
 

Abstract—Branch target buffer (BTB) is an important 

component for predicting branch target addresses to improve 

the performance of superscalar processor. However, BTB 

misprediction increases penalty by using deeper pipelines and 

larger windows in a current processor. Hence, increasing the 

accuracy of BTB prediction has become more important. This 

paper proposes a novel BTB that separates current BTB into 

conditional branch BTB (CBTB) and non-conditional branch 

BTB (NBTB). The CBTB uses the current BTB, and the NBTB 

is added on the current BTB. For optimization the separated 

BTB, we test NBTB by using two kinds of memory structures. 

One is static random access memory (SRAM) and the other is 

content addressable memory (CAM). For the replacement 

algorithms of CAM, we test a least recently used method and a 

rotation method. We equip our BTB on FPGA to measure the 

hardware size and use SimpleScalar to measure the 

performance. The experiment results show that proposed BTB 

improved IPC about 3.12% by adding an optimum of 128 

entries to the current BTB with a CAM structure, and the 

optimal replacement algorithm is the rotation method. 

 

Index Terms—Branch target buffer, superscalar processor, 

FPGA. 

 

I. INTRODUCTION 

Current superscalar processors use deeper pipelines and 

wider instruction issues to exploit instruction level 

parallelism. However, branch mispredictions incur a heavy 

penalty when they occur, such as wasting numerous cycles 

and power to recover from mispredictions. Hence, 

increasing the accuracy of branch predictions is more 

important for superscalar processors. The current branch 

predictor consists of a branch direction predictor using a 

pattern history table (PHT) and a branch target address 

predictor using a branch target buffer (BTB) [1]-[5].  

Moreover, the BTB is widely used in embedded 

processors too [6], [7], and software CPU is widely used in 

FPGA as an embedded processor, like MicroBlaze [8] by 

xilinx, and Nios by Altera [9]. Thus, installing an effective 

BTB is important for FPGA software processors too. 

The current BTB is shared by conditional branches and 

non-conditional branches. From our analysis, we found that 

many BTB misses were caused by conditional branches and 
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non-conditional branches using the same BTB entry. 

Consequently, we separate the current BTB into a 

conditional branch BTB (CBTB) and a non-conditional 

branch BTB (NBTB) to reduce the number of BTB 

mispredictions. In our proposal, the CBTB uses the current 

BTB, and NBTB is an additional hardware. To optimize the 

hardware size and the performance, the structure of NBTB 

is tested by using an SRAM and CAM [10]-[13] because the 

replacement algorithms of CAM have a relationship with 

hardwire size and the searching hit rate of CAM. We test the 

replacing method by using a least recently used method 

(LRU) and a rotation method [14].  

This paper describes the designs of the new BTB, 

measurements of the size of its hardware, the rate of 

enhancement to its instructions per clock (IPC), and the 

optimal size and the optimal replacement algorithm for the 

NBTB. Because software CPU is widely used in current 

processors, we use the FPGA to measure the hardware size 

now and will try to install our BTB into software CPU in the 

future.  

Initial research leading to the work described in the paper 

was presented in [15]. However the initial research only 

evaluated the method on software. In this paper, we 

evaluated the proposal on hardware by using FPGA. We 

have used both software and hardware simulation results to 

discuss and achieve an optimal CAM-based Separated BTB. 

In addition, more graphs have been added to make our 

proposed method and explanations clearer.  

The contributions of this paper are as follows: 

1) A new BTB is proposed for reducing BTB 

misprediction, and the BTB is optimized. 

2) The proposal is quantitatively evaluated using a 

SimpleScalar tool set [16] for IPC performance and 

FPGA for hardware size. 

3) A replacement algorithm of CAM for optimizing the 

NBTB is quantitatively evaluated. 

The rest of this paper is organized as follows. Sections II 

and III describe the current BTB and the proposal. Section 

IV presents an overview of NBTB. Sections V and VI 

explain software and hardware experiments. Section VII 

concludes this paper. 

 

II. BRANCH TARGET BUFFER 

A. Structure of Simple BTB 

BTB essentially involves a smaller cache to retain both 

the branch program counter (PC) and target address. Fig. 1 

has a block diagram of the simple BTB, where tag keeps the 

PC[n−1, i], and target address keeps the branch’s result 

when the branch is taken or the branch is a non-conditional 

branch. 
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Fig. 1. Prediction algorithm of current BTB. 

 

 
Fig. 2. Prediction algorithm of current BTB. 

