

Abstract—Branch target buffer (BTB) is an important

component for predicting branch target addresses to improve

the performance of superscalar processor. However, BTB

misprediction increases penalty by using deeper pipelines and

larger windows in a current processor. Hence, increasing the

accuracy of BTB prediction has become more important. This

paper proposes a novel BTB that separates current BTB into

conditional branch BTB (CBTB) and non-conditional branch

BTB (NBTB). The CBTB uses the current BTB, and the NBTB

is added on the current BTB. For optimization the separated

BTB, we test NBTB by using two kinds of memory structures.

One is static random access memory (SRAM) and the other is

content addressable memory (CAM). For the replacement

algorithms of CAM, we test a least recently used method and a

rotation method. We equip our BTB on FPGA to measure the

hardware size and use SimpleScalar to measure the

performance. The experiment results show that proposed BTB

improved IPC about 3.12% by adding an optimum of 128

entries to the current BTB with a CAM structure, and the

optimal replacement algorithm is the rotation method.

Index Terms—Branch target buffer, superscalar processor,

FPGA.

I. INTRODUCTION

Current superscalar processors use deeper pipelines and

wider instruction issues to exploit instruction level

parallelism. However, branch mispredictions incur a heavy

penalty when they occur, such as wasting numerous cycles

and power to recover from mispredictions. Hence,

increasing the accuracy of branch predictions is more

important for superscalar processors. The current branch

predictor consists of a branch direction predictor using a

pattern history table (PHT) and a branch target address

predictor using a branch target buffer (BTB) [1]-[5].

Moreover, the BTB is widely used in embedded

processors too [6], [7], and software CPU is widely used in

FPGA as an embedded processor, like MicroBlaze [8] by

xilinx, and Nios by Altera [9]. Thus, installing an effective

BTB is important for FPGA software processors too.

The current BTB is shared by conditional branches and

non-conditional branches. From our analysis, we found that

many BTB misses were caused by conditional branches and

Manuscript received May 13, 2014; revised February 1, 2015.

Authors are with the Department of Electronic and Computer

Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan (e-mail:
menglin@fc.ritsumei.ac.jp, {kumaki@fc, togura@se}.ritsumei.ac.jp).

non-conditional branches using the same BTB entry.

Consequently, we separate the current BTB into a

conditional branch BTB (CBTB) and a non-conditional

branch BTB (NBTB) to reduce the number of BTB

mispredictions. In our proposal, the CBTB uses the current

BTB, and NBTB is an additional hardware. To optimize the

hardware size and the performance, the structure of NBTB

is tested by using an SRAM and CAM [10]-[13] because the

replacement algorithms of CAM have a relationship with

hardwire size and the searching hit rate of CAM. We test the

replacing method by using a least recently used method

(LRU) and a rotation method [14].

This paper describes the designs of the new BTB,

measurements of the size of its hardware, the rate of

enhancement to its instructions per clock (IPC), and the

optimal size and the optimal replacement algorithm for the

NBTB. Because software CPU is widely used in current

processors, we use the FPGA to measure the hardware size

now and will try to install our BTB into software CPU in the

future.

Initial research leading to the work described in the paper

was presented in [15]. However the initial research only

evaluated the method on software. In this paper, we

evaluated the proposal on hardware by using FPGA. We

have used both software and hardware simulation results to

discuss and achieve an optimal CAM-based Separated BTB.

In addition, more graphs have been added to make our

proposed method and explanations clearer.

The contributions of this paper are as follows:

1) A new BTB is proposed for reducing BTB

misprediction, and the BTB is optimized.

2) The proposal is quantitatively evaluated using a

SimpleScalar tool set [16] for IPC performance and

FPGA for hardware size.

3) A replacement algorithm of CAM for optimizing the

NBTB is quantitatively evaluated.

The rest of this paper is organized as follows. Sections II

and III describe the current BTB and the proposal. Section

IV presents an overview of NBTB. Sections V and VI

explain software and hardware experiments. Section VII

concludes this paper.

