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Abstract—A new algorithm of finding the shortest path in 

networks by matrix operations and linear combinations of paths 

is presented in this paper. In 2007, a novel method for solving 

the shortest path problem was proposed by Juang. Juang’s 

algorithm is based on the concept of Kruskal’s algorithm 

associated with RREF processing (Gauss-Jordan elimination) 

and a matrix transformation. However, Juang’s scheme only 

can work in some special well-connected networks. We therefore 

design a new approach by following the basic steps of Juang’s 

algorithm and adding the linear combination of fundamental 

cut-sets. The presented algorithm (called JLL-SP algorithm) can 

overcome the failure cases of Juang’s method and work 

correctly and efficiently for wider range of networks. The 

experimental results verified that the JLL-SP algorithm 

performs well in most unilaterally connected digraphs.  

 
Index Terms—Connected digraphs, linear transformation, 

linear combination, RREF matrix, shortest path.  

 

I. INTRODUCTION 

Many problems in real world can be modeled as a network, 

such as transportation analyses, communication webs, or 

computer networks [1]-[4]. A network is a digraph (directed 

graph) containing two distinct vertices, say s and t, called 

starting vertex (or source, or initial node), and destination 

vertex (or sink, or terminal node), respectively. Suppose that 

every arc (i, j) in a network has a weight, which may represent 

the distance (or cost, or capacity) from vertex i to vertex j. 

Finding the shortest path between s and t is one of the most 

important problems in optimization or graph theory.  

The most famous method for finding the shortest path is 

proposed by Edsger W. Dijkstra in 1959 [5]. Over many 

decades, a lot of schemes were proposed in order to solve this 

problem efficiently [6]-[11]. For instances, G. Gallo and S. 

Pallottino in 1988 presented a remarkable contribution in the 

implementations and comparisons of eight shortest path 

algorithms with different data structures [8]. F. B. Zhan and C. 

E. Noon ever gave a benchmark to evaluate the performance 

of 15 shortest path algorithms using real road networks in 

1996 [10]. Later, Zhan identified out three fastest shortest 

path algorithms with the same experiments [11]. Within the 

three fastest shortest path algorithms, two of them are based 

on Dijkstra’s algorithm with different implementation data 

structures. It is evident that Dijkstra’s algorithm is efficient 
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and popular. 

In 2007, J. Y. Juang proposed a new method to compute the 

shortest path by finding the minimum spanning tree first and 

following a matrix transformation [12]-[14]. Juang’s method 

is based on the concept of Kruskal’s algorithm associated with 

matrix operations. This method is applicable, but it only can 

work in a narrow set of connected networks. We therefore 

present a new algorithm in this paper to improve Juang’s 

method. Our approach executes the same basic steps of 

Juang’s algorithm and then applies the linear combination of 

paths to find all feasible paths from s to t. The lowest weight 

of paths will emerge and the shortest path will be obtained. 

According to our experiments, the presented algorithm can 

perform well for most unilaterally connected digraphs.   

The rest of this paper will be organized as follows. First of 

all, we shall give some basic definitions and terminology. 

Next, we shall briefly introduce the method of Juang. In the 

fourth section our algorithm will be presented and the 

experimental results will be shown in the fifth section. Finally, 

a concluding remark will be addressed and references will be 

given.  

 

II. PRELIMINARIES 

A digraph, denoted as G = (V, E), is a finite nonempty set V 

of objects called vertices (also called points or nodes) and a 

set E of ordered pairs of distinct vertices called arcs (or edges). 

The number of vertices is called the order of G, denoted as |V|, 

and the number of arcs is called the size of G, denoted as |E|.  

For a connected digraph G = (V, E), we assume that |V| = n 

and |E| = m. In order that there is at least one path from a to z 

we require that n must be less than or equal to m+1, i.e., 

1.n m   Let (u, v) be an arc in V, that means, there is an 

edge from u to v.  

For a given network, in order to assure that there exists at 

least one path from starting vertex to destination vertex, we 

shall restrict the underlying digraph G is unilaterally 

connected.  

A digraph G is unilaterally connected if for every two 

distinct vertices u and v of G there exists either a u→v path, or 

v→u path, or both. If both u→v path and v→u path exist for 

every pairs u and v of G, then G is strongly connected. 

For more details of digraphs, we refer to the books of 

Chartrand and Oellermann [1], or Winston [3], or Corman et 

al. [4]. 

 

III. JUANG’S METHODS 

Juang proposed two algorithms successively, one for 

finding the minimum spanning tree (MST) in 2006 [12] and 
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the other for searching the shortest path in a digraph in 2007 

[13], [14]. However, after our further investigation, his 

shortest path method only work for some connected digraph 

and will fail in some cases. We briefly state his basic 

operations:  

A. Juang’s Algorithm for MST 

Many methods have been proposed for finding the 

minimum spanning tree. The most famous schemes are 

Kruskal’s algorithm [15], Prim’s algorithm [16], and Collin’s 

algorithm which is the combination of both concepts [17]. 