 

Prediction: Fig. 2 shows the prediction algorithm of 

current BTB. When branch instruction is fetched, the 

processor uses PC[i−1, 0] as the index to search for the tag 

and target address in BTB. It then compares the BTB tag 

with PC[n−1, n−i]. When they are the same, this means a 

BTB hit, and the target address will be used as the next 

program counter when the branch is taken or it is a non-

conditional branch. Otherwise, it means a BTB miss, and the 

processor will stall when the branch is taken or it is a non-

conditional branch. Because JR instruction uses return 

address stack (RAS) [17], the JR does not use BTB.  

Updating: Fig. 3 shows the updating algorithm of current 

BTB. When the branch is taken or a non-conditional branch, 

the branch information (PC and target address) will be 

updated if a BTB miss or misprediction occurs. The branch 

result will be updated into the target address of BTB when 

updating is done, and the PC[n−1, i] will be updated into the 

tag of BTB. The updating entry of BTB is PC[i−1, 0]. Here, 

we know that the BTB entry size is m ∗ 2n. The current BTB 

uses 4-set associative BTB, which maintains a 4-set simple 

BTB [18]. 

Fig. 3. Updating algorithm of current BTB. 

 

B. Related Work 

Several BTB structures have been proposed that, like the 

proposed BTB, use several kinds of BTB. 

Bray and Flynn separated current BTB into several BTBs 

by the individual branch taken percentage. The processor 

needs to count the number of executed branch times and the 

branch taken percentage [4]. However, our proposal does 

not need to count the branch taken times and branch 

execution times or calculate the branch taken percentage. 

BTB Access Filtering (BAF) uses a smaller filter buffer 

(FB) to reduce the BTB access times to decrease BTB 

access energy [5]. In this method, FB is accessed in parallel 

with a predictor, if the branch is predicted as NotTaken or if 

the branch is predicted as taken and the FB hits, so the BAF 

will not involve the BTB in the next cycle. Because the FB 

is very small, the energy of accessing current BTB can be 

saved. However, this method uses several cycles to access 

BTB when FB misses. Otherwise, our method accesses the 

BTB for only one cycle. 

Extended BTB [2] keeps the misprediction times of every 

BTB entry to detect the misprediction bias branch and 

improve the accuracy of PHT prediction. The BTB of Saito 

and Yamana [3] changed the prediction and update method 

when a BTB miss happens. However, the conditional branch 

and non-conditional branch still conflict. 

 

III. SEPARATED BTB 

A. Overview of Separated BTB 

From the Prediction and Updating algorithm of current 

BTB, we find that the conditional branch and non-

conditional branch may access the same entries. As we 

know, the different branches access the same entries, 

causing misprediction to happen.  

By using this character, we separated BTB into two BTBs 

(CBTB and NBTB). Fig. 4 shows the block diagram of 

separated BTB. CBTB and NBTB are used to predict the 

target addresses of conditional and non-conditional branches, 

respectively. CBTB is organized as a SRAM that works the 

same way as the current BTB.  

NBTB is the proposed hardware. For optimization, we 

will test it by using SRAM and CAM.  When it uses SRAM, 

the action is the same as the current BTB. When it uses 

CAM, the NBTB has to keep the target addresses. Because 

there are not that many non-conditional branches, the NBTB 

can be small. (The NBTB in Fig. 4 is a CAM structure.) 

//IF Stage, Prediction 

Algorithm (INS, BTB, PC) { 

//INS:instruction; Cbranch: Conditional branch, 

//Nbranch: Non-conditional branch  

if(INSbranch && INS != JR) then 

   index = PC[i-1:0]; 

   access BTB: 

   if (BTB[index].Tag == PC[n-1:i])  then 

      BTB_Hit = true;      // BTB hit 

   else  

      BTB_Hit = false;    // BTB miss 

   end if 

 

   if (BTB_Hit == true) then 

     if ( (INS Nbranch) || 

          (INS Cbranch && PHT prediction==T)) then 

       Predict_PC = BTB[index].Target_Address; 

     else  

       Predict_PC = PC + 4; 

     end if 

   else  

     if (INS Cbranch && PHT prediction ==N) then 

       Predict_PC = PC + 4; 

     else   

       Stall; 

     end if 

  end if 

end if 

} 

//WB Stage, BTB Updating  

Algorithm (INS, BTB, PC) { 

// Next PC is next instruction PC of branch  

if((INSNBranch && INS !=JR) ||   

(INSCBranch  && Next_PC != PC+4)) then    

  Update BTB: 

index = PC[i-1:0]; 

BTB[index].Target_Address =Next_PC; 

    BTB[index].Tag = PC[n-1:i] 

end if 

} 
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Fig. 4. Block diagram of separated branch target buffer. 