II. BRANCH TARGET BUFFER

A. Structure of Simple BTB

BTB essentially involves a smaller cache to retain both

the branch program counter (PC) and target address. Fig. 1

has a block diagram of the simple BTB, where tag keeps the

PC[n−1, i], and target address keeps the branch’s result

when the branch is taken or the branch is a non-conditional

branch.

An Optimal CAM-based Separated BTB for a Superscalar

Processor

Lin Meng, Kosaku Fukuda, Takeshi Kumaki, and Takeshi Ogura

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

122DOI: 10.7763/IJCTE.2016.V8.1030

PC

Hit/miss

Tag Index

n-1 0

=

Target
address

 Tag

i

n-i

Address

BTB

Fig. 1. Prediction algorithm of current BTB.

Fig. 2. Prediction algorithm of current BTB.

Prediction: Fig. 2 shows the prediction algorithm of

current BTB. When branch instruction is fetched, the

processor uses PC[i−1, 0] as the index to search for the tag

and target address in BTB. It then compares the BTB tag

with PC[n−1, n−i]. When they are the same, this means a

BTB hit, and the target address will be used as the next

program counter when the branch is taken or it is a non-

conditional branch. Otherwise, it means a BTB miss, and the

processor will stall when the branch is taken or it is a non-

conditional branch. Because JR instruction uses return

address stack (RAS) [17], the JR does not use BTB.

Updating: Fig. 3 shows the updating algorithm of current

BTB. When the branch is taken or a non-conditional branch,

the branch information (PC and target address) will be

updated if a BTB miss or misprediction occurs. The branch

result will be updated into the target address of BTB when

updating is done, and the PC[n−1, i] will be updated into the

tag of BTB. The updating entry of BTB is PC[i−1, 0]. Here,

we know that the BTB entry size is m ∗ 2n. The current BTB

uses 4-set associative BTB, which maintains a 4-set simple

BTB [18].

Fig. 3. Updating algorithm of current BTB.

B. Related Work

Several BTB structures have been proposed that, like the

proposed BTB, use several kinds of BTB.

Bray and Flynn separated current BTB into several BTBs

by the individual branch taken percentage. The processor

needs to count the number of executed branch times and the

branch taken percentage [4]. However, our proposal does

not need to count the branch taken times and branch

execution times or calculate the branch taken percentage.

BTB Access Filtering (BAF) uses a smaller filter buffer

(FB) to reduce the BTB access times to decrease BTB

access energy [5]. In this method, FB is accessed in parallel

with a predictor, if the branch is predicted as NotTaken or if

the branch is predicted as taken and the FB hits, so the BAF

will not involve the BTB in the next cycle. Because the FB

is very small, the energy of accessing current BTB can be

saved. However, this method uses several cycles to access

BTB when FB misses. Otherwise, our method accesses the

BTB for only one cycle.

Extended BTB [2] keeps the misprediction times of every

BTB entry to detect the misprediction bias branch and

improve the accuracy of PHT prediction. The BTB of Saito

and Yamana [3] changed the prediction and update method

when a BTB miss happens. However, the conditional branch

and non-conditional branch still conflict.

III. SEPARATED BTB

A. Overview of Separated BTB

From the Prediction and Updating algorithm of current

BTB, we find that the conditional branch and non-

conditional branch may access the same entries. As we

know, the different branches access the same entries,

causing misprediction to happen.

By using this character, we separated BTB into two BTBs

(CBTB and NBTB). Fig. 4 shows the block diagram of

separated BTB. CBTB and NBTB are used to predict the

target addresses of conditional and non-conditional branches,

respectively. CBTB is organized as a SRAM that works the

same way as the current BTB.

NBTB is the proposed hardware. For optimization, we

will test it by using SRAM and CAM. When it uses SRAM,

the action is the same as the current BTB. When it uses

CAM, the NBTB has to keep the target addresses. Because

there are not that many non-conditional branches, the NBTB

can be small. (The NBTB in Fig. 4 is a CAM structure.)

