
Colored Point Cloud Registration with Improved Hue-

Assisted Normal Distributions Transform 

Hyunki Hong and Beomhee Lee 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

63DOI: 10.7763/IJCTE.2016.V8.1021


Abstract—This paper describes an improved Hue-Assisted 

Normal Distributions Transform (HANDT), which enhances 

the accuracy of the registration of point clouds. In our previous 

work, HANDT was developed to improve the speed and 

accuracy of registration by utilizing the hue from the hue-

saturation-value model. To improve the accuracy, the score 

function of HANDT is changed from the normal distribution 

function to the Mahalanobis distance function. In addition, the 

functions of the hue mean and variance are modified for the 

circular property of the hue. The performance of normal 

distributions transform (NDT), HANDT, and improved 

HANDT are evaluated by benchmark data sets. As a result, the 

translation and rotation errors of improved HANDT are lower 

than those of NDT and HANDT.  

 

Index Terms—Hue, color, point cloud, registration, normal 

distributions transform (NDT). 

 

I. INTRODUCTION 

A map built with a range sensor generally provides the 

structure of the environment. It is not easy to recognize what 

objects are located on the map. However, if the map is 

colored, it is possible to recognize objects and textures. 

Usually, a range sensor and a vision sensor are mounted 

together on robots. Due to the reliable calibration of the 

sensors, points scanned by the range sensor are able to be 

paired accurately with colors scanned by the vision sensor. 

In addition, low-priced depth cameras such as Microsoft 

Kinect and Asus Xtion were launched for the past years. It 

stimulated researchers to study the colored point cloud 

registration. 

The registration of images or scans is an essential process 

of 3D graph Simultaneous Localization and 

Mapping(SLAM). Due to the good extensibility of Iterative 

Closest Point (ICP) algorithm, most of color-supported 

registration algorithms are based on ICP. The early 

algorithm is Colored ICP (cICP) [1]. Y, I, and Q from the 

YIQ color model were integrated to the distance function. 

Similarly, 4D ICP integrated the hue variable from the hue-

saturation-lightness(HSL)model to the distance function [2]. 

Color-constrained ICP uses six classes corresponding to six 

intervals of the hue range. Points would be classified to 

classes according to hue. The points in the highest-scored 

class would be registered by ICP [3]. The modified Colored. 
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ICP quantizes I and Q to classify reference points. The 

corresponding cell of a new point on the IQ plane is decided 

by I and Q of the new point, and it searches for the closest 

point in the cell [4]. Color-supported generalized ICP is a 

color-supported variant of the generalized ICP (gICP), 

which is a variant of ICP [5]. L*, a*, b* from the L*a*b* 

color model are integrated to the distance function of gICP. 

NDT is a competitive algorithm with ICP. NDT is known 

for the fast registration of large point clouds. It is also 

known to be robust against outliers and noise. Moreover, 

since hundreds of figures in a voxel are reduced to twelve 

figures, it is much more efficient in saving data. Hence, 

NDT is the most suitable algorithm for the registration of a 

large number of points. There is a color-supported variant 

called Color NDT. Color NDT is improved by applying 

color weights to the score function [6]. In spite of the 

increasing popularity of NDT, no more color-supported 

variants of NDT have appeared so far. 

In our previous work, Hue-assisted NDT (HANDT) was 

proposed [7]. We utilized the hue from the hue-saturation-

value (HSV) model because of its light-invariant and 

viewpoint-invariant properties. After the reference point 

cloud is divided by the octree structure, the points in each 

unit voxel are classified according to their hue values. In 

addition, the score function of NDT was modified to be 

weighted by huecoefficients. 

We found that errors occurred because of the simple 

mean and variance of the hue variable. In this paper, the 

circular mean and variance functions of the hue variable are 

described. In addition, the form of the score function is 

changed from the normal distribution function to the 

Mahalanobis distance function. 

 

II. BACKGROUND 

A. The Hue Variable from the HSV Model 

We get color information by a vision sensor. The RGB 

values of an object are varying with the viewpoint of the 

sensor and the luminous intensity. On the contrary, the hue 

value from the HSV model is invariant to those effects. Two 

photographs are taken at different brightness levels as 

shown in Fig. 1. The distributions of RGB of photographs 

are as shown in Fig. 2. The distributions in Fig. 2(a) are 

widely distributed while those of Fig. 2(b) are concentrated 

at the left side. The hue distributions as shown in Fig. 3 are 

very close. Averages of four peaks in Fig. 3(a) are 32.58, 

114.80, 155.34, and 246.88 while four averages in Fig. 3 (b) 

are 66.79, 127.43, 149.30, and 240.26. Due to the 

brightness-invariant property of the hue, the hue is possible 

to support the registration of two colored point clouds 

scanned at different brightness level. 
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(a)                   (b) 

Fig. 1. Colored papers taken at different brightness level. 