 

This organization can reduce BTB conflict between 

conditional and non-conditional branches. When the NBTB 

is structured by CAM, although fewer entries into NBTB 

can save on hardware costs, the NBTB will quickly fill. 

Therefore, the size of the NBTB is an important factor in 

designing our BTB. Hence, CAM that maintains a PC must 

be replaced, and the replacement algorithm is also an 

important factor. We considered two algorithms: the LRU 

and a rotation method using a rotator pointer. 

The actions for the proposed BTB can be explained as 

follows. 

 

 
Fig. 5. Prediction algorithm of separated BTB. 

 

 
Fig. 6. Updating algorithm of separated BTB. 

 

Prediction: Fig. 5 shows the prediction algorithm of 

separated BTB. When a conditional branch is fetched, the 

predictor uses CBTB to predict the branch target address as 

the current BTB. When a non-conditional branch is fetched, 

a PC will be searched for in NBTB. If a PC is found in 

NBTB, the target will be used as the next PC. Otherwise, the 

processor stalls the instruction. 

Updating: Fig. 6 shows the updating algorithm of 

separated BTB. When the conditional branch commits, the 

predictor uses CBTB to update the branch result as the 

current BTB. When the non-conditional branch commits, the 

PC will be searched for in NBTB. If misprediction occurs, 

the target address will be updated into NBTB. If a BTB miss 

occurs, the target address and PC will be updated into 

NBTB. Otherwise, nothing is done. 

B. CAM Replacement Method 

LRU: this method keeps the used BTB entries and 

updates the new information into the entry that is not least 

recently used. 

Rotation method: this method uses a rotator pointer to 

maintain the update entry.  

Fig. 7 shows the two replacements methods. We find the 

rotation method is very simple since it just uses a rotator 

pointer. 

 

 
Fig. 7. Replacement methods for CAM. 

 

IV. OVERVIEW OF NBTB 

A. NBTB Mode 

When the NBTB uses CAM, the branch address in NBTB 

is updated in a CAM, and the target address is updated in a 

SRAM. 

Fig. 8 outlines the action flowchart for BTB. It includes 

various action modes, i.e., the commit, fetch, commit & 

fetch, and no operation (NOP) modes. 

Fetch mode: This means that the non-conditional branch 

is fetched and the target address will be predicted. The fetch 

mode is indicated as action 1 in Fig.8. When the non-

conditional branch is fetched, the src (search) signal will be 

set to search for the fetch instruction in CAM. If it is hit, the 

target address will be read from RAM; otherwise, ‘Z’ will 

be output. 

Commit mode: This means that the branch and the target 

address will be updated into BTB when non-conditional 

misprediction occurs. The commit mode is indicated as 

action 2 in Fig. 8. The src (search) signal will be set to 

search for the commit instruction in CAM when in commit 

mode. If it is hit, the target address will be updated in RAM; 

otherwise, the branch address will be updated into CAM and 

the target address will be updated in RAM. 

Commit & fetch mode: This means a non-conditional 

branch is fetched and the target address needs to be 

predicted. A non-conditional branch misprediction 

//IF Stage, Prediction 

Algorithm (INS,BTB,PC){ 

//INS:instruction; Cbranch: Conditional branch, 

//NCbranch: Non-conditional branch  

if(INS∈ NCbranch && INS != JR) then 

access NBTB 

if (BTB_Hit == ture)  

Predict_PC = BTB[index].Target_Address; 

else  

Stall; 

end if 

 

else if(INS∈ Cbranch) then 

access CBTB // using same algorithm of current BTB 

end if 

} 

//WB Stage, BTB Updating  

Algorithm (INS,BTB,PC){ 

// Next PC is next instruction PC of branch  

if ((INS∈NCBranch && INS !=JR) then 

Update NBTB: 

end if 

else if (INS∈CBranch) then    

Update CBTB: // using same algorithm of current 

BTB 

end if 

} 

//LRU  

Replacement Algorithm (BTB,New_data){ 

When (BTB Accessed) 

Recode the accessed entries; 

When (update New_data) 

Search the least recently used entry and update; 

} 

 

//Rotation method  

//Rpointer: rotator pointer  

Replacement Algorithm (BTB,New_data){ 

When (update New_data) 

Update the new data into Rpointer; 

Rpointer++; 

} 
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simultaneously occurs, and the information on branches will 

be updated. It will run actions 1 and 2 at the same time. 