//IF Stage, Prediction

Algorithm (INS, BTB, PC) {

//INS:instruction; Cbranch: Conditional branch,

//Nbranch: Non-conditional branch

if(INSbranch && INS != JR) then

 index = PC[i-1:0];

 access BTB:

 if (BTB[index].Tag == PC[n-1:i]) then

 BTB_Hit = true; // BTB hit

 else

 BTB_Hit = false; // BTB miss

 end if

 if (BTB_Hit == true) then

 if ((INS Nbranch) ||

 (INS Cbranch && PHT prediction==T)) then

 Predict_PC = BTB[index].Target_Address;

 else

 Predict_PC = PC + 4;

 end if

 else

 if (INS Cbranch && PHT prediction ==N) then

 Predict_PC = PC + 4;

 else

 Stall;

 end if

 end if

end if

}

//WB Stage, BTB Updating

Algorithm (INS, BTB, PC) {

// Next PC is next instruction PC of branch

if((INSNBranch && INS !=JR) ||

(INSCBranch && Next_PC != PC+4)) then

 Update BTB:

index = PC[i-1:0];

BTB[index].Target_Address =Next_PC;

 BTB[index].Tag = PC[n-1:i]

end if

}

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

123

PC

Hit/miss

Tag Index

n-1 0

=

 Target
 address

Tag

i

n-i

Address

CBTB

Target
address

 PC

NBTB

Fig. 4. Block diagram of separated branch target buffer.

This organization can reduce BTB conflict between

conditional and non-conditional branches. When the NBTB

is structured by CAM, although fewer entries into NBTB

can save on hardware costs, the NBTB will quickly fill.

Therefore, the size of the NBTB is an important factor in

designing our BTB. Hence, CAM that maintains a PC must

be replaced, and the replacement algorithm is also an

important factor. We considered two algorithms: the LRU

and a rotation method using a rotator pointer.

The actions for the proposed BTB can be explained as

follows.

Fig. 5. Prediction algorithm of separated BTB.

Fig. 6. Updating algorithm of separated BTB.

Prediction: Fig. 5 shows the prediction algorithm of

separated BTB. When a conditional branch is fetched, the

predictor uses CBTB to predict the branch target address as

the current BTB. When a non-conditional branch is fetched,

a PC will be searched for in NBTB. If a PC is found in

NBTB, the target will be used as the next PC. Otherwise, the

processor stalls the instruction.

Updating: Fig. 6 shows the updating algorithm of

separated BTB. When the conditional branch commits, the

predictor uses CBTB to update the branch result as the

current BTB. When the non-conditional branch commits, the

PC will be searched for in NBTB. If misprediction occurs,

the target address will be updated into NBTB. If a BTB miss

occurs, the target address and PC will be updated into

NBTB. Otherwise, nothing is done.

B. CAM Replacement Method

LRU: this method keeps the used BTB entries and

updates the new information into the entry that is not least

recently used.

Rotation method: this method uses a rotator pointer to

maintain the update entry.

Fig. 7 shows the two replacements methods. We find the

rotation method is very simple since it just uses a rotator

pointer.

Fig. 7. Replacement methods for CAM.

IV. OVERVIEW OF NBTB

A. NBTB Mode

When the NBTB uses CAM, the branch address in NBTB

is updated in a CAM, and the target address is updated in a

SRAM.

Fig. 8 outlines the action flowchart for BTB. It includes

various action modes, i.e., the commit, fetch, commit &

fetch, and no operation (NOP) modes.

Fetch mode: This means that the non-conditional branch

is fetched and the target address will be predicted. The fetch

mode is indicated as action 1 in Fig.8. When the non-

conditional branch is fetched, the src (search) signal will be

set to search for the fetch instruction in CAM. If it is hit, the

target address will be read from RAM; otherwise, ‘Z’ will

be output.