The main idea of Juang’s approach is based on the concept of 

searching the MST by Kruskal’s algorithm and applies the 

elementary row operations, usually called RREF processing 

or Gauss-Jordan elimination, to the created matrix and a 

matrix transformation to obtain the fundamental cut-sets.  

Given a unilaterally connected weighted digraph G (V, E), 

first of all, we suppose that the vertices V has been arranged 

by a sequence say {a, b, c, . . . , x, y, z} with s = a and t = z and 

that the arcs are sorted in non-decreasing order of the weight 

of each arc. Thus, we can create an incidence matrix so that 

each vertex is corresponding to one row and each arc is 

corresponding to one column. That is, the incidence matrix 

ij n m
M M


   

 is defined by 

 1,  if there is an arc ( , ) from vertex  to ;

0,  if there is no arc ( , ) or ( , );

1, if there is an arc ( , ) from vertex  to .

ij

i j i j

M i j j i

j i j i




 


     (1) 

Here, the row i is corresponding to the vertex i in V, but the 

column j is the j-th arc in the weighted order set of arcs, i.e.,  

{1,2, , }.j m  Therefore, one can create the flow table of 

the given network. We now apply the Gauss-Jordan 

elimination to the matrix M in the flow table and then obtain a 

reduced row echelon-form (RREF) matrix. The last row of 

RREF matrix should be all zero and can be ignored. Therefore, 

the resulting matrix denotes as S remains n-1 rows. If the first 

n-1 columns do not form an identity matrix, we rearrange the 

columns where the row has the leading’s 1 so that the first n-1 

columns form an identity matrix 1nI  . That means, the 

resulting matrix will be the form 

 1 ( 1)
| :n n m

I F S  
                             (2) 

Each row of S represents an independent (or fundamental) 

cut-set. The corresponding arcs of the first n-1 columns of 

matrix S will constitute the MST of the given digraph, since 

every arc in MST has the smallest weight in fundamental 

cut-set. This is Juang’s algorithm for finding the MST of a 

given digraph. We refer it as JMST algorithm and summarize 

it as follows. 

 

Algorithm of JMST: 

1) Create the incidence matrix M by Eq.(1) of a given digraph G 

to form the flow table of G. 

2) Apply the Guass-Jordan Elimination to the incidence matrix M 

and obtain the RREF Matrix.  

3) Rearrange the columns so that it becomes the form of Eq.(2), 

if the first n-1 columns do not form In-1 matrix.   

The MST of the given digraph will be composed of the 

corresponding arcs of the columns of submatrix 1nI  . Notice 

that the MST of a digraph may not be an actual tree structure 

(with one root). 

 

 
Fig. 1. A weighted digraph of network model. 

 

We now give an example to illustrate this algorithm. 

Consider the weighted digraph G1 shown in Fig. 1. We first 

create its incident matrix to form the flow table of G1, shown 

in Table I. In this table, the word ‘wts’ represents the weight 

of each arc and ‘cz’ represents the arc (c, z) from vertex c to 

vertex z. 

 
TABLE I: THE FLOW TABLE OF G1 

wts 2 5 6 6 8 10 

arcs cz ab bc cb ac bz 

a 0 1 0 0 1 0 

b 0 -1 1 -1 0 1 

c 1 0 -1 1 -1 0 

z -1 0 0 0 0 -1 

 

We apply the Gauss-Jordan elimination to the incidence 

matrix and obtain the RREF matrix S. According to JMST 

algorithm’s step 3, we obtain MST of G1 as the set {cz, ab, 

bc}. 

 
TABLE II: THE RESULTING MATRIX S AND CORRESPONDING ARCS 

2 5 6 6 8 10 

cz ab bc cb ac bz 

1 0 0 0 0 1 

0 1 0 0 1 0 

0 0 1 -1 1 1 

 

B. Juang’s Algorithm for the Shortest Path 

Later, Juang also proposed an algorithm of finding the 

shortest path for a connected digraph [14]. We call it as JSP 

algorithm. This approach is based on searching the MST and 

a matrix transformation. If the MST of a connected digraph 

contains a path from the starting vertex a to the destination 

vertex z, then we append a hypothetical link (or virtual arc), za, 

from z to a with zero weight, to obtain a cycle passing through 

the a and z vertices. The first part of JSP algorithm is the same 

as JMST algorithm, except that the virtual arc za is appended 

to the flow table and incidence matrix. The second part of this 

algorithm, a matrix transformation is performed. The 

transformation is defined by  

 
1 ( 1) ( 1) 1[ | ]  | :T

n n m n m nS I F F I T      
         (3) 

From the rows of matrix T, we can identify the feasible 

paths from a to z and select the lowest weight of each feasible 

path to obtain the shortest path. This algorithm is summarized 

as follows. 
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Algorithm of JSP: 

Give a unilaterally connected weighted digraph G. 