 

 
(a)                    (b) 

Fig. 2. RGB distributions of Fig. 1(a) and (b), respectively. red: R, green: 

G, blue: B. 

 

 
(a)                     (b) 

Fig. 3. Hue distributions of Fig. 1(a) and (b), respectively. 

 

B. NDT Algorithm 

The NDT algorithm works at three steps which are 

dividing, computing, and registering [8]-[10]. At the first 

step, voxels with a pre-set size are set over reference point 

cloud𝐶𝑟𝑒𝑓 . Orange balls in Fig. 4(a) are points in 𝐶𝑟𝑒𝑓 . 

Points in the ith voxel is a subdivided point cloud 𝐶𝑟𝑒𝑓 ,𝑖 .  

 

 
(a)                    (b) 

Fig. 4. (a) NDT. Yellow ellipsoids are NDs. Black lines show the corres-

pondences. (b) HANDT. Compare to (a), colors and brightness of balls are 

various. Two or more ellipsoids are in a voxel. 

 

At the second step, it computes the mean 𝐌𝑖  and 

covariance 𝚺𝑖  of 𝐶𝑟𝑒𝑓 ,𝑖  by 
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where 𝐩𝑟𝑒𝑓 ,𝑖𝑗 =  𝑝𝑥,𝑗𝑝𝑦,𝑗𝑝𝑧,𝑗   is the position of the jth point 

in the cloud 𝐶𝑟𝑒𝑓 ,𝑖 , and𝑁𝑖  is the number of points in 𝐶𝑟𝑒𝑓 ,𝑖 . 

𝐌𝑖  and 𝚺𝑖  are used to compose the ith normal distribution 

(ND) function in the form of (3). 
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where 𝑠 is the score of 𝐩𝑛𝑒𝑤
′ , which is a vector transformed 

from 𝐩𝑛𝑒𝑤  by rotational matrix 𝐑 and translational vector 𝐓. 

𝐩𝑛𝑒𝑤 ,𝑗
′ is a vector transformed from the jth newly scanned 

point 𝐩𝑛𝑒𝑤 ,𝑗 by (4). 𝑠𝑗 is computed by substituting 𝐩𝑛𝑒𝑤 ,𝑗
′  

to(3). 

At the final step, a transformation vector 𝛏 =

 𝛼 𝛽 𝛾 𝑇𝑥𝑇𝑦𝑇𝑧 
𝑇
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C. The Review of the HANDT Algorithm 

As well known, HANDT is a color-supported variant of 

NDT utilizing the hue from HSV model. HANDT is in the 

same frame work of original NDT which are dividing, 

computing, and registering.  

 

 
Fig. 5. The additional division of octree. The tree in the gray box is the 

original octree. 

 

At the first step, the colored octree structure as showing 

Fig. 5 is applied. The tree in the gray box in Fig.5 is the 

original octree structure. The structure in the box is 

available to be replaced with other structures. The colored 

octree additionally divides the leaves of the octree into at 

most 𝑛𝑕𝑢𝑒 color leaveswhich are corresponding to hue 

intervals. For example as shown in Fig. 5, since 𝑛𝑕𝑢𝑒 is 6, six 

intervals of the hue range are[0, 1/6), [1/6, 2/6), [2/6, 3/
6) , [3/6, 4/6) ,  [4/6, 5/6) ,  [5/6, 1) .The kth reference 

point𝐩𝑟𝑒𝑓 ,𝑘  in the ith voxel is classified into the jth hue 

group 𝑔𝑕𝑢𝑒 ,i𝑗  if its hue is in the jth interval.  

At the second step, we compute𝐌𝑖𝑗  and 𝚺𝑖𝑗  forg𝑕𝑢𝑒 ,𝑖𝑗 . 