NOP mode: This means no non-conditional branch is 

fetched and no non-conditional branch misprediction occurs. 

Therefore, the NBTB does nothing in this mode. 

 

 
Fig. 8. Flowchart for NBTB. 

 

B. Hardware Action  

In this section, we describe the hardware action of NBTB. 

Here we show the NBTB is CAM and replacement 

algorithm is rotation. 

1) Fetch action 

Fig. 9 outlines the fetch action in NBTB. First, PC is 

searched in CAM, which retains the branch address. Here, 

we prepared a fetch hit flag to recode the hit information of 

fetch for all entries. If it is hit, the fetch hit flag of the entry 

is set to one; otherwise, it is set to zero. Then, the target 

address of NBTB is set to a selector and is selected as the 

final result when the entry of the hit fetch flag is one. If all 

the fetch hit flags are zero, high-impedance will be output. 

This means BTB is missed. 

 

 
Fig. 9. Fetch action of NBTB. 

 

2) Commit action  

Fig. 10 outlines the commit action in NBTB. Here we use 

the rotation methd to replace the CAM. First, PC will be 

searched for in CAM, which retains the branch address. 

Here, we prepared a commit hit flag to recode the hit 

information of commit for all entries. If it is hit, the commit 

hit flag of the entry will be set to one, or else it will be set to 

zero. 

Because NBTB is structured by CAM, it is full. Here, we 

prepared a rotator to point to the entry where we could store 

the new branch when CAM was full. The rotator is one bit, 

which is kept in all entries. When the entry for the rotator is 

one, the entry can be used to store the new branch. 

When the branch information is updated into NBTB, 

NBTB uses a selector to select the entry. If the commit hit 

flag has one in the entry, the target address will be updated. 

The update entry is where the commit hit flag is one. 

 

 
Fig. 10. Commit action of NBTB. 

 

When there are no ones in the commit hit flag, this means 

there are no branches in NBTB. Therefore, the branch 

address and target address will be updated. The update entry 

is where the entry’s rotator is one (rotator point). Then, the 

rotator point will be shifted. 
 

V. IPC EVALUATION 

We evaluated our proposal on the SimpleScalar tool set to 

measure IPC. Table I lists the processor configuration 

parameters. The instruction set is the portable instruction set 

architecture (PISA: MIPS-like instruction set); the 

benchmarks include bzip, gcc, gzip, parser, twolf, vpr, and 

vortex from SPECint2000. We skipped the first 50 million 

instructions and executed the next 100 million. 
 

TABLE I: PROCESSOR CONFIGURATION 

Pipeline 
5 stages: 1 fetch, 1 decode, 1 execute, 1 memory 

access, and 1 commit 

Fetch Decode 4 instructions  

Issue Int: 4, fp: 2, mem: 2 

Window Dispatch queue: 256, Issue queue: 256 

Branch 

Predictor 

64K-entry combining predictor, 2K-entry 4-way 

associative BTB, 32-entry RAS 

Memory 

64KB, 4-way associative,  

1-cycle instruction and data caches,  

2MB, 8-way associative, 10-cycles L2   

 

We know the memory structures are CAM and RAM, and 

the CAM replacement algorithms include LRU and the one 

using a rotator. In this section we will show the IPC 

performance uprate for the flowing cases. 

1) The current BTB is compared with the separated BTB 

that uses an NBTB consisting of an SRAM. 

2) The current BTB is compared with the separated BTB 

that uses an NBTB consisting of the CAM whose 

replacement algorithm is LRU. 

3) The current BTB is compared with the separated BTB 

that uses an NBTB consisting of the CAM whose 
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replacement algorithm is the one using a rotator. 

The experiment results show that the CAM with the 

replacement algorithm using the rotator is the best for the 

proposed BTB. 

Tables II and III list the memory configurations of the 

NBTB (SRAM and CAM) on which we experimented. 

