



Abstract—A new algorithm of finding the shortest path in

networks by matrix operations and linear combinations of paths

is presented in this paper. In 2007, a novel method for solving

the shortest path problem was proposed by Juang. Juang’s

algorithm is based on the concept of Kruskal’s algorithm

associated with RREF processing (Gauss-Jordan elimination)

and a matrix transformation. However, Juang’s scheme only

can work in some special well-connected networks. We therefore

design a new approach by following the basic steps of Juang’s

algorithm and adding the linear combination of fundamental

cut-sets. The presented algorithm (called JLL-SP algorithm) can

overcome the failure cases of Juang’s method and work

correctly and efficiently for wider range of networks. The

experimental results verified that the JLL-SP algorithm

performs well in most unilaterally connected digraphs.

Index Terms—Connected digraphs, linear transformation,

linear combination, RREF matrix, shortest path.

I. INTRODUCTION

Many problems in real world can be modeled as a network,

such as transportation analyses, communication webs, or

computer networks [1]-[4]. A network is a digraph (directed

graph) containing two distinct vertices, say s and t, called

starting vertex (or source, or initial node), and destination

vertex (or sink, or terminal node), respectively. Suppose that

every arc (i, j) in a network has a weight, which may represent

the distance (or cost, or capacity) from vertex i to vertex j.

Finding the shortest path between s and t is one of the most

important problems in optimization or graph theory.

The most famous method for finding the shortest path is

proposed by Edsger W. Dijkstra in 1959 [5]. Over many

decades, a lot of schemes were proposed in order to solve this

problem efficiently [6]-[11]. For instances, G. Gallo and S.

Pallottino in 1988 presented a remarkable contribution in the

implementations and comparisons of eight shortest path

algorithms with different data structures [8]. F. B. Zhan and C.

E. Noon ever gave a benchmark to evaluate the performance

of 15 shortest path algorithms using real road networks in

1996 [10]. Later, Zhan identified out three fastest shortest

path algorithms with the same experiments [11]. Within the

three fastest shortest path algorithms, two of them are based

on Dijkstra’s algorithm with different implementation data

structures. It is evident that Dijkstra’s algorithm is efficient

Manuscript received August 15, 2014; revised February 10, 2015.

The authors are with the Department of Computer Science and

Engineering at National Taiwan Ocean University, Keelung, 20224 Taiwan

(e-mail: fslin@ntou.edu.tw, wilson_1886@hotmail.com).

and popular.

In 2007, J. Y. Juang proposed a new method to compute the

shortest path by finding the minimum spanning tree first and

following a matrix transformation [12]-[14]. Juang’s method

is based on the concept of Kruskal’s algorithm associated with

matrix operations. This method is applicable, but it only can

work in a narrow set of connected networks. We therefore

present a new algorithm in this paper to improve Juang’s

method. Our approach executes the same basic steps of

Juang’s algorithm and then applies the linear combination of

paths to find all feasible paths from s to t. The lowest weight

of paths will emerge and the shortest path will be obtained.

According to our experiments, the presented algorithm can

perform well for most unilaterally connected digraphs.

The rest of this paper will be organized as follows. First of

all, we shall give some basic definitions and terminology.

Next, we shall briefly introduce the method of Juang. In the

fourth section our algorithm will be presented and the

experimental results will be shown in the fifth section. Finally,

a concluding remark will be addressed and references will be

given.

II. PRELIMINARIES

A digraph, denoted as G = (V, E), is a finite nonempty set V

of objects called vertices (also called points or nodes) and a

set E of ordered pairs of distinct vertices called arcs (or edges).

The number of vertices is called the order of G, denoted as |V|,

and the number of arcs is called the size of G, denoted as |E|.

For a connected digraph G = (V, E), we assume that |V| = n

and |E| = m. In order that there is at least one path from a to z

we require that n must be less than or equal to m+1, i.e.,

1.n m  Let (u, v) be an arc in V, that means, there is an

edge from u to v.

For a given network, in order to assure that there exists at

least one path from starting vertex to destination vertex, we

shall restrict the underlying digraph G is unilaterally

connected.

A digraph G is unilaterally connected if for every two

distinct vertices u and v of G there exists either a u→v path, or

v→u path, or both. If both u→v path and v→u path exist for

every pairs u and v of G, then G is strongly connected.

