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Abstract—We deal with the modified bottleneck assignment 

problem in vector case. The problem is to find the complete 

matching between two vector sets that minimizes the maximum 

sum of vectors' elements. In scalar case, there is a simple 

polynomial time algorithm that uses the order of elements' 

value. We extend this problem to the 2 dimensional vector case 

and propose a simple approximation algorithm for it. We show 

the effectiveness of our algorithm by numerical experiments.  

 
Index Terms—Approximation algorithm, assignment 

problem, balanced assignment problem.  

 

I. INTRODUCTION 

Suppose we have n suppliers u1, u2, ..., un (to be denoted by 

a set U) and n customers v1, v2, …, vn (to be denoted by V). If 

supplier ui and customer vj are chosen, the cost is cij. We are 

going to determine a one to one correspondence : U V

under an appropriate objective function. This is the 

well-known assignment problem. 

Since making the one to one correspondence : U V is 

equivalent to permuting the set  1, 2, , n , we hereafter call 

the one to one correspondence as permutation. 

The assignment problem has various versions with respect 

to the objectives [1], [2]. If we are going to minimize the total 

sum of the cost  

n

i iic
1 )( , the problem is the linear sum 

assignment problem, and there have been proposed many 

efficient algorithms [3].  

If we are going to minimize the maximum cost of the 

corresponded pair, the problem is the bottleneck assignment 

problem [4]. The objective is 

)(
1
maxmin ii

ni
c 

 
                              (1) 

Also, polynomial time algorithms have been proposed for 

the bottleneck assignment problem. 

If we are going to minimize the difference of the maximum 

cost and the minimum one of the corresponded pair, the 

problem is the balanced assignment problem [5]. The 

objective is 
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Again, polynomial time algorithms have been proposed for 

the balanced assignment problem. 

In this paper we extend the bottleneck assignment problem 

to the case that costs are multidimensional, i.e., vectors. Also, 

we assume that cost vector c
ij

is represented as a sum of the 

supplier vector ia  and the customer vector 
j

b . 

A formal description of our problem is as follows. Let A 

and B be sets of m dimensional vectors. We denote each 

element of A by 
(1) (2) ( )( , , , )
i i i

m

i a a aa and each element 

of B by 
(1) (2) ( )( , , , )
i i i

m

i b b bb . We assume that 

)()2()1( ,,, m

iii aaa  and 
)()2()1( ,,, m

jjj bbb   are nonnegative 

and define the sum of vectors i ja b  as 

 )()()2()2()1()1( ,,, m

j

m

ijijiji bababa  ba .      (3) 

We denote it ijc , namely jiij bac  . Let us consider 

the following problem: find a permutation  of a set 

 n,,2,1   such that 
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is the minimum. 

Such a problem appears when we combine lenses for a 

semiconductor manufacturing system. This system includes 

many lenses (about 30) for exposing the circuit pattern on a 

silicon wafer. Although these lenses are manufactured very 

precisely, each individual has its own error expressed by a 

vector. This error vector is high dimensional (more than 300). 

It is required to propose a method that minimizes systems' 

error. That problem is generally formulated to a multi-level 

assignment problem in vector case. In our former research [6], 

[7], [8] we have considered the problem of making n sets of 

lenses such that the worst combined error is the minimum. 

A multi-level bottleneck assignment problem was 

introduced in relation to the bus drivers' rostering problem 

and its NP-completeness has been proved [9]. And for several 

types of the problem in scalar case, approximation algorithms 

have been proposed [10]. However, we realized that there has 

been no study on extending bottleneck assignment problems 

to the vector case's yet. So we consider the (single-level) 

bottleneck assignment problem in vector case. In this paper, 

we show the reformed algorithm that is based on the method 

in our former research [11]. 

The problem is formulated as follows: 
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Problem 1: Given 2 sets of n vectors A and B, find the 

permutation   that minimizes 

 )(

)(
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maxmax)( k

ii
imk

m cT 


 , (5) 

where 
)(

)(

)()(

)(

k

i

k

i

k

ii bac   . 

 

 
Fig. 1. Construct n lens systems. Each set for the position ),,2,1( liCi   

has n individuals. 

 

We deal with the case that vector's dimension is 2, that is, 

m=2 in Problem 1. In the following we propose an 

approximation algorithm and show the effectiveness of our 

proposed method by the numerical experiments. 

Remark: In general assignment problems, edges' costs are 

given independently. However, in our problem they are 

determined by the vertices' costs. So we call this the 

‘modified’ problem. 