 
TABLE II: MEMORY CONFIGURATION OF NBTB (SRAM) 

Entries                 Bit (Fixed length) 

(Variable depth) RAM (PC) RAM (Target address) 

32 entries 25 bits 

30 bits 

64 entries 24bits 

128 entries 23bits 

256 entries 22bits 

512 entries 21bits 

1024 entries 20bits 

2048 entries 19bits 

 

TABLE III: MEMORY CONFIGURATION OF NBTB (CAM) 

Entries                 Bit (Fixed length) 

(Variable depth) RAM (PC) RAM (Target address) 

32 entries 

30 bits 30 bits 

64 entries 

128 entries 

256 entries 

512 entries 

1024 entries 

2048 entries  

 

A. IPC Performance of NBTB (SRAM) 

Since we know the current BTB consists of a SRAM, we 

measured the performance of the separated BTB whose 

NBTB is an SRAM. Fig. 11(a) shows the IPC performance 

uprate of the proposed BTB compared with the 2048-entry 

4-set associate current BTB. The horizontal axis indicates 

the benchmarks from SPECint2000. The vertical axis 

indicates the rate of improvement in IPC for the current 

BTB, where the NBTB consists of an SRAM. The CBTB of 

the proposed BTB is a 2048-entry 4-way associate BTB. 

The NBTB size ranges from 32 to 2048 entries. The results 

show that the NBTB consisting of an SRAM has about 

2.45% IPC performance improvement when the average size 

is 256 entries. It also improved more than 5% on average 

when there were more than 512 SRAM entries. The results 

revealed that more than 256 NBTB entries were necessary to 

reduce the number of BTB misses. They also indicated that 

our proposed BTB could not improve performance when 

there were more than 512 NBTB entries. 

B. IPC Performance of NBTB (CAM with LRU 

Replacement) 

Fig. 11(b) shows the IPC performance uprate of the 

proposed NBTB compared with the 2048-entry 4-set 

associate current BTB. The proposed NBTB of the proposed 

BTB ranges from 32 to 2048 entries. The replacement 

algorithm is LRU. Again, the CBTB is a 2048-entry 4-set 

associate BTB. 

The experiment results indicated that the 32-entry NBTB 

decreased IPC performance and the 64-entry NBTB 

improved it only slightly. The reason for this is the conflict 

in non-conditional branches when NBTB was too small. 

However, when there were 128 CAM entries, our proposed 

BTB increased IPC by 3.36% on average. It also increased it 

by more than 5.63% on average when there were more than 

128 CAM entries. The results revealed that more than 128 

NBTB entries were necessary to reduce the number of BTB 

misses. They also indicated that our proposed BTB could 

not improve performance when there were more than 512 

NBTB entries. 

 

 
Fig. 11. Improved IPC performance uprate of NBTB: (a) SRAM, (b) CAM-

LRU, and (c) CAM-ROT. 

 

C. IPC Performance of NBTB (CAM with Rotator) 

Fig. 11(c) shows the IPC performance uprate of the 

proposed NBTB compared with the 2048-entry 4-set 

associate current BTB. The proposed NBTB of the proposed 

BTB ranges from 32 to 2048 entries. The replacement 

algorithm uses a rotator. Again, the CBTB is a 2048-entry 4-

set associate BTB. 

The experiment results indicated that the 32-entry NBTB 

decreased IPC performance and the 64-entry NBTB 

improved it only slightly. The reason for this is the conflict 

in non-conditional branches when NBTB was too small. 

However, when there were 128 CAM entries, our proposed 

BTB increased IPC by 3.12% on average. It also increased it 

by more than 5.23% on average when there were more than 

128 CAM entries. The results revealed that more than 128 

NBTB entries were necessary to reduce the number of BTB 

misses. They also indicated that our proposed BTB could 

not improve performance when there were more than 512 

NBTB entries. 
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From the experiment results, we find an NBTB 

constructed by an SRAM has good performance 

improvement when the entry has 512 entries. When CAM is 

used, the proposed BTB shows good performance 

improvement when the entry has 128 entries. We therefore 

conclude that using CAM for our BTB is an effective 

method. 

For the CAM replacement algorithm, we found that the 

two kinds of replacement algorithms (LRU and rotator) 

yielded similar IPC improvement with the same entry size in 

additional experiments. We know that LRU needs a double-

entry matrix to retain renewal information on CAM. 

However, the rotator needs only to retain a pointer to renew 

CAM. Therefore, since the rotator is more suitable than 

LRU with respect to hardware, we conclude that a 128-entry 

CAM with a rotator is optimal for a separated BTB. 

D. IPC Performance by Changing the BTB Size 

In the last subsection, we found that the 128 entry CAM 

with a rotator is optimal for a separated BTB. We also 

changed the current BTB to compare it with the 128-entry 

CAM BTB whose replacement algorithm uses a rotator. Fig. 

