



Abstract—We deal with the modified bottleneck assignment

problem in vector case. The problem is to find the complete

matching between two vector sets that minimizes the maximum

sum of vectors' elements. In scalar case, there is a simple

polynomial time algorithm that uses the order of elements'

value. We extend this problem to the 2 dimensional vector case

and propose a simple approximation algorithm for it. We show

the effectiveness of our algorithm by numerical experiments.

Index Terms—Approximation algorithm, assignment

problem, balanced assignment problem.

I. INTRODUCTION

Suppose we have n suppliers u1, u2, ..., un (to be denoted by

a set U) and n customers v1, v2, …, vn (to be denoted by V). If

supplier ui and customer vj are chosen, the cost is cij. We are

going to determine a one to one correspondence : U V

under an appropriate objective function. This is the

well-known assignment problem.

Since making the one to one correspondence : U V is

equivalent to permuting the set  1, 2, , n , we hereafter call

the one to one correspondence as permutation.

The assignment problem has various versions with respect

to the objectives [1], [2]. If we are going to minimize the total

sum of the cost  

n

i iic
1)( , the problem is the linear sum

assignment problem, and there have been proposed many

efficient algorithms [3].

If we are going to minimize the maximum cost of the

corresponded pair, the problem is the bottleneck assignment

problem [4]. The objective is

)(
1
maxmin ii

ni
c 

 
 (1)

Also, polynomial time algorithms have been proposed for

the bottleneck assignment problem.

If we are going to minimize the difference of the maximum

cost and the minimum one of the corresponded pair, the

problem is the balanced assignment problem [5]. The

objective is

Manuscript received August 29, 2014; revised November 20, 2014.

Y. Kamura is with Academic Planning Center, Hitotsubashi University,
Kunitachi, Tokyo 186-8601, Japan (e-mail: b101440u@r.hit-u.ac.jp).

M. Nakamori was with Tokyo University of Agriculture and Technology,

Koganei, Tokyo 184-8588, Japan. He is now with MOC Co, Ltd. Japan

(e-mail: nakamori@cc.tuat.ac.jp).

 )(
1

)(
1

minmaxmin ii
ni

ii
ni

cc 
 

 . (2)

Again, polynomial time algorithms have been proposed for

the balanced assignment problem.

In this paper we extend the bottleneck assignment problem

to the case that costs are multidimensional, i.e., vectors. Also,

we assume that cost vector c
ij

is represented as a sum of the

supplier vector ia and the customer vector
j

b .

A formal description of our problem is as follows. Let A

and B be sets of m dimensional vectors. We denote each

element of A by
(1) (2) ()(, , ,)
i i i

m

i a a aa and each element

of B by
(1) (2) ()(, , ,)
i i i

m

i b b bb . We assume that

)()2()1(,,, m

iii aaa  and
)()2()1(,,, m

jjj bbb  are nonnegative

and define the sum of vectors i ja b as

 )()()2()2()1()1(,,, m

j

m

ijijiji bababa  ba . (3)

We denote it ijc , namely jiij bac  . Let us consider

the following problem: find a permutation  of a set

 n,,2,1  such that

 )(

)(
1

)2(

)(
1

)1(

)(
1

max,,max,maxmax)(m

ii
ni

ii
ni

ii
ni

m cccT 


 

(4)

is the minimum.

Such a problem appears when we combine lenses for a

semiconductor manufacturing system. This system includes

many lenses (about 30) for exposing the circuit pattern on a

silicon wafer. Although these lenses are manufactured very

precisely, each individual has its own error expressed by a

vector. This error vector is high dimensional (more than 300).

It is required to propose a method that minimizes systems'

error. That problem is generally formulated to a multi-level

assignment problem in vector case. In our former research [6],

[7], [8] we have considered the problem of making n sets of

lenses such that the worst combined error is the minimum.

A multi-level bottleneck assignment problem was

introduced in relation to the bus drivers' rostering problem

and its NP-completeness has been proved [9]. And for several

types of the problem in scalar case, approximation algorithms

have been proposed [10]. However, we realized that there has

been no study on extending bottleneck assignment problems

to the vector case's yet. So we consider the (single-level)

bottleneck assignment problem in vector case. In this paper,

we show the reformed algorithm that is based on the method

in our former research [11].