𝐌𝑖𝑗  and 𝚺𝑖𝑗  are computed by (1) and (2).Next, we computes 
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where 𝑆𝑠𝑝  is a spatial score, 𝑁 is the number of points in 

𝐶𝑛𝑒𝑤 , 𝐌𝑗  and 𝚺𝑗 are the corresponding mean and covariance 

of 𝐩𝑛𝑒𝑤 ,𝑗
′ , respectively. The corresponding ND of 𝐩new ,𝑗

′  is 

the voxel where 𝐩new ,𝑗
′  is. Blue balls in Fig. 4(a) are 𝐶𝑛𝑒𝑤 . 

Each ball is connected to an ellipsoid in the voxel where the 

ball is. To maximize 𝑆𝑠𝑝 , it is common to use Newton‟s 

method or Leven berg-Marquardt Algorithm. 



extra mean 𝜇𝑖𝑗  and variance 𝜎𝑖𝑗 for hue as 
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where 𝑁𝑖𝑗 is the number of points in g𝑕𝑢𝑒 ,𝑖𝑗 , and 𝑝𝑟𝑒𝑓 ,𝑘,𝑕  is 

the hue of kth point 𝐩𝑟𝑒𝑓 ,𝑘 . 𝜇𝑖𝑗  and σ𝑖𝑗  compose a normal 

distribution weight function as 
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where 𝑝𝑛𝑒𝑤 ,𝑕  is the hue of a new point 𝐩𝑛𝑒𝑤 . The weight w 

is computed by substituting 𝑝𝑛𝑒𝑤 ,𝑕  to (10). There are at most 

𝑛𝑕𝑢𝑒  normal distributions of the score and weight in a voxel. 

In contrary to the original NDT as shown in Fig. 4(a), there 

are multiple ellipsoids in a voxel in Fig. 4(b). 

At the final step, HANDT registers 𝐶𝑛𝑒𝑤  with 𝐶𝑟𝑒𝑓 . 

HANDT would search for the corresponding voxel of 𝐩𝑛𝑒𝑤  

in 𝐶𝑛𝑒𝑤 . The corresponding voxel is the voxel where 𝐩𝑛𝑒𝑤  

is. Next, it would search for a corresponding hue group. The 

group would be decided by which interval its hue is in. The 

score 𝑠𝑘  is computed by (3), and the weight 𝑤𝑘 is computed 

by (10). 

HAND Titeratively updates 𝛏 by Newton‟s method to 

obtain the best vector 𝛏∗ which maximizes a weighted score 

function as 
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where 𝑤𝑗  is the weight, and s𝑗  is the score of 𝐩𝑛𝑒𝑤 ,𝑗 . 𝛏 is 

iteratively updated as 

 1k k k



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where Δ𝛏𝑘  is a step vector, and α is a step length decided by 

Armijo‟s rule in kth iteration. 

 

 
(a)                 (b) 

Fig. 6. The score distributions of one hundred random points. The mean is 
 0.52, 0.45 . (a) The normal distribution score function. (b) The 

Mahalanobis distance score function.  

 

III. THE IMPROVED HANDT 

The HANDT algorithm is improved by two modifications. 

First, the score function is changed from the normal 

distribution function to the Mahalanobis distance function. 

Second, the mean and variance of the hue are changed from 

simple functions to circular functions. After those 

modifications are described, the details of improved 

HANDT algorithm would be described.  

A. Mahalanobis Distance 

The example of the two dimensional normal distribution 

in a grid is as shown in Fig. 6(a). Since the scores outside 

the certain range are approximately zero, NDT or HANDT 

is not able to attract the exact correspondence which are out 

of that range. How to attract those corresponding points as 

well as avoid the effect of noise and outliers to obtain the 

better step vector is the problem. To score all points in the 

voxel, it is appropriate to replace the normal distribution 

score function by Mahalanobis distance function.  

The Mahalanobis distance function is 
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where 𝐩 is the coordinate vector. The score function is 
changed to be in the form of the square of the Mahalanobis 
distance as 
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B. The Circular Mean and Variance of the Hue 

Since the hue value is circular, the simple mean and 

variance would lead to a wrong distribution. Therefore, in 

the HANDT algorithm, the simple mean and variance of the 

hue are used. The circular mean 𝜇𝑐𝑖𝑟 is computed by  
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where 𝑘 = 1 if the sum of cosine is smaller than 0, 𝑘 = 2 if 

the sum of sine is smaller than 0 and the sum of cosine is 

bigger than 0, and 𝑘 = 0 for others.  

