation. In Section V

we analyze our work and conclude this paper.

Smart Card Based Protection for Dalvik Bytecode —

Dynamically Loadable Component of an Android APK

Muhammad Shoaib, Noor Yasin, and Abdul G. Abbassi

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

156DOI: 10.7763/IJCTE.2016.V8.1036

II. ANDROID BASICS

A. Android Architecture

When an Android program is compiled, all of its parts are

packaged into one file called Android Application Package

file (APK). An APK is a zipped file formatted package with

.apk extension and contains:

 Dalvik Executable file (.dex file containing dalvik

bytecode)

 Resources & Assets

 Certificates

 Manifest file

The dalvik bytecode contains the program code for an

Android application and is executed by the Dalvik Virtual

Machine (DVM). Apart from executing dalvik bytecode,

DVM also provides the ability to execute code which is not

part of the dalvik bytecode i.e. by calling native functions

within shared objects. The dalvik bytecode is comparable to

java bytecode but is designed specifically for Android

applications. Owing to limitations of resources on mobile

devices, dalvik bytecode is more efficient and compact than

java bytecode. Resources and assets of an APK file include

bitmap files, sounds and other static data that is used by

Android application. Every application has an

AndroidManifest.xml file in its root directory which presents

essential information about the application to the Android

system. An APK file, in order to be installed on any device,

has to be digitally signed with a certificate whose private key

is held by the developer. Self Signed certificates can also be

used without the need of a Certificate Authority. The signing

process adds no security and merely identifies the application

developer. It happens automatically when we use Eclipse with

the Android Development Toolkit (ADT) plugin. The

Android system comes with an optimizer and verifier tool

called “dexopt” [3]. When an Android application is installed

on any device, dexopt will optimize and verify the dalvik

bytecode for efficient execution on underlying architecture.

This process is called optimization and the resultant dex file is

called “odex”.

B. Sandboxing

When it comes to Android security, a key concept is

“secure sandbox”. The Android application Sandbox isolates

app data and code execution from other apps. This is achieved

by assigning a unique user ID (UID) to each app running as a

process. By default no application has the permission to

interfere with another app’s resources and private data. Only

processes with same UIDs can share resources. In order to

allow an application to interfere with another application's

sandbox, permissions must be explicitly declared up front

before the app is installed and cannot be changed after

installation.

The only way to break out of application sandbox is by

compromising the linux kernel which is the operating system

Android is based upon. This is called rooting the device where

each app will have a root level access and can modify other

apps data as well as the kernel. Rooting an Android device

renders all the security mechanism null and void.

C. Android Application Build Process

A lot of work has been done in past to secure binaries and

executables [4]-[6] but not much has been achieved for

security of mobile applications especially Android apps (APK

files). As Android apps are java based so it is quite easy to

decompile and reverse engineer them by using few tools and

having a basic knowledge. Application developers therefore

are interested in protecting the business logic of their

applications so that it is hard to understand what an

application does and how its functionality is implemented. An

overview of Android application build process is shown

below:

Fig. 1. Android application build process.

An Android application needs to go through many steps

and requires different tools for building an APK file which is

ready for deployment. The first step of the build process, as

shown in Fig. 1 is compilation of “.java” files into “.class”

files using Java compiler. Class files contain java bytecode

and at this step obfuscation can be applied to this java

bytecode. In the next step java bytecode is transformed into

dalvik bytecode using a utility “dx” which comes with

Android Software Development Kit (SDK). The application

of “dx” utility on class files results into a single dex file called

“classes.dex”. It is possible to apply further obfuscation on

dalvik bytecode at this stage using Proguard or any other

obfuscation tool. The ApkBuilder then constructs an APK file

from the “classes.dex” file and adds further resources like

images and “.so” files. The “.so” files are shared objects

which contain native functions that can be called from within

the DVM. In the last step “jarsigner” adds developer’s

signature to the APK. The signed application can finally be

deployed on an Android device.

III. RELATED WORK

Some of major threats to Android apps are:

 Unauthorized API access

 Malwares and viruses

 Repackaging and selling

 Piracy

 Stealing app code and assets

The first threat to generate and modify source code is

reverse engineering of software. When we speak of reverse

engineering an Android application, we primarily mean to

reverse engineer the dalvik bytecode located in the

classes.dex file. There are many tools to interact and analyze

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

157

Android applications. Smali/baksmali assembler and

disassembler are useful tools for reverse engineering of

Android apps. Dex2Jar is a tool that is used to transform

dalvik bytecode i.e. dex files to normal jar files. APKTool is a

well known application for reverse engineering of Android

applications. JD-GUI is a cross platform utility which can

display java source code of “.class” files. JAD is a tool that is

used to extract source code from class files. Androguard is

python based tool which is used for reverse engineering of

APK files. DexDump and Dexter are also useful code analysis

tools which are quite effective for reverse engineering of

Android apps. All these tools are discussed in the work of kim

et al. [7]. IDAPro is another useful tool for effective

decompilation of binaries [8]. The decompiling procedure of

an APK using Dex2Jar and JD-GUI is shown in the Fig. 2

below:

Fig. 2. Decompiling an APK.