The problem is formulated as follows:

A Simple Approximation Algorithm for the Modified

Bottleneck Assignment Problem in Vector Case

Yuusaku Kamura and Mario Nakamori

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

145DOI: 10.7763/IJCTE.2016.V8.1034

Problem 1: Given 2 sets of n vectors A and B, find the

permutation  that minimizes

 )(

)(
1

maxmax)(k

ii
imk

m cT 


 , (5)

where
)(

)(

)()(

)(

k

i

k

i

k

ii bac   .

Fig. 1. Construct n lens systems. Each set for the position),,2,1(liCi 

has n individuals.

We deal with the case that vector's dimension is 2, that is,

m=2 in Problem 1. In the following we propose an

approximation algorithm and show the effectiveness of our

proposed method by the numerical experiments.

Remark: In general assignment problems, edges' costs are

given independently. However, in our problem they are

determined by the vertices' costs. So we call this the

‘modified’ problem.

II. FORMULATION AS AN INTEGER PROGRAMMING PROBLEM

Our problem is formulated to the following 0-1 integer

programming problem. This is correspondent to the case m=2

in Problem 1.
Problem 2:

tf  Minimize

Subject to

txba ij

k

j

k

i )()()(
),2,1;,,2,1,( knji 

1
1




n

i

ijx),,,2,1(nj 

1
1




n

j

ijx),,,2,1(ni 

 1,0ijx).,,2,1,(nji 

Unlike the classical assignment problem (i.e., scalar case),

no polynomial time algorithm is known to obtain the integer

solution of this problem, and unfortunately, the relaxation

method is not effective for this type of integer programming

problems [12].

III. THE ALGORITHM

Hereafter we assume that each element ,)1(

ia

)2()1()2(,; jji bba is nonnegative.

In the scalar case, the method that gives the optimal

combination is simple. Our proposed algorithm for vector

case makes use of the scalar case's combination rule. So first,

we show Algorithm 1 that is for the scalar case's.

Algorithm 1

BA, : 2 sets of nonnegative n scalars. BbAa ji  , .

Step 1:

Sort),,2,1(, niai  in ascending order.

Then we assume .0 121 nn aaaa  

Step 2:

Sort),,2,1(, njb j  in ascending order.

Then we assume .0 121 nn bbbb  

Step 3:

Combine
ia to).,,2,1(,1 nib in 

Applying the rule in Algorithm 1 to the vector case, we

have to order vectors in some way. So in 3.1 and 3.2, we

show the method to order vector sequence and combine them.

Fig. 2. The optimal combination for the scalar case. This combination

minimizes the maximum of
ji ba  .

A. Divide the Cartesian Plane by 2 Lines y x and

xy 

First, we normalize each ,)1(

ia and we denote it ,~)1(

ia that

is,

,~

1

1

)1(

)1(

a

ai

i

ma
a






where
1am and

1a are the mean and the variance of ,)1(

ia

),,2,1(ni  respectively. By this normalization, the mean

and the variance of)1(~
ia are 0 and 1, which is also the case for

)2(~
ia . We assume that A

~
 is the set of)~,~(~)2()1(

iii aaa .

Fig. 3. 2 lines y x and  y x divide A to
i

A , B to
jB

~
,

).4,3,2,1,(ji

Then 2 lines y x and  y x divide A
~

into 4 sets 1A ,

32

~
,

~
AA and 4A . Where each iA

~
 is the set of ia~ that satisfies

the following conditions:

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

146

.~~~:
~

,~~~:
~

,~~~:
~

,~~~:
~

)1()2()1(
4

)2()1()2(
3

)1()2()1(
2

)2()1()2(
1

iii

iii

iii

iii

aaaA

aaaA

aaaA

aaaA









This is also the case for),()2()1(

jjj bbb . We define 4 sets

321

~
,

~
,

~
BBB and

4

~
B in the same way.

Note that 0~)2(ia and)2(~
ia dominates)1(~

ia
in

1

~
A . On the

other hand, 0
~)2(jb and)2(~

jb dominates)1(~
jb in

3

~
B . So we can

expect that combine
1

~~ Ai a to
3

~~
Bj b compensate the

differences each other. It is the same for the combination

2

~~ Ai a to
4

~~
Bj b ,

3

~~ Ai a to
1

~~
Bj b , and

4

~~ Ai a to

2

~~
Bj b . For original

ia~ and
jb

~
, we can say the same

scheme. We can anticipate that these rules lead to minimize

the maximum sum.