1) Create the incidence matrix M by Eq. (1) with appending a 

virtual arc za with zero weight to form the flow table of G. 

2) Apply the Gauss-Jordan Elimination to the incidence matrix 

and obtain the RREF Matrix. 

3) Rearrange the columns so that it becomes the matrix as Eq.(2), 

if the first n-1 columns do not form In-1. 

4) Do a matrix transformation as Eq. (3) obtain matrix T. 

5) Identify the first column of T with entry 1 rows, which may 

represent a path from a to z with the corresponding arcs to the 

entry-1 columns, but neglect the virtual arc za. 

6) Compute the total weights of each path and select the 

minimum one.  

The shortest path of the given graph G is therefore obtained. 

 

Similarly, we use the same graph as Fig. 1 to illustrate the 

JSP algorithm. The flow table including the incidence matrix 

of G1 is shown in Table III. After the processes of step 2 and 

step 3, the resulting matrix S is displayed in Table IV. 

 
TABLE III: THE FLOW TABLE OF G1 BY JSP ALGORITHM 

0 2 5 6 6 8 10 

za cz ab bc cb ac bz 

-1 0 1 0 0 1 0 

0 0 -1 1 -1 0 1 

0 1 0 -1 1 -1 0 

1 -1 0 0 0 0 -1 

 
TABLE IV: THE MATRIX S OF G1 BY JSP ALGORITHM 

0 2 5 6 6 8 10 

za cz ab bc cb ac bz 

1 0 0 -1 1 -1 -1 

0 1 0 -1 1 -1 0 

0 0 1 -1 1 0 -1 

 

According to the step 4 of JSP algorithm, a matrix 

transformation is made and the matrix T is obtained, and 

shown in Table V. One can identify the first column of T with 

entry 1 rows to obtain 3 paths from a to z. The total weights of 

these paths are also shown in the last column of Table V. 

Where ‘WP’ represents the total weight of each path and ‘NP’ 

represents no paths. One can see that the shortest path of G1 

comes from the third row and is corresponding to the set {ac, 

cz} with total weight 10 (neglecting the virtual arc za). 

 
TABLE V: THE MATRIX T OF G1 BY JSP ALGORITHM 

0 2 5 6 6 8 10 WP 

za cz ab bc cb ac bz  

1 1 1 1 0 0 0 13 

-1 -1 -1 0 1 0 0 NP 

1 1 0 0 0 1 0 10 

1 0 1 0 0 0 1 15 

 

C. The Presented Algorithm 

We selected many digraphs with different shortest paths to 

implement JSP algorithm and found that it may fail in some 

cases. The problem is that the row vectors of the transformed 

matrix T may not correspond to a path from a to z. That means, 

some of the feasible paths do not emerge in the matrix T. 

Therefore we found that the linear combination of the row 

vectors of the matrix T is an attainable strategy. Our idea is to 

split the row vectors of T into two sets. One with the first entry 

1 (corresponding to virtual arc za) and the other with 0, 

denoted as T1 and T0, respectively. The row with the first entry 

-1 are useless and we ignore them. If a row vector with the 

first entry to be 1 and no entry to be -1 at the other places, then 

the corresponding arcs of the nonzero columns in this row 

form a cycle. Therefore, when the virtual arc za is removed, it 

become a path from a to z. If there exists -1 in this row, it will 

form a (short) cycle in the row, and then it cannot form a path 

when the virtual arc za is removed.  

We now execute the linear combination by picking one 

vector from T0 with some entry to be -1 and one vector from 

T1 with the entry to be 1 in the same place, and adding them 

together. The resulting vector should be put in the set T1. After 

the process of linear combination, we shall have a new T1 set 

and the nonzero columns of most rows in T1 will correspond 

to a path from a to z. Consequently, all of the feasible path will 

be displayed in T1 set. Comparing their total weights, we can 

obtain the shortest path from a to z. This is our advanced 

algorithm contrast to JSP algorithm. We refer it as JLL-SP 

algorithm (The algorithm of Juang, Lin, and Lee for the 

shortest path.). 

 

Algorithm of JLL-SP: 

1) Pick every row vector from T0 with some entry to be -1 and a 

vector from T1 with the entry to be 1 in the same place and add 

them together and put it in the set T1. 

2) Identify each row of T1 without entry -1 and thus the 

corresponding arcs of entry 1 form a path. 