Android app protection is relatively a new topic. Android

applications can be protected in three ways:

 Anti piracy

 Anti tampering

 Anti reverse engineering.

The anti piracy technique for application protection

includes techniques like licensing, Digital Rights

management (DRM) and software watermarking. Google has

introduced license verification library [9], a tool library that

protects apps from being stolen by third parties. Operators

like Amazon and Verizon have introduced their own DRM

options to protect their apps from being pirated or copied.

Software watermarking is also an effective tool for anti piracy

[10].

Anti tampering in Android is mainly achieved via a

signature mechanism which verifies integrity of the APK file.

We can also verify the integrity of classes.dex file to make

sure that source code has not been tampered with. Encryption

can also be used to prevent tampering if key exchange and key

storage is carefully dealt with.

In order to protect the software from malicious attacks, anti

reverse engineering techniques are used for defense. Since

Android apps are java based so protection techniques based

on obfuscation that are used to prevent reverse engineering of

java bytecode have been researched and applied to dalvik

bytecode as well. Code obfuscation is a technique in which a

program is automatically transformed in such a way that its

functionality remains the same while it is more difficult to

reverse engineer [11], [12]. Obfuscation is a useful and cost

effective technique and it doesn’t require any special

execution environment. Moreover it is believed to be more

effective on Android system [13], [14]. Patrick Schulz in his

work “Code Protection in Android” [15] discusses some

possible code obfuscation methods on the Android platform

using identifier mangling, string obfuscation, dead code

insertion, and self modifying code. Ghosh et al. [16] have

discussed a code obfuscation technique on the Android

platform that aims at increasing the complexity of the control

flow of the application so that it becomes tough for a reverse

engineer to get the business logic performed by an Android

application. Kundu has also worked on some obfuscation

techniques like clone methods, reordering expressions and

loops, changing the arrays and loop transformations [17].

These techniques make it hard for the attacker to understand

the logic behind decompiled code.

For protection of Android applications, obfuscation has

also been used in different code protectors. There are a

number of java obfuscators like proguard, dexguard, allaatori,

etc that obfuscate the code by removing unused code and by

renaming classes, fields, and methods to semantically obscure

names. These obfuscators are used to create apps that are

optimized, faster, more compact, and more difficult to crack

[18].

We have seen that anti reversing techniques that have been

implemented for defense of APKs are mostly based on

obfuscation. The reason cryptographic protection is not

generally used is that the existing execution environments do

not support execution of encrypted files. Therefore the

encrypted file has to be decrypted before execution and the

attacker can intercept the code when it is decoded for

execution into the internal memory. Therefore, we have to

customize/tweak the existing execution environment to

enable it to run the encrypted software. In this paper we have

proposed a solution based on obfuscation, code modification

and cryptographic techniques for software protection. The

cryptographic protection prevents static analysis while

obfuscation and code modification delay dynamic analysis. A

combination of both can effectively make reverse engineering

hard even for an experienced attacker.

IV. PROPOSED SOLUTION

In the first step of our design, the application developer

publishes the app on the application repository. On receiving

a download request from the user, app repository redirects it

to Identity Management Server (IDMS) which requires the

user to register on the IDMS. The user then has to access the

app repository to download the app containing encrypted dex

file. The app can only be downloaded upon authentication

from the IDMS. Once the file is downloaded it can be

executed in a customized environment using a Dexfile loader.

The encrypted file is decrypted on the fly using a key provided

by the user via smartcard. An overview of design is given in

Fig. 3.

A. Registration

The user first registers with the registration server (IDMS)

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

158

using registration web page [19]. This registration

information is sent using SSL protocol to the Web Server.

Once the registration process is complete, a group ID is

generated for the user which acts as a passphrase for

generating a Groupkey for dex file encryption/decryption

later. This ID is same for a group of users with size n and is

changed for every subsequent group. For example if we take a

group size of 10 (i.e. n=10), then GroupID will remain same

for 10 users and will change for next group of users. Thus

generated key is same for a group that consists of n users.

In order to download the app, the user sends a download

request to app repository. The app server verifies that user is

registered at the IDMS and allows the download to proceed

after authentication as shown in Fig. 4.

Fig. 3. Design overview.

Fig. 4. Registration, Authentication & file download.