For more details of digraphs, we refer to the books of

Chartrand and Oellermann [1], or Winston [3], or Corman et

al. [4].

III. JUANG’S METHODS

Juang proposed two algorithms successively, one for

finding the minimum spanning tree (MST) in 2006 [12] and

An Improved Algorithm of Juang’s Method by Matrix

Operations for Finding the Shortest Path in Networks

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

136DOI: 10.7763/IJCTE.2016.V8.1032

Fu Sen F. Lin and Cheng-Han Lee

mailto:fslin@ntou.edu.tw

the other for searching the shortest path in a digraph in 2007

[13], [14]. However, after our further investigation, his

shortest path method only work for some connected digraph

and will fail in some cases. We briefly state his basic

operations:

A. Juang’s Algorithm for MST

Many methods have been proposed for finding the

minimum spanning tree. The most famous schemes are

Kruskal’s algorithm [15], Prim’s algorithm [16], and Collin’s

algorithm which is the combination of both concepts [17].

The main idea of Juang’s approach is based on the concept of

searching the MST by Kruskal’s algorithm and applies the

elementary row operations, usually called RREF processing

or Gauss-Jordan elimination, to the created matrix and a

matrix transformation to obtain the fundamental cut-sets.

Given a unilaterally connected weighted digraph G (V, E),

first of all, we suppose that the vertices V has been arranged

by a sequence say {a, b, c, . . . , x, y, z} with s = a and t = z and

that the arcs are sorted in non-decreasing order of the weight

of each arc. Thus, we can create an incidence matrix so that

each vertex is corresponding to one row and each arc is

corresponding to one column. That is, the incidence matrix

ij n m
M M


   

 is defined by

 1, if there is an arc (,) from vertex to ;

0, if there is no arc (,) or (,);

1, if there is an arc (,) from vertex to .

ij

i j i j

M i j j i

j i j i




 


 (1)

Here, the row i is corresponding to the vertex i in V, but the

column j is the j-th arc in the weighted order set of arcs, i.e.,

{1,2, , }.j m Therefore, one can create the flow table of

the given network. We now apply the Gauss-Jordan

elimination to the matrix M in the flow table and then obtain a

reduced row echelon-form (RREF) matrix. The last row of

RREF matrix should be all zero and can be ignored. Therefore,

the resulting matrix denotes as S remains n-1 rows. If the first

n-1 columns do not form an identity matrix, we rearrange the

columns where the row has the leading’s 1 so that the first n-1

columns form an identity matrix 1nI  . That means, the

resulting matrix will be the form

 1 (1)
| :n n m

I F S  
 (2)

Each row of S represents an independent (or fundamental)

cut-set. The corresponding arcs of the first n-1 columns of

matrix S will constitute the MST of the given digraph, since

every arc in MST has the smallest weight in fundamental

cut-set. This is Juang’s algorithm for finding the MST of a

given digraph. We refer it as JMST algorithm and summarize

it as follows.

Algorithm of JMST:

1) Create the incidence matrix M by Eq.(1) of a given digraph G

to form the flow table of G.

2) Apply the Guass-Jordan Elimination to the incidence matrix M

and obtain the RREF Matrix.

3) Rearrange the columns so that it becomes the form of Eq.(2),

if the first n-1 columns do not form In-1 matrix.

The MST of the given digraph will be composed of the

corresponding arcs of the columns of submatrix 1nI  . Notice

that the MST of a digraph may not be an actual tree structure

(with one root).

Fig. 1. A weighted digraph of network model.

We now give an example to illustrate this algorithm.

Consider the weighted digraph G1 shown in Fig. 1. We first

create its incident matrix to form the flow table of G1, shown

in Table I. In this table, the word ‘wts’ represents the weight

of each arc and ‘cz’ represents the arc (c, z) from vertex c to

vertex z.

TABLE I: THE FLOW TABLE OF G1

wts 2 5 6 6 8 10

arcs cz ab bc cb ac bz

a 0 1 0 0 1 0

b 0 -1 1 -1 0 1

c 1 0 -1 1 -1 0

z -1 0 0 0 0 -1

We apply the Gauss-Jordan elimination to the incidence

matrix and obtain the RREF matrix S. According to JMST

algorithm’s step 3, we obtain MST of G1 as the set {cz, ab,

bc}.