Commit mode: This means that the branch and the target

address will be updated into BTB when non-conditional

misprediction occurs. The commit mode is indicated as

action 2 in Fig. 8. The src (search) signal will be set to

search for the commit instruction in CAM when in commit

mode. If it is hit, the target address will be updated in RAM;

otherwise, the branch address will be updated into CAM and

the target address will be updated in RAM.

Commit & fetch mode: This means a non-conditional

branch is fetched and the target address needs to be

predicted. A non-conditional branch misprediction

//IF Stage, Prediction

Algorithm (INS,BTB,PC){

//INS:instruction; Cbranch: Conditional branch,

//NCbranch: Non-conditional branch

if(INS∈ NCbranch && INS != JR) then

access NBTB

if (BTB_Hit == ture)

Predict_PC = BTB[index].Target_Address;

else

Stall;

end if

else if(INS∈ Cbranch) then

access CBTB // using same algorithm of current BTB

end if

}

//WB Stage, BTB Updating

Algorithm (INS,BTB,PC){

// Next PC is next instruction PC of branch

if ((INS∈NCBranch && INS !=JR) then

Update NBTB:

end if

else if (INS∈CBranch) then

Update CBTB: // using same algorithm of current

BTB

end if

}

//LRU

Replacement Algorithm (BTB,New_data){

When (BTB Accessed)

Recode the accessed entries;

When (update New_data)

Search the least recently used entry and update;

}

//Rotation method

//Rpointer: rotator pointer

Replacement Algorithm (BTB,New_data){

When (update New_data)

Update the new data into Rpointer;

Rpointer++;

}

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

124

simultaneously occurs, and the information on branches will

be updated. It will run actions 1 and 2 at the same time.

NOP mode: This means no non-conditional branch is

fetched and no non-conditional branch misprediction occurs.

Therefore, the NBTB does nothing in this mode.

Fig. 8. Flowchart for NBTB.

B. Hardware Action

In this section, we describe the hardware action of NBTB.

Here we show the NBTB is CAM and replacement

algorithm is rotation.

1) Fetch action

Fig. 9 outlines the fetch action in NBTB. First, PC is

searched in CAM, which retains the branch address. Here,

we prepared a fetch hit flag to recode the hit information of

fetch for all entries. If it is hit, the fetch hit flag of the entry

is set to one; otherwise, it is set to zero. Then, the target

address of NBTB is set to a selector and is selected as the

final result when the entry of the hit fetch flag is one. If all

the fetch hit flags are zero, high-impedance will be output.

This means BTB is missed.

Fig. 9. Fetch action of NBTB.

2) Commit action

Fig. 10 outlines the commit action in NBTB. Here we use

the rotation methd to replace the CAM. First, PC will be

searched for in CAM, which retains the branch address.

Here, we prepared a commit hit flag to recode the hit

information of commit for all entries. If it is hit, the commit

hit flag of the entry will be set to one, or else it will be set to

zero.

Because NBTB is structured by CAM, it is full. Here, we

prepared a rotator to point to the entry where we could store

the new branch when CAM was full. The rotator is one bit,

which is kept in all entries. When the entry for the rotator is

one, the entry can be used to store the new branch.

When the branch information is updated into NBTB,

NBTB uses a selector to select the entry. If the commit hit

flag has one in the entry, the target address will be updated.

The update entry is where the commit hit flag is one.

Fig. 10. Commit action of NBTB.

When there are no ones in the commit hit flag, this means

there are no branches in NBTB. Therefore, the branch

address and target address will be updated. The update entry

is where the entry’s rotator is one (rotator point). Then, the

rotator point will be shifted.

V. IPC EVALUATION

We evaluated our proposal on the SimpleScalar tool set to

measure IPC. Table I lists the processor configuration

parameters. The instruction set is the portable instruction set

architecture (PISA: MIPS-like instruction set); the

benchmarks include bzip, gcc, gzip, parser, twolf, vpr, and

vortex from SPECint2000. We skipped the first 50 million

instructions and executed the next 100 million.