B. Make Sequences and Combinations

Here we show the method to make the ordered vectors'

sequence and combine them. This is the main part of our

algorithm.

Outline of our idea is as follows: (1) apply the rotational

transformation)4/(R at origin to ia~ and jb
~

, (2) select

a point from each domain and combine them, recurrently.

We show the way in the following 3 steps.

1) Step 1: Transformation (/ 4)R

Apply (/ 4)R at origin to (1) (2)(,)ai i ia a , then
1

~
A , that

is the set of a i
satisfies (2) (1) (2)  i i ia a a , is transformed to

on the first quadrant. Also
2A is transformed to on the second

quadrant,
3A is to the third,

4A is to the fourth.

By this transformation, we can select the point ia~ easily.

Hereafter again we denote the sets ,(1,2,3,4)iA i that is

transformed.

Fig. 4. By (/ 4)R , each
i

A is to be corresponding to i-th quadrant in the

Cartesian plane.

Also to
jb

~
 we apply)4/(R .

2) Step 2 (1st time): Make sequences for the largest ai

and bj

For ia :

1) Find 1i such that
1

~
ia has the largest distance from the

origin in
1

~
A . Find 432 ,, iii that

432

~,~,~
iii aaa have the same

property in 432

~
,

~
,

~
AAA respectively.

2) Make the ordered sequence },,,{
4321 iiii aaaa .

For
jb

~
:

1) Find
1j such that

1

~
jb has the largest distance from the

origin in
1

~
B . Find

432 ,, jjj that
432

~
,

~
,

~
jjj bbb have the

same property in 432

~
,

~
,

~
BBB respectively.

2) Make the ordered sequence }
~

,
~

,
~

,
~

{
3412 jjjj bbbb .

Fig. 5. Find

4321 ,,, iiii that
ki

a~ has the largest distance from the origin in

each domain.

3) Step 3(1st time): Combination

Combine
1i

a to
3j

b ,
2i

a to
4j

b ,
3i

a to
1j

b ,
4i

a to
2j

b .

Fig. 6. Combination.

4) Step 2 (2nd time): Make sequences for the second

largest ia~ and jb
~

For ia~ :

1) Find 5i such that
5

~
ia has the second largest distance from

the origin in
1

~
A . Find 876 ,, iii that

876

~,~,~
iii aaa have the

same property in 432

~
,

~
,

~
AAA respectively.

Fig. 7. Find

8765 ,,, iiii that
ki

a~ has the second largest distance from the

origin in each domain.

2) Make the ordered sequence 
8765

,,, iiii aaaa .

For
jb

~
:

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

147

1) Find 5j such that
5

~
jb has the largest distance from the

origin in
1

~
B . Find 876 ,, jjj that

876

~
,

~
,

~
jjj bbb have the

same property in 432

~
,

~
,

~
BBB respectively.

2) Make the ordered sequence }
~

,
~

,
~

,
~

{
7856 jjjj bbbb .

5) Step 3(2nd time): Combination

Combine
5i

a to
7j

b ,
6i

a to
8j

b ,
7i

a to
5j

b ,
8i

a to
6j

b .

Repeat Step 2 and 3  4/n times. If kA
~

 has no element

ia~ while the procedure, then skip to select
ia~ from kA

~
 and

proceed to the next set 1

~
kA . We make the sequence that has

4 elements in each repetition except for the last one.

Here we summarize our method in the following

Algorithm 2.

Algorithm 2

Let  nA aaa ,,, 21  ,   0a )2()1(, iii aa and

 nB bbb ,,, 21  ,   0b )2()1(, jji bb .

Normalize)2()1()2()1(,;, jjii bbaa ,),,2,1,(nji  .

1k .

Step 1:

Apply the rotational transformation)4/(R to each

vector  )2()1(, iii aaa and  )2()1(, jjj bbb .

Step 2:

Make the suffixes' sequences 321 ,,,  kkkk iiii and

321 ,,,  kkkk jjjj by the method illustrated in Fig.5.

Step 3:

Combine
ki

a to
2kj

b ,
1ki

a to
3kj

b ,
2ki

a to
kj

b ,
3ki

a to

1kj
b . 1 kk .

Repeat Step 2 and 3  4/n times.