TABLE II: THE RESULTING MATRIX S AND CORRESPONDING ARCS

2 5 6 6 8 10

cz ab bc cb ac bz

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 -1 1 1

B. Juang’s Algorithm for the Shortest Path

Later, Juang also proposed an algorithm of finding the

shortest path for a connected digraph [14]. We call it as JSP

algorithm. This approach is based on searching the MST and

a matrix transformation. If the MST of a connected digraph

contains a path from the starting vertex a to the destination

vertex z, then we append a hypothetical link (or virtual arc), za,

from z to a with zero weight, to obtain a cycle passing through

the a and z vertices. The first part of JSP algorithm is the same

as JMST algorithm, except that the virtual arc za is appended

to the flow table and incidence matrix. The second part of this

algorithm, a matrix transformation is performed. The

transformation is defined by

1 (1) (1) 1[|] | :T

n n m n m nS I F F I T      
      (3)

From the rows of matrix T, we can identify the feasible

paths from a to z and select the lowest weight of each feasible

path to obtain the shortest path. This algorithm is summarized

as follows.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

137

Algorithm of JSP:

Give a unilaterally connected weighted digraph G.

1) Create the incidence matrix M by Eq. (1) with appending a

virtual arc za with zero weight to form the flow table of G.

2) Apply the Gauss-Jordan Elimination to the incidence matrix

and obtain the RREF Matrix.

3) Rearrange the columns so that it becomes the matrix as Eq.(2),

if the first n-1 columns do not form In-1.

4) Do a matrix transformation as Eq. (3) obtain matrix T.

5) Identify the first column of T with entry 1 rows, which may

represent a path from a to z with the corresponding arcs to the

entry-1 columns, but neglect the virtual arc za.

6) Compute the total weights of each path and select the

minimum one.

The shortest path of the given graph G is therefore obtained.

Similarly, we use the same graph as Fig. 1 to illustrate the

JSP algorithm. The flow table including the incidence matrix

of G1 is shown in Table III. After the processes of step 2 and

step 3, the resulting matrix S is displayed in Table IV.

TABLE III: THE FLOW TABLE OF G1 BY JSP ALGORITHM

0 2 5 6 6 8 10

za cz ab bc cb ac bz

-1 0 1 0 0 1 0

0 0 -1 1 -1 0 1

0 1 0 -1 1 -1 0

1 -1 0 0 0 0 -1

TABLE IV: THE MATRIX S OF G1 BY JSP ALGORITHM

0 2 5 6 6 8 10

za cz ab bc cb ac bz

1 0 0 -1 1 -1 -1

0 1 0 -1 1 -1 0

0 0 1 -1 1 0 -1

According to the step 4 of JSP algorithm, a matrix

transformation is made and the matrix T is obtained, and

shown in Table V. One can identify the first column of T with

entry 1 rows to obtain 3 paths from a to z. The total weights of

these paths are also shown in the last column of Table V.

Where ‘WP’ represents the total weight of each path and ‘NP’

represents no paths. One can see that the shortest path of G1

comes from the third row and is corresponding to the set {ac,

cz} with total weight 10 (neglecting the virtual arc za).

TABLE V: THE MATRIX T OF G1 BY JSP ALGORITHM

0 2 5 6 6 8 10 WP

za cz ab bc cb ac bz

1 1 1 1 0 0 0 13

-1 -1 -1 0 1 0 0 NP

1 1 0 0 0 1 0 10

1 0 1 0 0 0 1 15

C. The Presented Algorithm

We selected many digraphs with different shortest paths to

implement JSP algorithm and found that it may fail in some

cases. The problem is that the row vectors of the transformed

matrix T may not correspond to a path from a to z. That means,

some of the feasible paths do not emerge in the matrix T.

Therefore we found that the linear combination of the row

vectors of the matrix T is an attainable strategy. Our idea is to

split the row vectors of T into two sets. One with the first entry

1 (corresponding to virtual arc za) and the other with 0,

denoted as T1 and T0, respectively. The row with the first entry

-1 are useless and we ignore them. If a row vector with the

first entry to be 1 and no entry to be -1 at the other places, then

the corresponding arcs of the nonzero columns in this row

form a cycle. Therefore, when the virtual arc za is removed, it

become a path from a to z. If there exists -1 in this row, it will

form a (short) cycle in the row, and then it cannot form a path

when the virtual arc za is removed.