 

II. FORMULATION AS AN INTEGER PROGRAMMING PROBLEM 

Our problem is formulated to the following 0-1 integer 

programming problem. This is correspondent to the case m=2 

in Problem 1. 
Problem 2: 

tf   Minimize  

Subject to 

 

txba ij

k

j

k
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1
1




n

j

ijx  ),,,2,1( ni   

 1,0ijx  ).,,2,1,( nji   

 

Unlike the classical assignment problem (i.e., scalar case), 

no polynomial time algorithm is known to obtain the integer 

solution of this problem, and unfortunately, the relaxation 

method is not effective for this type of integer programming 

problems [12]. 

 

III. THE ALGORITHM 

Hereafter we assume that each element ,)1(

ia  

)2()1()2( ,; jji bba is nonnegative. 

In the scalar case, the method that gives the optimal 

combination is simple. Our proposed algorithm for vector 

case makes use of the scalar case's combination rule. So first, 

we show Algorithm 1 that is for the scalar case's. 

 

Algorithm 1 

BA, : 2 sets of nonnegative n  scalars. BbAa ji  , . 

Step 1:  

Sort ),,2,1(, niai   in ascending order. 

Then we assume .0 121 nn aaaa    

Step 2: 

Sort ),,2,1(, njb j   in ascending order.   

Then we assume .0 121 nn bbbb    

Step 3: 

Combine 
ia  to ).,,2,1(,1 nib in 

 

 

Applying the rule in Algorithm 1 to the vector case, we 

have to order vectors in some way. So in 3.1 and 3.2, we 

show the method to order vector sequence and combine them. 
 

 
Fig. 2. The optimal combination for the scalar case. This combination 

minimizes the maximum of 
ji ba  . 

 

A. Divide the Cartesian Plane by 2 Lines y x and 

xy 
 

First, we normalize each ,)1(

ia and we denote it ,~ )1(

ia  that 

is, 

,~

1

1

)1(

)1(

a

ai

i

ma
a




  

where 
1am and 

1a are the mean and the variance of ,)1(

ia   

),,2,1( ni  respectively. By this normalization, the mean 

and the variance of  )1(~
ia  are 0 and 1, which is also the case for 

)2(~
ia . We assume that A

~
 is the set of )~,~(~ )2()1(

iii aaa . 

 

 

Fig. 3. 2 lines y x and  y x divide A  to
i

A , B  to
jB

~
, 

).4,3,2,1,( ji
 

 

Then 2 lines y x  and  y x  divide A
~

into 4 sets 1A , 

32

~
,

~
AA and 4A . Where each iA

~
 is the set of ia~  that satisfies 

the following conditions: 
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This is also the case for ),( )2()1(

jjj bbb . We define 4 sets 

321

~
,

~
,

~
BBB  and 

4

~
B  in the same way. 

Note that 0~ )2( ia and )2(~
ia dominates )1(~

ia  
in 

1

~
A . On the 

other hand, 0
~ )2( jb  and )2(~

jb dominates )1(~
jb in 

3

~
B . So we can 

expect that combine 
1

~~ Ai a to 
3

~~
Bj b  compensate the 

differences each other. It is the same for the combination 

2

~~ Ai a  to
4

~~
Bj b ,

3

~~ Ai a  to
1

~~
Bj b , and 

4

~~ Ai a  to

2

~~
Bj b . For original 

ia~  and 
jb

~
, we can say the same 

scheme. We can anticipate that these rules lead to minimize 

the maximum sum. 

B. Make Sequences and Combinations 

Here we show the method to make the ordered vectors' 

sequence and combine them. This is the main part of our 

algorithm.  

Outline of our idea is as follows: (1) apply the rotational 

transformation )4/( R  at origin to ia~  and jb
~

, (2) select 

a point from each domain and combine them, recurrently. 

We show the way in the following 3 steps.  

1) Step 1: Transformation ( / 4)R  

Apply ( / 4)R  at origin to (1) (2)( , )ai i ia a , then 
1

~
A , that 

is the set of a i
satisfies (2) (1) (2)  i i ia a a , is transformed to 

on the first quadrant. Also 
2A  is transformed to on the second 

quadrant, 
3A  is to the third, 

4A  is to the fourth. 

By this transformation, we can select the point ia~  easily. 

Hereafter again we denote the sets ,( 1,2,3,4)iA i that is 

transformed. 

 

 

Fig. 4. By ( / 4)R , each 
i

A  is to be corresponding to i-th quadrant in the 

Cartesian plane. 

 

Also to 
jb

~
 we apply )4/( R . 

2) Step 2 (1st time): Make sequences for the largest ai  

and bj
 

For ia : 

1) Find 1i  such that 
1

~
ia has the largest distance from the 

origin in 
1

~
A . Find 432 ,, iii that 

432

~,~,~
iii aaa have the same 

property in 432

~
,

~
,

~
AAA respectively.  