12 shows the IPC performance uprate of the proposed 

NBTB compared with the current BTB. The CBTB of the 

proposed BTB is a 2048-entry 4-set associate BTB. The 

current BTB has 2048, 4096, or 8196 entries, all of which 

are 4-set associative. Since we find the IPC performance 

uprate is about 3% for the three kinds of current BTBs, we 

conclude that a 128-entry CAM with a rotator is optimal for 

a separated BTB. 
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Fig. 12. Improved IPC performance uprate. 

 

VI. HARDWARE EVALUATION 

We used Xilinx FPGA tools to measure the size of 

additional hardware in the current stage. 

A. Hardware Verification  

Table IV summarizes the hardware size for the proposed 

BTB, which was measured with an FPGA. The hardware 

design tools were those in the ISE Design Suite 13.1 Project 

Navigator of Xilinx. The target device was the Virtex6 

xc6vlx240t-1ff1156. 

The number of CBTB entries, 2048, was equal to the 

number of CBTB entries. The NBTB entries comprised the 

NBTB entries, which ranged from 32 to 2048 in the 

experiment. In the experiment, we measured only a 1-way 

CBTB and the 4-way associate BTB size was four times that 

of the 1-way CBTB. 

We found that doubling the number of entries doubled the 

NBTB hardware size requirements. The NBTB was larger 

than the CBTB in terms of hardware size for the same 

number of entries. Because the NBTB used CAM, CAM 

needed more hardware for searches than SRAM (CBTB). 

 
TABLE IV: MEMORY CONFIGURATION OF NBTB (CAM) 

 Memory 

 config. 

(Entries) 

 Bit (Fixed length) 

 
Registers LUTs  

 

LUT-FF 

 Pairs 

 

 

 

NBTB 

32 2022    3042    3424   

64 4041    7119    7126   

128 8074    13569    13571   

256 16148  28098  28016    

512 32270  54201   54212    

1024 64522 111203 112583  

2048 129048 217195 219846  

CBTB (1-way) 2048 100354 103148 103148 

CBTB (4-way) 2048    401416 412592       412592 

 

 
Fig. 13. Relationship between hardware increase rate and performance 

improvement rate. 

 

B. Discussion and Optimization 

Fig. 13 plots the relationship between the IPC 

improvement rate and the rates at which hardware was 

added, indicating the optimal size of our proposed BTB. The 

horizontal axis indicates the number of NBTB entries. The 

vertical axes indicate the IPC improvement rate and the rates 

at which lookup tables (LUTs) and registers were added. 

Because the rate at which LUT-FF pairs were added was 

similar to that for LUTs, we did not add LUT-FF 

information to the figure. 

We used two kinds of standard axes to clarify the 

discussion. The left axis is for the IPC improvement rate, 

and the right one is for the rates at which LUTs and registers 

were added. 

The results show that the IPC improvement rate and the 

rates at which hardware was added crossed at 64 and 512 

entries. This makes it clear the optimal hardware sizes are 

between 64 and 512 entries. 

We found that a 64-entry NBTB showed -1% 

performance improvement, a 256-entry NBTB needed about 

a 5.2% increase in hardware size to improve 5.4%, and a 

128-entry NBTB needed 3.1% additional hardware to 

improve 2.6%. Consequently, the optimal number of entries 

was 128. 
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VII. CONCLUSION 

It is important to improve the accuracy of predicting BTB 

in modern processors that exploit instruction level 

parallelism with deeper pipelines and wider instruction 

issues. Thus, this paper proposed a novel BTB by separating 

the current BTB into NBTB and CBTB. NBTB and CBTB 

were used for predicting non-conditional and conditional 

branches, respectively. This reduced the number of BTB 

misses that were caused by conflicts. 

We used the SimpleScalar tool set in evaluations to 

measure IPC and used Xilinx FPGA tools to measure the 

size of additional hardware. The experimental results 

revealed that our proposed method could improve IPC when 

there were more than 64 NBTB entries. We found that 

NBTB with 128 entries was optimum by analyzing the 

experiments, which resulted in improving IPC by about 

3.12%. About 2.6% more hardware than the current BTB 

also had to be added. However, the added NBTBs (CAM 

with 128 entries + SRAM with 128 entries) are insignificant 

in superscalar processors. 

Although our proposed BTB reduced the average number 

of mispredictions to below that of conventional predictors, 

the number of mispredictions increased with some 

benchmarks. These need to be detected and decreased in 

future work. 
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