We now execute the linear combination by picking one

vector from T0 with some entry to be -1 and one vector from

T1 with the entry to be 1 in the same place, and adding them

together. The resulting vector should be put in the set T1. After

the process of linear combination, we shall have a new T1 set

and the nonzero columns of most rows in T1 will correspond

to a path from a to z. Consequently, all of the feasible path will

be displayed in T1 set. Comparing their total weights, we can

obtain the shortest path from a to z. This is our advanced

algorithm contrast to JSP algorithm. We refer it as JLL-SP

algorithm (The algorithm of Juang, Lin, and Lee for the

shortest path.).

Algorithm of JLL-SP:

1) Pick every row vector from T0 with some entry to be -1 and a

vector from T1 with the entry to be 1 in the same place and add

them together and put it in the set T1.

2) Identify each row of T1 without entry -1 and thus the

corresponding arcs of entry 1 form a path.

3) Compute the total weights of each path and compare their

weights.

The path with the lowest weight will be the shortest path of the

given graph.

IV. EXPERIMENTAL RESULTS

We have tested many different types of networks with the

presented JLL-SP algorithm. This algorithm performs

correctly and efficiently for most cases.

Fig. 2. A digraph of network model.

TABLE VI: THE FLOW TABLE OF G2

0 4 4 5 13 7 9 10 12 14 16 20

za cb ez de ac ed dc bc bd ce ab dz

-1 0 0 0 1 0 0 0 0 0 1 0

0 -1 0 0 0 0 0 1 1 0 -1 0

0 1 0 0 -1 0 -1 -1 0 1 0 0

0 0 0 1 0 -1 1 0 -1 0 0 1

0 0 1 -1 0 1 0 0 0 -1 0 0

1 0 -1 0 0 0 0 0 0 0 0 -1

We now select a more complicated example shown in Fig.

2, say G2, to illustrate the JLL-SP algorithm. The first step of

the JLL-SP algorithm is to execute the steps 1 to 4 of JSP

algorithm to the graph G2. We therefore obtain the flow table

(Table VI), matrix S (Table VII), and matrix T (Table VIII),

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

138

sequentially.

TABLE VII: THE MATRIX S OF G2 BY JLL-SP ALGORITHM

0 4 4 5 13 7 9 10 12 14 16 20

za cb ez de ac ed dc bc bd ce ab dz

1 0 0 0 0 0 1 0 -1 -1 0 0

0 1 0 0 0 0 0 -1 -1 0 1 0

0 0 1 0 0 0 1 0 -1 -1 0 1

0 0 0 1 0 -1 1 0 -1 0 0 1

0 0 0 0 1 0 1 0 -1 -1 1 0

TABLE VIII: THE MATRIX T OF G2 BY JLL-SP ALGORITHM

0 4 4 5 13 7 9 10 12 14 16 20

za cb ez de ac ed dc bc bd ce ab dz

0 0 0 1 0 1 0 0 0 0 0 0

-1 0 -1 -1 -1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

1 1 1 1 1 0 0 0 1 0 0 0

1 0 1 0 1 0 0 0 0 1 0 0

0 -1 0 0 -1 0 0 0 0 0 1 0

0 0 -1 -1 0 0 0 0 0 0 0 1

Observing the matrix T (Table VIII), one can see that the

JSP algorithm fails for the network G2. It cannot obtain the

shortest path from the row vectors of T. Therefore, we apply

the step 2~5 of JLL-SP algorithm to the matrix T. That is, the

matrix T is split into two sets and the linear combination of the

row vectors of T is performed. The resulting matrix (final T1)

is displayed in Table IX. One can see that each row of T1

represents one feasible path from a to z. Their total weights

from the top to the bottom are 38, 31, 37, 44, 48, 49, 54, and

67, respectively. The smallest weight is 31, which is the

second row of T1 and the corresponding shortest path is the set

{ac, ce, ez}(The virtual arc za is neglected).