2) Make the ordered sequence },,,{
4321 iiii aaaa . 

For 
jb

~
: 

1) Find 
1j  such that 

1

~
jb has the largest distance from the 

origin in 
1

~
B . Find 

432 ,, jjj  that 
432

~
,

~
,

~
jjj bbb have the 

same property in 432

~
,

~
,

~
BBB respectively.  

2) Make the ordered sequence }
~

,
~

,
~

,
~

{
3412 jjjj bbbb . 

 

 
Fig. 5. Find

4321 ,,, iiii that 
ki

a~ has the largest distance from the origin in 

each domain. 

 

3) Step 3(1st time): Combination 

Combine 
1i

a to 
3j

b ,
2i

a to 
4j

b ,
3i

a to 
1j

b ,
4i

a to 
2j

b . 

 

 
Fig. 6. Combination. 

 

4) Step 2 (2nd time): Make sequences for the second 

largest ia~ and jb
~

 

For ia~  : 

1) Find 5i such that 
5

~
ia has the second largest distance from 

the origin in 
1

~
A . Find 876 ,, iii  that 

876

~,~,~
iii aaa  have the 

same property in 432

~
,

~
,

~
AAA  respectively. 

 

 
Fig. 7. Find 

8765 ,,, iiii  that 
ki

a~ has the second largest distance from the 

origin in each domain. 

 

2) Make the ordered sequence 
8765

,,, iiii aaaa . 

For 
jb

~
: 
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1) Find 5j  such that 
5

~
jb has the largest distance from the 

origin in 
1

~
B . Find 876 ,, jjj  that 

876

~
,

~
,

~
jjj bbb have the 

same property in 432

~
,

~
,

~
BBB respectively.  

2) Make the ordered sequence }
~

,
~

,
~

,
~

{
7856 jjjj bbbb . 

5) Step 3(2nd time): Combination 

Combine 
5i

a to 
7j

b ,
6i

a to 
8j

b ,
7i

a to 
5j

b ,
8i

a to 
6j

b . 

Repeat Step 2 and 3  4/n   times. If kA
~

 has no element 

ia~  while the procedure, then skip to select 
ia~ from kA

~
 and 

proceed to the next set 1

~
kA . We make the sequence that has 

4 elements in each repetition except for the last one.  

Here we summarize our method in the following 

Algorithm 2.  

 

Algorithm 2   

Let  nA aaa ,,, 21  ,   0a  )2()1( , iii aa  and

 nB bbb ,,, 21  ,   0b  )2()1( , jji bb . 

Normalize )2()1()2()1( ,;, jjii bbaa  , ),,2,1,( nji  . 

1k . 

Step 1: 

Apply the rotational transformation )4/( R  to each 

vector  )2()1( , iii aaa  and  )2()1( , jjj bbb . 

Step 2: 

Make the suffixes' sequences 321 ,,,  kkkk iiii  and 

321 ,,,  kkkk jjjj  by the method illustrated in Fig.5. 

Step 3:  

Combine 
ki

a to 
2kj

b ,
1ki

a to 
3kj

b ,
2ki

a to 
kj

b , 
3ki

a to 

1kj
b . 1 kk . 

Repeat Step 2 and 3  4/n  times. 

 

IV. NUMERICAL EXPERIMENT 

We prepared the test data for the numerical experiments as 

follows: For vectors ),( )2()1(

iii aaa  and ),( )2()1(

jjj bbb , 

),,2,1,( nji  , let )2()1( , ii aa ;  )2()1( , jj bb  follow the normal 

distribution that the mean is 10 and the variance is 1, 

respectively. 

Here 
a  is the correlation coefficient of )1(

ia and )2(

ia , 

similarly 
b  is that of )1(

jb  and )2(

jb . We varied
a and 

b to 

0.5, 0.6, 0.7, 0.8 and 0.9, respectively. 

For each pair of 
a  and

b , we prepared data sets for n = 

30,80,50,150. For each data set we solved Problem 2 by 

Algorithm 2, then compared to the exact solution. Exact 

solutions are found by using the solver SCIP
1
. 

Table I-IV show the results for each n. In most cases, we 

can find that the relative error is in 5% and the average is 

about 3%. 

 

 
1 SCIP (Solving Constraint Integer Programs) is a non-commercial MIP 

solver developed at Zuse Institute Berlin.  http://scip.zib.de/ 

TABLE I: N = 30 

a  
b  Exact Algorithm 2 Rel. err. 