For the circular property of the hue, the difference 

between two hue values should be in the range as  −0.5,0.5 . 
The circular difference is formulated as 

  1 2 1 2 1 2( , ) min ,1hd h h h h h h                (16) 

 

 
Fig. 7. Comparison between the distribution of the simple mean and 

variance and the distribution of the circular mean and variance. 

 

Thus, the circular variance 𝜎𝑐𝑖𝑟  is computed by 
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The circular weight 𝑤𝑐𝑖𝑟  is computed by 
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The circular distribution and simple distribution of the 

hue are compared as Fig. 7. The circular mean is almost at 

the center of hue values while the simple mean is at the 

center of the hue range which is the wrong mean. 

C. The Improved HANDT Algorithm 

The process of the improved HANDT is as shown in 

Table I. The main difference between HANDT and 

improved HANDT is the function of the weight and the 

score. 

 
TABLE I: HUE-ASSISTED NORMAL DISTRIBUTIONS TRANSFORM 

Algorithm 𝛏 = 𝐇𝐀𝐍𝐃𝐓 𝐶𝑟𝑒𝑓 , 𝐶𝑛𝑒𝑤 , ℓ, nℓ, 𝑛𝑕𝑢𝑒   

Inputs: 
𝐶𝑟𝑒𝑓 : reference point cloud, 𝐶𝑛𝑒𝑤 : new point cloud, ℓ: the length 

of voxel, 𝑛𝑕𝑢𝑒 : the number of hue intervals,nℓ: the number of 
layers of Octree 

Outputs: 
𝛏:transformation vector 

Dividing process: 
1: 𝑙𝑎𝑦𝑒𝑟 = 𝑛ℓ 
2: repeat recursively 
3: if (𝑙𝑎𝑦𝑒𝑟 > 0) 
4: Divide the point clouds by sub-voxels 
5: else if (𝑙𝑎𝑦𝑒𝑟 = 0) 
6: Divide point clouds into 𝑛𝑕𝑢𝑒 hue groups 
7: end if 
8: 𝑙𝑎𝑦𝑒𝑟 = 𝑙𝑎𝑦𝑒𝑟 − 1 
9: while (𝑙𝑎𝑦𝑒𝑟 > −1) 

Calculating process: 
1:for all voxels 𝑣𝑖  
2: for all hue groups 𝑢𝑖𝑗  

2: if (number of points in 𝑢𝑖𝑗 >5) 

3: Calculate 𝐦𝑖𝑗 , 𝚺𝑖𝑗 , 𝜇𝑖𝑗 , 𝜎𝑖𝑗  

4: end if 
5: end for 
6: end for 

Registering process: 
1: while (step length > threshold) 
2: Compute score 𝑠𝑤 , 𝐠, 𝐇 of 𝐶𝑛𝑒𝑤 ,𝑘  

3: Compute the step vector Δ𝛏𝑘  and length α 
4: Update 𝛏𝑘  
4: Transform 𝐶𝑛𝑒𝑤  by 𝛏𝑘  and get 𝐶𝑛𝑒𝑤 ,𝑘+1 

5: end while 
6: return 𝛏𝑘  

 

The weighted score function of the improved HANDT is 

modified as 
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where 𝑤𝑐𝑖𝑟 ,𝑖  is the weight of 𝐩𝑖 , and 𝑠𝑚𝑑 ,𝑖  is the spatial score 

of 𝐩𝑖 . Since the score function is the square of the 

Mahalanobis distance, the optimization problem is changed 

to finding the transformation vector 𝛏∗  which minimizes 

(19), and  𝛏∗ is computed iteratively by (12). Δ𝛏 in (12) is 

computed by 
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where 𝐠𝑘 and 𝐇𝑘 are the first and second order partial 

derivatives of (21) which are substituted with 𝛏𝑘 . 

Those 𝐠𝑘  and 𝐇𝑘  are computed as 
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where 𝐇𝑘,𝑢𝑣  is the (𝑢, 𝑣) entry of 𝐇𝑘 . 

 

IV. EXPERIMENTS 

NDT, HANDT, and the improved HANDT are 

implemented by Point-Cloud-Library (PCL) [11]. We ran 

the implementation on Intel Core i7-3770 with PC1333 

DDR3 dual-channel memory. Data sets we use are from 

[12]. Data sets were recorded by Microsoft Kinect, and the 

ground-truth trajectories were captured with 100Hz tracking 

cameras. „freiburg1_room‟, „freiburg2_desk‟, „frei-

burg3_nostructure_texture_far‟, and 

„freiburg3_structure_texture_far‟ are chosen. 