3) Compute the total weights of each path and compare their 

weights.   

The path with the lowest weight will be the shortest path of the 

given graph. 

 

IV. EXPERIMENTAL RESULTS 

We have tested many different types of networks with the 

presented JLL-SP algorithm. This algorithm performs 

correctly and efficiently for most cases. 

  

 
Fig. 2. A digraph of network model. 

 

TABLE VI: THE FLOW TABLE OF G2  

0 4 4 5 13 7 9 10 12 14 16 20 

za cb ez de ac ed dc bc bd ce ab dz 

-1 0 0 0 1 0 0 0 0 0 1 0 

0 -1 0 0 0 0 0 1 1 0 -1 0 

0 1 0 0 -1 0 -1 -1 0 1 0 0 

0 0 0 1 0 -1 1 0 -1 0 0 1 

0 0 1 -1 0 1 0 0 0 -1 0 0 

1 0 -1 0 0 0 0 0 0 0 0 -1 

 

We now select a more complicated example shown in Fig. 

2, say G2, to illustrate the JLL-SP algorithm. The first step of 

the JLL-SP algorithm is to execute the steps 1 to 4 of JSP 

algorithm to the graph G2. We therefore obtain the flow table 

(Table VI), matrix S (Table VII), and matrix T (Table VIII), 
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sequentially. 
 

TABLE VII: THE MATRIX S OF G2 BY JLL-SP ALGORITHM 

0 4 4 5 13 7 9 10 12 14 16 20 

za cb ez de ac ed dc bc bd ce ab dz 

1 0 0 0 0 0 1 0 -1 -1 0 0 

0 1 0 0 0 0 0 -1 -1 0 1 0 

0 0 1 0 0 0 1 0 -1 -1 0 1 

0 0 0 1 0 -1 1 0 -1 0 0 1 

0 0 0 0 1 0 1 0 -1 -1 1 0 

 

TABLE VIII: THE MATRIX T OF G2 BY JLL-SP ALGORITHM 

0 4 4 5 13 7 9 10 12 14 16 20 

za cb ez de ac ed dc bc bd ce ab dz 

0 0 0 1 0 1 0 0 0 0 0 0 

-1 0 -1 -1 -1 0 1 0 0 0 0 0 

0 1 0 0 0 0 0 1 0 0 0 0 

1 1 1 1 1 0 0 0 1 0 0 0 

1 0 1 0 1 0 0 0 0 1 0 0 

0 -1 0 0 -1 0 0 0 0 0 1 0 

0 0 -1 -1 0 0 0 0 0 0 0 1 

 

Observing the matrix T (Table VIII), one can see that the 

JSP algorithm fails for the network G2. It cannot obtain the 

shortest path from the row vectors of T. Therefore, we apply 

the step 2~5 of JLL-SP algorithm to the matrix T. That is, the 

matrix T is split into two sets and the linear combination of the 

row vectors of T is performed. The resulting matrix (final T1) 

is displayed in Table IX. One can see that each row of T1 

represents one feasible path from a to z. Their total weights 

from the top to the bottom are 38, 31, 37, 44, 48, 49, 54, and 

67, respectively. The smallest weight is 31, which is the 

second row of T1 and the corresponding shortest path is the set 

{ac, ce, ez}(The virtual arc za is neglected). 
 

TABLE IX: MATRIX T1 (AFTER LINEAR COMBINATION)  

0 4 4 5 13 7 9 10 12 14 16 20 

za cb ez de ac ed dc bc bd ce ab dz 

1 1 1 1 1 0 0 0 1 0 0 0 

1 0 1 0  1 0 0 0 0 1 0 0 

1 0 1 1 0 0 0 0 1 0 1 0 

1 0 1 0 0 0 0 1 0 1 1 0 

1 0 0 0 0 0 0 0 1 0 1 1 

1 1 0 0 1 0 0 0 1 0 0 1 

1 0 0 0 1 1 0 0 0 1 0 1 

1 0 0 0 0 1 0 1 0 1 1 1 

 

V. CONCLUSION 

In this paper, we have presented an advanced algorithm, 

called JLL-SP algorithm, to improve the drawback of JSP 

algorithm. The new JLL-SP can perform correctly, contrast to 

the JSP algorithm, for wider range of networks. 

One may wonder that applying matrix operations should 

increase the complexity of computation. It is true if we merely 

consider the order of the arithmetic operations. However, the 

RREF processing or every matrix operations are just working 

on the numbers 1, 0 and -1. The built-in function rref.m in 

MATLAB performs rapidly in low label (or machine) 

language. To evaluate the complexity of the JLL-SP 

algorithm and to compare with three fastest shortest path 

algorithms presented in [11] will be put in our future work. 
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