B. Encryption and Decryption

Our protection technique has two main parts:

 Packer (Encryptor)

 Unpacker (Decryptor Stub)

1) Packer

A perfect obfuscator would result in transformation of an

application in such a way that it is impossible to analyze it and

extract any information from it. But obviously it is not

possible to generate such an ideal transformation. A close

enough result can be achieved by using a technique often used

by malware i.e. packing [20]. A packer takes an executable or

binary file, encrypts it so it cannot be analyzed by the

attacker/analyst unless decrypted. We know that the main

code of an Android application is stored in a dex file and we

can use encryption to protect the dex file. In Android,

encrypted dex file can easily be generated using AES [21].

The GroupID which was generated at registration step is used

as a passphrase for generation of key using Password Based

Encryption (PBE) [22]. This key is used to get a .dex file with

an encrypted dalvik bytecode. The application containing

encrypted dex file is then stored on the server. The PBE

generated Groupkey is stored by key manager using public

keys of the registered users. Thus each user can use his private

key to extract the GroupKey which will be used for decryption

later. In this way the symmetric key can be distributed to

multiple recipients of the group who have registered at IDMS

and downloaded the application with encrypted dex file.

2) Unpacker

The unpacker or Decryptor stub is an important component

of our design and it must be executed when starting an

application. It performs some key functions like fetching the

dex file, decrypting and loading it into the memory and

executing it. The loading of dex file is generally achieved by

using reflection which loads dex file from a certain location in

a currently running process. The problem with this simple

approach is that data has to be decrypted on the system prior

to execution and this decrypted data can easily be copied by

the analyst, rendering the whole protection scheme futile. The

unpacker in our solution can be used to load encrypted dex

file and decrypt it on the fly for execution.

Fig. 5. File encryption & decryption process.

Our main aim is to make hard the analysis of unpacker and

protect dex file containing dalvik bytecode. This can be

achieved by obfuscating the bytecode and encrypting dex file

using a cryptographic function like AES. Android does not

allow loading an encrypted dex file. In order to overcome this

problem, we first decrypt the encrypted dex file into a

bytearray and then load from it. Loading a dex file from

bytearray into the Dalvik Virtual Machine (DVM) is also not

possible in Android by using standard procedures. Therefore

we access the private method “private static int

openDexFile(byte[] fileContents)“ of DexFile to achieve this

task [23]. Private methods in Java can be accessed either by

calling setAccessible(true) on method before invoking it or

using Java Native Interface (JNI). In this way we do not have

to store the decrypted dex file on local storage rather it is

present only in the volatile memory and for rest of the time it

remains encrypted. The symmetric key is also stored and

entered via a smartcard by the user and is not stored in the

application which makes protection scheme quite secure. The

file encryption and decryption process is shown in the Fig. 5.

So far the only place where the bytecode is present

unencrypted is in the process memory. An expert attacker can

root the device and trace process memory to get useful

information. We know that the DVM as well as the dalvik

bytecode present in the process memory cannot be modified

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

159

at run time but we can circumvent that restriction by using

native code that can be called from within the DVM using JNI

to modify the dalvik bytecode. Thus, if the attacker roots the

device and accesses process memory still it won’t be easy to

analyze the intercepted code owing to obfuscation and code

modification.

V. CONCLUSION

The protection technique proposed in this paper is for the

applications where we have to deliver the app code and

resources to the users in order to run the application in offline

mode. By applying the approach proposed in this paper we are

making it difficult for the attackers to reverse engineer and

access the bytecode. Once we modify the execution

environment, the dex file is decrypted on the fly into a

bytearray from which it is loaded and then executed. The

advantage of this approach is that code is not decrypted into

the internal memory and is only present unencrypted in the

volatile memory. Another advantage of our solution is that the

decrypted dex file has not to be stored in optimized form and

thus can be deleted to prevent unauthorized access. The

proposed technique also provides some degree of protection

in case the device is rooted and process memory is accessed.

Obfuscation and the use of JNI for code modification together

make analysis hard. Apart from dalvik bytecode the attacker

also has to analyze the native code which further delays the

reverse engineering process. An important technique that we

have used in this research is that decryption key is provided

via smartcard by the user. Thus we do not have to store the

key with the application. The decryption key is secured by

encrypting it with users’ public key so only authorized users

can get access to the key. Cryptographic protection using

Groupkey ensures that an attacker has to be a registered user

which may also be used in future for tracking the attacker.

The protection scheme presented in this paper has some

limitations as well. It cannot be used at large scale and is ideal

only for a company or small group of people. Our proposed

scheme does not protect the resources and assets of an

Android app and protects only the dex file containing dalvik

bytecode. The size of dex file should not be very large for this

scheme to be applicable. This technique requires the Android

device to be compatible with smartcards.