First, the performance of the different 𝑛𝑕𝑢𝑒  of the 

improved HANDT are evaluated. Second, the performance 

of NDT, HANDT, and the improved HANDT are evaluated. 

The length of voxels is set to 5cm for the data set of the 

room and 10cm for other data sets. The time step is 0.27 

second. To avoid singular covariance, the spatial score 

function of a hue group is available only if the number of 

points in the group is bigger than 5. The performance are 

compared in terms of the iteration, runtime, translation error, 

and rotation error. The convergence criterion is the step 

length. If the length is smaller than a threshold which is 

10−6, then the algorithms will stop. 

A. Evaluation of Improved HANDT of Different 𝑛𝑕𝑢𝑒  

𝑛𝑕𝑢𝑒 = 1 is chosen to evaluate to check how the average 

of hue supports NDT. Due to three primary colors, 𝑛𝑕𝑢𝑒  

starts with 3. Next, 𝑛𝑕𝑢𝑒  is doubled up to 24. The results are 

as shown in Table II. 

 
TABLE II: THE COMPARISON BETWEEN DIFFERENT NHUE  

Dataset 𝐧𝐡𝐮𝐞 Iterations Runtime(s) Error(𝐦 / °) 

Freiburg1 
room 

1 4.965 19.695 0.119 / 5.130 

3 5.646 19.219 0.119 / 4.629 

6 5.439 14.918 0.119 / 5.192 

12 5.706 16.087 0.109 / 4.079 

24 6.127 16.344 0.116 / 4.492 

Freiburg2 
desk 

1 5.181 35.196 0.077 / 1.637 

3 5.349 36.868 0.082 / 1.555 

6 5.222 29.842 0.079 / 1.496 

12 5.441 25.479 0.080 / 1.595 

24 5.846 32.859 0.081 / 1.501 

Freiburg 3 
Nostructure 
Texture(far) 

1 4.965 39.515 0.077 / 0.721 

3 4.929 39.426 0.077 / 0.695 

6 4.393 35.900 0.076 / 0.621 

12 4.729 34.821 0.079 / 0.678 

24 4.346 33.595 0.082 / 0.619 

Freiburg 3 
Structure 

Texture(far) 

1 4.548 36.431 0.058 / 0.901 

3 5.417 39.344 0.060 / 0.803 

6 4.833 36.092 0.060 / 0.824 

12 5.050 28.459 0.060 / 0.759 

24 5.717 40.636 0.059 / 0.711 
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As shown in Table II, the performance of the improved 

HANDT become better as 𝑛𝑕𝑢𝑒  increases until 𝑛𝑕𝑢𝑒 = 12. 

Since the hue intervals become narrower as 𝑛𝑕𝑢𝑒  increases, 

the number of points in each hue group becomes smaller. 

Due to the constraint against singular covariance, the 

number of available groups decreases. Hence, more newly 

scanned points are possible to be dropped because the 

corresponding groups are not available. Moreover, as 𝑛𝑕𝑢𝑒  

increases, the hue intervals become narrower, and the hue of 

a newly scanned point and the hue mean of the 

corresponding group become closer. It means that the point 

clouds are possible to find more appropriate 

correspondences. Due to this reason, the errors become 

lower as 𝑛𝑕𝑢𝑒  increases. However, as 𝑛𝑕𝑢𝑒 is 24, the errors 

increase. The reason is that the algorithm drops too many 

newly scanned points because the hue intervals are too 

narrow to be available. As the result shown in Table II, the 

result of 𝑛𝑕𝑢𝑒 = 12 is generally the best. 

B. Evaluation of NDT, HANDT, and Improved HANDT 

 

   

(a) (b) (c) 

Fig. 8. The convergence of algorithms. (a) NDT (b) HANDT (c) Improved 

HANDT. 

 

As the results shown in Table III, although the runtime 

per iteration of the improved HANDT is shorter, the runtime 

is longer than NDT and HANDT. However, the translation 

and rotation errors of the improved HANDT are lower than 

those of NDT and HANDT. 