TABLE I: PROCESSOR CONFIGURATION

Pipeline
5 stages: 1 fetch, 1 decode, 1 execute, 1 memory

access, and 1 commit

Fetch Decode 4 instructions

Issue Int: 4, fp: 2, mem: 2

Window Dispatch queue: 256, Issue queue: 256

Branch

Predictor

64K-entry combining predictor, 2K-entry 4-way

associative BTB, 32-entry RAS

Memory

64KB, 4-way associative,

1-cycle instruction and data caches,

2MB, 8-way associative, 10-cycles L2

We know the memory structures are CAM and RAM, and

the CAM replacement algorithms include LRU and the one

using a rotator. In this section we will show the IPC

performance uprate for the flowing cases.

1) The current BTB is compared with the separated BTB

that uses an NBTB consisting of an SRAM.

2) The current BTB is compared with the separated BTB

that uses an NBTB consisting of the CAM whose

replacement algorithm is LRU.

3) The current BTB is compared with the separated BTB

that uses an NBTB consisting of the CAM whose

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

125

replacement algorithm is the one using a rotator.

The experiment results show that the CAM with the

replacement algorithm using the rotator is the best for the

proposed BTB.

Tables II and III list the memory configurations of the

NBTB (SRAM and CAM) on which we experimented.

TABLE II: MEMORY CONFIGURATION OF NBTB (SRAM)

Entries Bit (Fixed length)

(Variable depth) RAM (PC) RAM (Target address)

32 entries 25 bits

30 bits

64 entries 24bits

128 entries 23bits

256 entries 22bits

512 entries 21bits

1024 entries 20bits

2048 entries 19bits

TABLE III: MEMORY CONFIGURATION OF NBTB (CAM)

Entries Bit (Fixed length)

(Variable depth) RAM (PC) RAM (Target address)

32 entries

30 bits 30 bits

64 entries

128 entries

256 entries

512 entries

1024 entries

2048 entries

A. IPC Performance of NBTB (SRAM)

Since we know the current BTB consists of a SRAM, we

measured the performance of the separated BTB whose

NBTB is an SRAM. Fig. 11(a) shows the IPC performance

uprate of the proposed BTB compared with the 2048-entry

4-set associate current BTB. The horizontal axis indicates

the benchmarks from SPECint2000. The vertical axis

indicates the rate of improvement in IPC for the current

BTB, where the NBTB consists of an SRAM. The CBTB of

the proposed BTB is a 2048-entry 4-way associate BTB.

The NBTB size ranges from 32 to 2048 entries. The results

show that the NBTB consisting of an SRAM has about

2.45% IPC performance improvement when the average size

is 256 entries. It also improved more than 5% on average

when there were more than 512 SRAM entries. The results

revealed that more than 256 NBTB entries were necessary to

reduce the number of BTB misses. They also indicated that

our proposed BTB could not improve performance when

there were more than 512 NBTB entries.

B. IPC Performance of NBTB (CAM with LRU

Replacement)

Fig. 11(b) shows the IPC performance uprate of the

proposed NBTB compared with the 2048-entry 4-set

associate current BTB. The proposed NBTB of the proposed

BTB ranges from 32 to 2048 entries. The replacement

algorithm is LRU. Again, the CBTB is a 2048-entry 4-set

associate BTB.

The experiment results indicated that the 32-entry NBTB

decreased IPC performance and the 64-entry NBTB

improved it only slightly. The reason for this is the conflict

in non-conditional branches when NBTB was too small.

However, when there were 128 CAM entries, our proposed

BTB increased IPC by 3.36% on average. It also increased it

by more than 5.63% on average when there were more than

128 CAM entries. The results revealed that more than 128

NBTB entries were necessary to reduce the number of BTB

misses. They also indicated that our proposed BTB could

not improve performance when there were more than 512

NBTB entries.

Fig. 11. Improved IPC performance uprate of NBTB: (a) SRAM, (b) CAM-

LRU, and (c) CAM-ROT.