IV. NUMERICAL EXPERIMENT

We prepared the test data for the numerical experiments as

follows: For vectors),()2()1(

iii aaa and),()2()1(

jjj bbb ,

),,2,1,(nji  , let)2()1(, ii aa ;)2()1(, jj bb follow the normal

distribution that the mean is 10 and the variance is 1,

respectively.

Here
a is the correlation coefficient of)1(

ia and)2(

ia ,

similarly
b is that of)1(

jb and)2(

jb . We varied
a and

b to

0.5, 0.6, 0.7, 0.8 and 0.9, respectively.

For each pair of
a and

b , we prepared data sets for n =

30,80,50,150. For each data set we solved Problem 2 by

Algorithm 2, then compared to the exact solution. Exact

solutions are found by using the solver SCIP
1
.

Table I-IV show the results for each n. In most cases, we

can find that the relative error is in 5% and the average is

about 3%.

1 SCIP (Solving Constraint Integer Programs) is a non-commercial MIP

solver developed at Zuse Institute Berlin. http://scip.zib.de/

TABLE I: N = 30

a
b Exact Algorithm 2 Rel. err.

0.5 0.5

0.6

0.7

0.8
0.9

21.240022

20.877908

21.733145

20.854514
21.318328

21.892769

21.634428

21.792718

21.351487
22.031924

0.03073

0.03624

0.00274

0.02383
0.03347

0.6 0.6

0.7

0.8
0.9

21.422296

20.782263

21.146058
21.320370

21.591739

21.975371

21.361803
21.683439

0.00791

0.05741

0.01020
0.01703

0.7 0.7

0.8

0.9

20.839286

21.385878

20.672497

20.946184

21.698508

21.588316

0.00513

0.01462

0.04430

0.8 0.8

0.9

20.453943

21.354388

21.305041

21.354388

0.04161

0.00000

0.9 0.9 21.022683 22.071167 0.04987

Avg. 0.02501

TABLE II: N = 50

a
b Exact Algorithm 2 Rel. err.

0.5 0.5
0.6

0.7

0.8
0.9

21.065313
20.679222

21.127199

21.552706
21.016692

21.630872
21.202660

21.205217

21.744116
21.173828

0.02685
0.02531

0.00369

0.00888
0.00748

0.6 0.6

0.7
0.8

0.9

20.768893

20.927895
21.051215

21.336829

21.781906

21.315981
21.258797

21.554520

0.04878

0.01854
0.00986

0.01020

0.7 0.7
0.8

0.9

20.479623
20.944688

20.872997

22.155545
21.366895

20.956433

0.08183
0.02016

0.00400

0.8 0.8

0.9

20.721295

20.504707

21.600856

21.166976

0.04245

0.03230

0.9 0.9 20.546791 20.886970 0.01656

Avg. 0.02379

TABLE III: N = 80

a
b Exact Algorithm 2 Rel. err.

0.5 0.5
0.6

0.7

0.8
0.9

20.615041
20.263159

21.059577

21.916284
21.777466

22.247895
21.398213

21.270711

22.006118
21.791620

0.07921
0.05602

0.01003

0.00410
0.00065

0.6 0.6

0.7
0.8

0.9

21.366608

20.613449
21.219204

20.349369

21.726156

21.115830
21.457670

21.586816

0.01683

0.02437
0.01124

0.06081

0.7 0.7

0.8
0.9

20.974483

21.154642
20.622246

21.547970

21.707206
21.506437

0.02734

0.02612
0.04288

0.8 0.8

0.9

20.798744

20.420639

21.209092

20.980290

0.01973

0.02741

0.9 0.9 20.701731 21.095293 0.01901

Avg. 0.02838

TABLE IV: N = 150

a
b Exact Algorithm 2 Rel. err.

0.5 0.5

0.6
0.7

0.8

0.9

20.962094

21.158003
21.499656

21.198603

20.835847

21.600369

21.890947
21.601543

21.399110

21.832972

0.03045

0.03464
0.00474

0.00946

0.04786

0.6 0.6

0.7

0.8
0.9

20.806331

20.666572

20.841770
20.879549

21.851099

21.534317

21.504302
21.480433

0.05021

0.04199

0.03179
0.02878

0.7 0.7

0.8

0.9

20.601341

20.841926

21.067726

21.490196

21.091256

21.361331

0.04315

0.01196

0.01394

0.8 0.8

0.9

20.412167

20.719152

20.962446

21.049624

0.02696

0.01595

0.9 0.9 20.666116 21.106759 0.02132

Avg. 0.02755

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

148

V. CONCLUSIONS

In this paper, we considered a permutation that minimizes

the maximum value in 2n sums given by 2 dimensional

vectors.