 
TABLE III: THE COMPARISON BETWEEN ALGORITHMS „IMHANDT‟ IS THE 

IMPROVED HANDT 

Dataset Algorithm Iterations 
Runtime 

(s) 

Runtime 
per  

iteration 

Error 
(𝐦 / °) 

Freiburg1 
room 

NDT 3.915 16.421 4.194 0.178 / 4.394 

HANDT 3.669 12.367 3.371 0.175 / 4.024 

imHANDT 5.706 16.087 2.819 0.109 / 4.079 

Freiburg2 
desk 

NDT 2.876 22.774 7.919 0.075 / 1.231 

HANDT 3.306 22.519 6.812 0.067 / 1.174 

imHANDT 5.050 28.460 5.636 0.060 / 0.759 

Freiburg 3 
Nostructure 
Texture(far) 

NDT 3.610 31.795 8.807 0.271 / 1.191 

HANDT 5.288 37.714 7.132 0.205 / 1.111 

imHANDT 4.729 34.821 7.363 0.079 / 0.678 

Freiburg 3 
Structure 

Texture(far) 

NDT 3.620 24.392 6.738 0.135 / 1.912 

HANDT 4.686 25.802 5.506 0.123 / 1.886 

imHANDT 5.441 25.479 4.683 0.080 / 1.595 

 

Fig. 8(a) shows the convergence of NDT. It shows that 

NDT would stop after the second iteration. Fig. 9(a) and Fig. 

9(b) show the score functions of NDT against the step 

length at the first and second iterations. The step length 

obtained at second iteration is approximately zero. If the 

step length is shorter than threshold, we regard that the 

registration is converged.  

As shown in Table III, the translation and rotation errors 

of HANDT and the improved HANDT are lower than NDT. 

The reason is that the reference point cloud is more 

geometrically well-represented by distributions of hue 

groups. In addition, the algorithms find better 

correspondences than NDT. However, the runtime of 

HANDT and the improved HANDT are longer than NDT. 

Fig. 8(b) and Fig. 8(c) show HANDT and the improved 

HANDT need more iterations until stop than NDT.  

The improved HANDT performs the more accurate 

registration than HANDT due to the Mahalanobis distance 

score function. For a point far away from the mean of the 

voxel, whose eigenvalues of the covariance matrix are 

small, the score of the point computed by improved. 
 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 9. Score functions. (a) and(b) are the score functions of NDTplotted 

against the step length. (c) and (d) are those of HANDT. (e) and (f) are 

those of the improved HANDT. (a), (c), (e) are the score functions of the 1st 

iterations, and (b), (d), (f) are those of the 2nd iterations. 

 

HANDT is significant while the score computed by 

HANDT is approximately zero. It means that all of the 

newly scanned points in the voxel participate in scores, first 

and second order partial derivatives. Due to this fact, the 

improved HANDT registers all of the newly scanned points 

to reference point cloud.  

The initial guess of the step length of NDT or HANDT is 

usually one. As the graphs shown in Fig. 9(a) and (b), which 

are the score function against the step length at the first and 

second iterations of NDT, the score increases as the step 

length decreases, so does HANDT as shown in Fig. 9(c) and 

(d). On the other hand, the initial guess of the improved 

HANDT is better not to be one because the step length 

obtained by Armijo‟s rule is usually very big as shown in 

Fig. 9(e), and it would lead to the failure of registration. In 
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In this experiment, 𝑛𝑕𝑢𝑒  of HANDT and the improved 

HANDT are set to 12. The results are as shown in Table III. 

Graphs in Fig. 8 show the convergence of algorithms. The 

point cloud sat 9116.45 and 9116.68 second in 

„freiburg3_structure_texture‟ data set are used. The data is 

also used to show the score function against the step length 

as shown in Fig. 9. 

 



this experiment, the initial guess of the step length is chosen 

as  𝐇𝑘
−1𝐠𝑘 , which is much smaller than one. Since the 

initial guess usually satisfies Armijo‟s rule, the runtime per 

iteration of the improved HANDT is shorter than HANDT 

and NDT. 

 

V. CONCLUTION 

The performance of improved HANDT is evaluated by 

benchmark data sets. As results, the accuracy of the 

registration is much better than the cases of NDT and 

HANDT. The improvement is approached by changing the 

weighted score function to Mahalanobis distance function 

and the modification of the hue mean and hue variance. 

Improved HANDT is expected to overcome the difficulty of 

the registration at flat or repeated structure by the hue.  
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