C. IPC Performance of NBTB (CAM with Rotator)

Fig. 11(c) shows the IPC performance uprate of the

proposed NBTB compared with the 2048-entry 4-set

associate current BTB. The proposed NBTB of the proposed

BTB ranges from 32 to 2048 entries. The replacement

algorithm uses a rotator. Again, the CBTB is a 2048-entry 4-

set associate BTB.

The experiment results indicated that the 32-entry NBTB

decreased IPC performance and the 64-entry NBTB

improved it only slightly. The reason for this is the conflict

in non-conditional branches when NBTB was too small.

However, when there were 128 CAM entries, our proposed

BTB increased IPC by 3.12% on average. It also increased it

by more than 5.23% on average when there were more than

128 CAM entries. The results revealed that more than 128

NBTB entries were necessary to reduce the number of BTB

misses. They also indicated that our proposed BTB could

not improve performance when there were more than 512

NBTB entries.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

126

From the experiment results, we find an NBTB

constructed by an SRAM has good performance

improvement when the entry has 512 entries. When CAM is

used, the proposed BTB shows good performance

improvement when the entry has 128 entries. We therefore

conclude that using CAM for our BTB is an effective

method.

For the CAM replacement algorithm, we found that the

two kinds of replacement algorithms (LRU and rotator)

yielded similar IPC improvement with the same entry size in

additional experiments. We know that LRU needs a double-

entry matrix to retain renewal information on CAM.

However, the rotator needs only to retain a pointer to renew

CAM. Therefore, since the rotator is more suitable than

LRU with respect to hardware, we conclude that a 128-entry

CAM with a rotator is optimal for a separated BTB.

D. IPC Performance by Changing the BTB Size

In the last subsection, we found that the 128 entry CAM

with a rotator is optimal for a separated BTB. We also

changed the current BTB to compare it with the 128-entry

CAM BTB whose replacement algorithm uses a rotator. Fig.

12 shows the IPC performance uprate of the proposed

NBTB compared with the current BTB. The CBTB of the

proposed BTB is a 2048-entry 4-set associate BTB. The

current BTB has 2048, 4096, or 8196 entries, all of which

are 4-set associative. Since we find the IPC performance

uprate is about 3% for the three kinds of current BTBs, we

conclude that a 128-entry CAM with a rotator is optimal for

a separated BTB.

IP
C

 P
e

rf
o

rm
a

n
c
e

 u
p

 (
%

)

bz
ip gcc gzi

p
pa
rse
r

tw
olf

vo
rte
x

vp
r

Av
era

ge

-20

-15

-10

-5

0

5

10

15

20
2048-4set

4096-4set

8192-4set

Fig. 12. Improved IPC performance uprate.

VI. HARDWARE EVALUATION

We used Xilinx FPGA tools to measure the size of

additional hardware in the current stage.

A. Hardware Verification

Table IV summarizes the hardware size for the proposed

BTB, which was measured with an FPGA. The hardware

design tools were those in the ISE Design Suite 13.1 Project

Navigator of Xilinx. The target device was the Virtex6

xc6vlx240t-1ff1156.

The number of CBTB entries, 2048, was equal to the

number of CBTB entries. The NBTB entries comprised the

NBTB entries, which ranged from 32 to 2048 in the

experiment. In the experiment, we measured only a 1-way

CBTB and the 4-way associate BTB size was four times that

of the 1-way CBTB.

We found that doubling the number of entries doubled the

NBTB hardware size requirements. The NBTB was larger

than the CBTB in terms of hardware size for the same

number of entries. Because the NBTB used CAM, CAM

needed more hardware for searches than SRAM (CBTB).

TABLE IV: MEMORY CONFIGURATION OF NBTB (CAM)

 Memory

 config.

(Entries)

 Bit (Fixed length)

Registers LUTs

LUT-FF

 Pairs

NBTB

32 2022 3042 3424

64 4041 7119 7126

128 8074 13569 13571

256 16148 28098 28016

512 32270 54201 54212

1024 64522 111203 112583

2048 129048 217195 219846

CBTB (1-way) 2048 100354 103148 103148

CBTB (4-way) 2048 401416 412592 412592

Fig. 13. Relationship between hardware increase rate and performance

improvement rate.