0.5 0.5 

0.6 

0.7 

0.8 
0.9 

21.240022 

20.877908 

21.733145 

20.854514 
21.318328 

21.892769 

21.634428  

21.792718  

21.351487 
22.031924  

0.03073 

0.03624 

0.00274 

0.02383 
0.03347 

0.6 0.6 

0.7 

0.8 
0.9 

21.422296 

20.782263 

21.146058 
21.320370  

21.591739  

21.975371 

21.361803  
21.683439 

0.00791 

0.05741 

0.01020 
0.01703 

0.7 0.7 

0.8 

0.9 

20.839286  

21.385878  

20.672497  

20.946184 

21.698508 

21.588316 

0.00513 

0.01462 

0.04430 

0.8 0.8 

0.9 

20.453943  

21.354388  

21.305041 

21.354388 

0.04161 

0.00000 

0.9 0.9 21.022683  22.071167 0.04987 

Avg.   0.02501 

 

TABLE II: N = 50 

a  
b  Exact Algorithm 2 Rel. err. 

0.5 0.5 
0.6 

0.7 

0.8 
0.9 

21.065313 
20.679222 

21.127199 

21.552706 
21.016692  

21.630872  
21.202660 

21.205217 

21.744116 
21.173828 

0.02685 
0.02531 

0.00369 

0.00888 
0.00748 

0.6 0.6 

0.7 
0.8 

0.9 

20.768893  

20.927895  
21.051215  

21.336829  

21.781906 

21.315981 
21.258797 

21.554520 

0.04878 

0.01854 
0.00986 

0.01020 

0.7 0.7 
0.8 

0.9 

20.479623 
20.944688 

20.872997  

22.155545 
21.366895 

20.956433 

0.08183 
0.02016 

0.00400 

0.8 0.8 

0.9 

20.721295 

20.504707  

21.600856 

21.166976 

0.04245 

0.03230 

0.9 0.9 20.546791  20.886970 0.01656 

Avg.   0.02379 

 

TABLE III: N = 80 

a  
b  Exact Algorithm 2 Rel. err. 

0.5 0.5 
0.6 

0.7 

0.8 
0.9 

20.615041 
20.263159 

21.059577 

21.916284 
21.777466  

22.247895 
21.398213 

21.270711 

22.006118 
21.791620 

0.07921 
0.05602 

0.01003 

0.00410 
0.00065 

0.6 0.6 

0.7 
0.8 

0.9 

21.366608 

20.613449 
21.219204 

20.349369  

21.726156 

21.115830 
21.457670 

21.586816 

0.01683 

0.02437 
0.01124 

0.06081 

0.7 0.7 

0.8 
0.9 

20.974483 

21.154642 
20.622246  

21.547970 

21.707206 
21.506437 

0.02734 

0.02612 
0.04288 

0.8 0.8 

0.9 

20.798744 

20.420639  

21.209092 

20.980290 

0.01973 

0.02741 

0.9 0.9 20.701731  21.095293 0.01901 

Avg.   0.02838 

 

TABLE IV: N = 150 

a  
b  Exact Algorithm 2 Rel. err. 

0.5 0.5 

0.6 
0.7 

0.8 

0.9 

20.962094 

21.158003 
21.499656 

21.198603 

20.835847  

21.600369 

21.890947 
21.601543 

21.399110 

21.832972 

0.03045 

0.03464 
0.00474 

0.00946 

0.04786 

0.6 0.6 

0.7 

0.8 
0.9 

20.806331 

20.666572  

20.841770 
20.879549  

21.851099 

21.534317 

21.504302 
21.480433 

0.05021 

0.04199 

0.03179 
0.02878 

0.7 0.7 

0.8 

0.9 

20.601341 

20.841926 

21.067726  

21.490196 

21.091256 

21.361331 

0.04315 

0.01196 

0.01394 

0.8 0.8 

0.9 

20.412167 

20.719152  

20.962446 

21.049624 

0.02696 

0.01595 

0.9 0.9 20.666116  21.106759 0.02132 

Avg.   0.02755 
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V. CONCLUSIONS 

In this paper, we considered a permutation that minimizes 

the maximum value in 2n sums given by 2 dimensional 

vectors. 

We first formulated this problem as an integer 

programming problem. Then we proposed the approximation 

algorithm Algorithm 2 for the problem based on the method 

for the scalar case's. Similar approach will be found in [13], 

[14]. 

And we presented the results from computational 

experiments using our algorithm and compared to the exact 

solutions. It gave sufficient good approximate solutions. 

For further research, we will consider the case that vector's 

dimension is much higher and the vector case's multi-level 

problem. 
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