Software protection is a challenge and protection of

Android apps is still a relatively new research. Android is

basically built on an open source platform owing to which

reverse engineering an Android app is easy as compared to

applications based on some other platform. Therefore, when

dealing with highly secure systems and information, it is

better to put all the business logic and code on the server side.

Using a real time service or remote server to deliver content is

the best practice to prevent source code from reversing.

REFERENCES

[1] Business software alliance. (October 28, 2013). [Online]. Available:

http://globalstudy.bsa.org/2011

[2] Abi research. (September 18, 2013). [Online]. Available:

https://www.abiresearch.com/press/android-mobile-app-revenues-will

-reach-68-billion- Last

[3] DexOpt. [Online]. Available:

https://android.googlesource.com/platform/build/+/donut-release/tool

s/dexpreopt/dexopt-wrapper/

[4] S. Kent, “Protecting externally supplied software in small computers,”

Ph.D. thesis, M.I.T., September 1980.

[5] Ultraprotect 1.05. [Online]. Available:

http://www.brothersoft.com/ultraprotect-18090.html/

[6] Exestealth protector. [Online]. Available:

http://www.webtoolmaster.com/exestealth.htm/

[7] K. Yekyung, “Framework for analysis of android malware,” Diss.

University of Akron, 2014.

[8] IDAPro. [Online]. Available: http://hex-rays.com/idapro

[9] License verification library. (September 18, 2013). [Online]. Available:

http://developer.android.com/google/play/licensing/index.html Last

[10] W. Zhou, X. Zhang, and X. Jiang, “AppInk: Watermarking android

apps for repackaging deterrence,” in Proc. 8th ACM SIGSAC

symposium on Information, Computer and Communications Security,

Hangzhou, China, May 2013, pp. 1-12.

[11] G. Naumovich and N. Memon, “Preventing piracy, reverse

engineering, and tampering,” Computer, vol. 36, no. 7, pp. 64-71, July

2003.

[12] P. Sivadasan, P. SojanLa, and N. Sivadasan, “Jdatatrans for array

obfuscation in java source codes to defeat reverse engineering from

decompiled codes,” in Proc. 2nd Bangalore Annual Compute

Conference, Bangalore, India, January 2009, p. 13.

[13] A. Venkatesan, “Code obfuscation and virus detection,” M.S. Project,

Dept. Comp. Science, San Jose State University, California, USA,

2008.

[14] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static

and dynamic reverse engineering,” Information Hiding, pp. 270-284,

2011.

[15] P. Schulz, Code Protection in Android, Insititute of Computer Science,

Rheinische Friedrich-Wilhelms-Universitgt Bonn, Germany, 2012.

[16] S. S. Ghosh, S. S. R. Tandan, and K. Lahre, “Shielding android

application against reverse engineering,” International Journal of

Engineering Research and Technology, vol. 2, no. 6, June 2013.

[17] D. Kundu, “JShield: A java anti-reversing tool,” PhD thesis, San Jose

State University, California, USA, 2011.

[18] Y.-X. Piao, J.‐H. Jung, and J.-H. Yi, “Server‐based code obfuscation

scheme for APK tamper detection,” Security and Communication

Networks, 2014.

[19] A. G. Abbasi and S. Muftic, “Cryptonet: Integrated secure

workstation,” International Journal of Advanced Science and

Technology, vol. 12, pp. 1-10, November 2009.

[20] Malware obfuscation using code packing. [Online]. Available:

http://www.foocodechu.com/?q=node/55/

[21] Cipher. [Online]. Available:

http://developer.android.com/reference/javax/crypto/Cipher.html/

Last Accessed: 2013-02-11.

[22] Nelenkov blog spot. [Online]. Available:

http://nelenkov.blogspot.com/2012/04/using-password-based-encrypt

ion-on.html

[23] Dexfile. [Online]. Available:

https://android.googlesource.com/platform/libcore-snapshot/+/ics-

mr1/dalvik/src/main/java/dalvik/system/DexFile.java/

Muhammad Shoaib is from Dera Ismail Khan, a

district of KPK province of Pakistan and has a

distinguished academic career. He received his B.S.

degree in computer system engineering from Ghulam

Ishaq Khan Institute of Engineering Sciences &

Techlology (GIKI), Topi, Pakistan in 2006. He is

currently pursuing a master degree in computer and

communication security from School of Electrical

Engineering & Computer Science (SEECS),

Islamabad.

 Mr. Shoaib is currently working as a system administrator in data center of

a reputable financial institution in Islamabad and heads the information

security team. He started his career by working as a software engineer in a

software house in Lahore where he worked on several projects including

development of a GPS application for Symbian mobiles and a gaming client

module. He has attained considerable experience in IT and his primary focus

of research is on security.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

160