B. Discussion and Optimization

Fig. 13 plots the relationship between the IPC

improvement rate and the rates at which hardware was

added, indicating the optimal size of our proposed BTB. The

horizontal axis indicates the number of NBTB entries. The

vertical axes indicate the IPC improvement rate and the rates

at which lookup tables (LUTs) and registers were added.

Because the rate at which LUT-FF pairs were added was

similar to that for LUTs, we did not add LUT-FF

information to the figure.

We used two kinds of standard axes to clarify the

discussion. The left axis is for the IPC improvement rate,

and the right one is for the rates at which LUTs and registers

were added.

The results show that the IPC improvement rate and the

rates at which hardware was added crossed at 64 and 512

entries. This makes it clear the optimal hardware sizes are

between 64 and 512 entries.

We found that a 64-entry NBTB showed -1%

performance improvement, a 256-entry NBTB needed about

a 5.2% increase in hardware size to improve 5.4%, and a

128-entry NBTB needed 3.1% additional hardware to

improve 2.6%. Consequently, the optimal number of entries

was 128.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

127

VII. CONCLUSION

It is important to improve the accuracy of predicting BTB

in modern processors that exploit instruction level

parallelism with deeper pipelines and wider instruction

issues. Thus, this paper proposed a novel BTB by separating

the current BTB into NBTB and CBTB. NBTB and CBTB

were used for predicting non-conditional and conditional

branches, respectively. This reduced the number of BTB

misses that were caused by conflicts.

We used the SimpleScalar tool set in evaluations to

measure IPC and used Xilinx FPGA tools to measure the

size of additional hardware. The experimental results

revealed that our proposed method could improve IPC when

there were more than 64 NBTB entries. We found that

NBTB with 128 entries was optimum by analyzing the

experiments, which resulted in improving IPC by about

3.12%. About 2.6% more hardware than the current BTB

also had to be added. However, the added NBTBs (CAM

with 128 entries + SRAM with 128 entries) are insignificant

in superscalar processors.

Although our proposed BTB reduced the average number

of mispredictions to below that of conventional predictors,

the number of mispredictions increased with some

benchmarks. These need to be detected and decreased in

future work.

REFERENCES

[1] C. H. Perleberg and A. J. Smith, “Branch target buffer design and

optimization,” IEEE Transactions on Computers, vol. 42, no. 4, 1993.

[2] L. Meng, K. Yamazaki, and S. Oyanagi, “A novel branch predictor
using local history for miss-prediction bias,” in Proc. the 2012

International Conference on Computer Design (CDES’12), Jul. 2012,
pp. 77-83.

[3] F. Saito and H. Yamana, “The branch predictor referring a BTB entry

existence,” Transaction of IPSJ, vol. 45, no. 7, pp. 71-79, Otc. 2004
[4] B. K. Bray and M. J. Flynn, “Strategies for branch target buffers,”

Technical Report, no. CSL-TR-91-480, 1991.
[5] S. Wang, J. Hu, and S. G. Ziavras, “BTB access filtering: A low

energy and high performance design,” in Proc. Symposium on VLSI,

2008, pp. 81-86.
[6] Y. J. Chang, “An energy-efficient BTB lookup scheme for embedded

processors,” IEEE Transactions on Circuits and System-II: EXPRESS
BRIEFS, vol. 53, no. 9, pp. 817-821, 2006.

[7] S. Kim, E. Jo, and H. Kim, “Low power branch predictor for

embedded processors,” in Proc. 10th IEEE International Conference
on Computer and Information Technology, 2010, pp. 107-114.

[8] XILINX. [Online]. Available:
http://japan.xilinx.com/tools/microblaze.htm

[9] ALTERA. [Online]. Available:

http://www.altera.co.jp/devices/processor/nios2/ni2-index.html
[10] M. Meribout, T. Ogura, and M. Nakanishi, “On using CAM concept

for parametric curve extraction,” IEEE Trans. Image Processing, vol.