We first formulated this problem as an integer

programming problem. Then we proposed the approximation

algorithm Algorithm 2 for the problem based on the method

for the scalar case's. Similar approach will be found in [13],

[14].

And we presented the results from computational

experiments using our algorithm and compared to the exact

solutions. It gave sufficient good approximate solutions.

For further research, we will consider the case that vector's

dimension is much higher and the vector case's multi-level

problem.

REFERENCES

[1] R. E. Burkard, “Selected topics on assignment problems,” Discrete

Appl. Math., vol. 123, pp. 257-302, 2002.

[2] D. W. Pentico, “Assignment problems: A golden anniversary survey,”
European J. Oper. Res., vol. 176, pp. 774-793, 2007.

[3] D.-Z. Du and P. M. Pardalos, Handbook of Combinatorial

Optimization, 1999.
[4] H. N. Gabow and R. E. Tarjan, “Algorithms for two bottleneck

optimization problems,” J. of Algorithms, vol. 9, pp. 411-417, 1988.

[5] S. Martello, W. R. Pulleyblank, P. Toth, and D. de Werra, “Balanced
optimization problems,” Oper. Res. Lett., vol. 3, pp. 275-278 1984.

[6] Y. Kamura and M. Nakamori, “Combining imperfect components to

minimize the system's error,” in Proc. International Conf. on Parallel
and Distributed Processing Techniques and Applications, 2001, pp.

1277-1283.

[7] Y. Kamura, M. Nakamori, and Y. Shinano, “Combining imperfect

components (II) — The case of multidimensional error,” in Proc.

International Conf. on Parallel and Distributed Processing Techniques
and Applications, 2002, pp. 228-232.

[8] Y. Kamura and M. Nakamori, “Combining imperfect components (III)

— Minimax optimization of multidimensional cost error,” in Proc.

International Conf. on Parallel and Distributed Processing Techniques

and Applications, 2004, pp. 311-316.

[9] P. Carraresi and G. Gallo, “A multi-level bottleneck assignment
approach to the bus drivers' rostering problem,” European J. Oper.

Res., vol. 16, pp. 163-173, 1984.

[10] T. Dokka, A. Kouvela et al., “Approximating the multi-level
bottleneck assignment problem,” Oper. Res. Lett., vol. 40, pp. 163-173,

1984.

[11] Y. Kamura and M. Nakamori, “Modified balanced assignment problem
in vector case: System construction problem,” in Proc. the

International Conf. on Computational Sci. & Computational

Intelligence, 2014, vol. II, pp. 52-56.
[12] M. Mori and T. Matsui, Operations Research (in Japanese), Japan:

Asakura Publishing, 2004.

[13] C. Mcdiarmid and T. Müller, “On the chromatic number of random
geometric graphs,” Combinatorica, vol. 31, no. 4, pp. 423-488, 2011.

[14] Y. Shang, “Improper coloring of random geometric graphs,” J. of

Advanced Research in Appl. Math., vol. 4, no. 1, pp. 1-9, 2012.

Yuusaku Kamura was born in Osaka, Japan. He
received his M.Sc. degree in mathematics from Tokyo

University of Science in 1993. He was a doctoral

student in Tokyo University of Agriculture and
Technology. He is studying combinatorial algorithms.

 Now he is an assistant in Hitotsubashi University.

And also he has lectures of numerical analysis in Tokyo
Gakugei University.

Mario Nakamori was born in 1948 in Fukuoka, Japan.

He received the Dr. Eng. degree in mathematical

engineering and instrumentation physics from the
University of Tokyo in 1977.

 Since then he was an associate professor of Tokyo

University of Agriculture and Technology (TUAT)
until 1991 and a professor until the retirement from

TUAT in 2014. His major research is in mathematical

programming and algorithms.
 Prof. Nakamori is now a professor emeritus of TUAT and also an adviser

of MOC Co., Limited. He is a member of ACM, fellow of ORSJ, fellow of
IPSJ, and a member of JSIAM.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

149