TABLE IX: MATRIX T1 (AFTER LINEAR COMBINATION)

0 4 4 5 13 7 9 10 12 14 16 20

za cb ez de ac ed dc bc bd ce ab dz

1 1 1 1 1 0 0 0 1 0 0 0

1 0 1 0 1 0 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 0 1 0

1 0 1 0 0 0 0 1 0 1 1 0

1 0 0 0 0 0 0 0 1 0 1 1

1 1 0 0 1 0 0 0 1 0 0 1

1 0 0 0 1 1 0 0 0 1 0 1

1 0 0 0 0 1 0 1 0 1 1 1

V. CONCLUSION

In this paper, we have presented an advanced algorithm,

called JLL-SP algorithm, to improve the drawback of JSP

algorithm. The new JLL-SP can perform correctly, contrast to

the JSP algorithm, for wider range of networks.

One may wonder that applying matrix operations should

increase the complexity of computation. It is true if we merely

consider the order of the arithmetic operations. However, the

RREF processing or every matrix operations are just working

on the numbers 1, 0 and -1. The built-in function rref.m in

MATLAB performs rapidly in low label (or machine)

language. To evaluate the complexity of the JLL-SP

algorithm and to compare with three fastest shortest path

algorithms presented in [11] will be put in our future work.

Acknowledgment

The authors are grateful to professor J. Y. Juang for his

invaluable suggestions. We wish that he has a wonderful

retirement life.

REFERENCES

[1] G. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph

Theory, McGraw-Hill, 1993.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,

Algorithms and Applications, Englewood Cliffs, NJ: Prentice Hall,

1993.

[3] W. L. Winston, Operations Research: Applications and Algorithms,

3rd ed. Duxbury Press, CA, 1994, pp. 394-459.

[4] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, McGraw-Hill, 2001.

[5] E. W. Dijkstra, “A note on two problems in connection with graphs,”

Numeriche Mathematik, vol. 1, pp. 269-271, 1959.

[6] R. B. Dial, “Algorithm 360: Shortest path forest with topological

ordering,” Communications of the ACM, vol. 12, pp. 632-633, 1969.

[7] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in

improved network optimization algorithm,” in Proc. 25th Annual

Symposium on Foundations of Computer Science, pp. 338-346. 1984.

[8] G. Gallo and S. Pallottino, “Shortest paths algorithms,” Annals of

Operations Research, vol. 13, pp. 3-79, 1988.

[9] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest paths

algorithms: Theory and experimental evaluation,” Technical Report,

Computer Science Department, Stanford University, pp. 93-1480,

1993.

[10] F. B. Zhan and C. E. Noon, “Shortest path algorithms: An evaluation

using real road networks,” Transportation Science, vol. 32, no. 1, pp.

65-73, 1996.

[11] F. B. Zhan, “Three fastest shortest path algorithms on real road

networks: Data structures and procedures,” Journal of Geographic

Information and Decision Analysis, vol. 1, no. 1, pp. 69-82, 1997.

[12] J. Y. Juang, “Numerical method for the solutions of min-cut max-flow

problem,” in Proc. 2006 CACS Automatic Control Conference, St.

John's University, Tamsui, Taiwan, 2006, pp. 111-115.

[13] J. Y. Juang, “Numerical method for the solutions of shortest-path

problems,” in Proc. CACS Automatic Control Conference, National

Chung Hsing University, Taichung, Taiwan, 2007.

[14] J. Y. Juang, “Numerical method to the solution of optimization

problems in network model analysis,” in Proc. 2008 CACS Automatic

Control Conference, National Cheng Kung University, Tainan,

Taiwan, 2008.

[15] J. B. Kruskal, “On the shortest spanning subtree of a graph and the

traveling salesman problem,” Proceedings of the American

Mathematical Society, vol. 7, no. 1, pp. 48-50, 1956.

[16] R. C. Prim, “Shortest connection networks and some generalizations,”

BSTJ, vol. 36, no. 6, November 1957.

[17] M. Sollin, “Le trace de canalization,” Programming, Games, and

Transportation Networks, 1965.

Cheng-Han Lee received the B. S. degree in computer science in 2011 from

Tatung University, Taipei, Taiwan and M.S. degree in computer science and

engineering in 2014 at National Taiwan Ocean University, Keelung, Taiwan.

He currently works for military service. His research interests are network

models and scientific computing.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

139

Fu Sen F. Lin received the M.S. and Ph.D. degrees in the Mathematics

Department in 2000 and 2003, respectively from Oregon State University,

Oregon, USA. He is currently an assistant professor in the Department of

Computer Science and Engineering at National Taiwan Ocean University,

Keelung, Taiwan. His research interests include network models, matrix

computations, and computational complex analysis.