9, no. 12, 2000.
[11] T. Ikenaga and T. Ogura, “CAM2: A Highly-parallel Two-

dimensional Cellular Automaton Architecture,” IEEE Trans. Comput.,
vol. 47, no. 7, 1998.

[12] Y. Ishikawa, J. Uchida, Y. Miyaoka, N. Togawa, M. Yanagisawa, and

T. Ohtsuki, “A CAM processor optimizing method with area
constraints,” IEICE Technical Report, vol. 103, no. 705, pp. 13-18,

2004.
[13] T. Kumaki, K. Iwai, and T. Kurokawa, “A flexible multi-port content

addressable memory,” IEICE Transactions on Information and

Systems, vol. J87-D-1, no. 1, pp. 12-21, 2004.

[14] C. C. Kavar and S. S. Paramar, “Performance analysis of LRU page

replacement algorithm with reference to different data structure,”

International Journal of Engineering Research and Application, vol.

3, no. 1, pp. 2070-2076, 2013.

[15] K. Fududa, L. Meng, T, Kumaki, and T. Ogura, “A CAM-based
separated BTB for a superscalar processor,” in Proc. 2013 First

International Symposium on Computing and Networking, 2013, pp.

385-388.
[16] D. Burger and T. M. Austin, “The simple scalar tool set version 2.0,”

Technical Report, University of Wisconsin-Madison Computer
Sciences Dept. July 1997.

[17] D. Ye and D. Kaeli, “A reliable return address stack:

microarchitectural features to defeat stack smashing,” in Proc. ACM
SIGARCH Computer Architecture News-Special Issue: Workshop on

Architectural Support for Security and Anti-virus (WASSA), vol. 33,
no. 1, 2005, pp. 73-80.

[18] A. Hilton and A. Roth, “Ginger: Control independence using tag

rewriting,” in Proc. 35th Int’l Symposium on Computer Architecture,
May 2007, pp. 436-447.

Lin Meng received a Ph.D. degree in computer science

from Ritsumeikan University, Shiga, Japan, in 2012.
From 2011 to 2013, he was an associate researcher in the

Department of VLSI System Design, Ritsumeikan
University. Since 2013 he has been an assistant

professor at the Department of Electronic and Computer

Engineering, College of Science and Engineering,
Ritsumeikan University. His research interests include

computer architecture of high performance computing and image
processing. Dr. Meng is a member of the IEICE and the IPSJ.

Kosaku Fukuda received his B.S. degree in the

Department of VLSI System Design, Ritsumeikan
University in 2012. He is a master student at the

Department of Electronic and Computer Engineering,

Ritsumeikan University. His research interests are

memory design and VLSI design.

Takeshi Kumaki received his B.S. degree from the

Department of Mathematics, Faculty of Science and
completed the first half of the M.E. program in

information mathematics from NDA, Kanagawa, Japan
in 1998 and 2003, respectively, and Ph.D. degree in

electric engineering from Hiroshima University,

Hiroshima, Japan in 2006. From 2005 to 2009, he
joined the RCNS and RNBS, Hiroshima Univ., Japan.

From 2010 to 2012, he was a lecture in the Department of VLSI System
Design, Ritsumeikan University. Since 2013, he has been a lecture in the

Department of Electronic and Computer Engineering, Ritsumeikan

University. Dr. Kumaki is a member of the IEEE, IEICE.

Takeshi Ogura received the B.S., M.S., and Ph.D.

degrees in electrical engineering from Osaka

University, Osaka, Japan, in 1976, 1978, and 1991,
respectively. In 1978, he joined Nippon Telegraph and

Telephone Corp. (NTT). In NTT, he engaged in the
research and development of CAM LSIs and image

encoding LSIs, and their applications. Since 2004 he

has been a professor in the Department of VLSI System
Design, Ritsumeikan University, Shiga, Japan. Dr. Ogura is a member of

the IEEE, the IEICE, and the IPSJ.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

128

