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Abstract—On administrating a computer system, its 

configuration data is important. Thus, the system usually treats 

to protect the configuration data. Moreover, recently, computer 

systems that consist of large scale network, such as distributed 

systems, cloud systems and so on, have been developed. For 

these systems, it is an important issue to administrate the 

configuration data of each computer of the system. On the other 

hand, in general, a computer system becomes more complicated 

because of not only its scale but also its improvement of the 

services. Then, this causes increase in size of its configuration 

data. 

In this paper, we introduce the k-monitoring remote data 

problem where the remote data rarely happens to be changed. 

The data is expected to be changed in at most k bits. We assume 

that a remote computer and a local computer are connected by 

network, and share the same data of length N at the beginning. 

We also assume that some of bits of the remote data are 

expected to be changed, after a while. Then, the problem is 

finding the protocol between the computers so that the local 

computer outputs the each position of the changed bits. 

In this paper, we propose the protocols within the 

communication bits of length 𝚯 𝐥𝐨𝐠 𝑵  for 1- and 2-Monitoring 

Remote Data Protocol. 

 
Index Terms—Humming distance, communication 

complexity, redundant coding.  

 

I. INTRODUCTION 

On administrating a computer system, its configuration 

data is important. For example, when we would administrate 

many computers at a computer center, we should keep each 

registry, the configuration data of an OS such as MS 

Windows, of the computers identical. While each data is 

basically kept identical for all of the computers, since system 

updates cause the change of the configuration data, we should 

assume that the configuration data takes arbitrary value. 

On the other hand, recently, computer systems that consist 

of a large scale network, such as distributed systems, cloud 

systems and so on, have been developed. These systems 

consist of a lot of computers. Nevertheless, each computer of 

a system does not usually have the different role. Specially, in 

order that the system has the redundancy and the scalability, 

it usually consists of computers with almost the same 

configuration. Thus, it is important for the administrators to 

keep the configuration data of each computer identical. 

Moreover, in general, a computer system becomes more 
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complicated because of not only its scale but also its 

improvement of services. This is caused by improvement of 

performance, abstraction, and virtualization of the 

component (containing OSes) of the computer systems. This 

enables the system administration to increase flexibility and 

the amount of information. Thus, this also occurs to increase 

the amount of the configuration data. 

In this paper, we introduce the monitoring remote data 

problem where the remote data rarely happens to be changed. 

We assume that a remote computer and a local computer are 

connected by network, and share the same data of length N at 

the beginning. We also assume that some of bits of the remote 

data are expected to be changed, after a while. Then, it is the 

problem to find the protocol between the computers so that 

the local computer outputs the each position of changed bits.  

First, we can consider the trivial solution that (1) the 

remote computer sends the all configuration data to the local 

computer, (2) then the local computer receives the remote 

configuration data, and computes the differences. (3) The 

local computer outputs each position of differences between 

the remote data and the local data. Thus, the problem can be 

solved if the protocol is allowed to communicate messages up 

to O 𝑁  bits, where 𝑁 is the length of the data that both sides 

own. However, do there exist any protocols that 

communicate messages in at most o 𝑁  bits? 

Secondly, we can consider to apply a hash function such as 

MD5 [1] to create the message. A hash function is a 

many-one function from a bit stream of an arbitrary length to 

a bit stream of the fixed length. It has the property that it is 

difficult to compute the original bit stream from a function 

value. Moreover, the function value is expected to be 

changed whenever the original bit stream is slightly changed 

even if the original bit stream is long. Thus, we can consider 

an algorithm that for given a hash function value from the 

remote side, the local computer seeks difference by searching 

all slightly changed data where the hush function value 

matches the received value. However, since the length of the 

hash function value is limited, some two slightly different 

changes for a sufficient long bit stream must yield the same 

hash function value. Then, so far as applying a hash function, 

we cannot determine each position of the changed bits for a 

sufficient long bit stream. 

Now, in this study, in order to formulate the monitoring 

remote data problem, we propose the following conditions:  

1) The remote computer and the local computer has the 

same data at the beginning; 

2) The remote data might be changed, but the degree of 

change is limited; 

3) The length of communication messages is limited to 

𝑜 𝑁  where the length of the data is 𝑁; 
4) Finally, the local computer outputs each position of the 

changes of the remote data. 

From the point of view that the data is slightly changed, 
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our study is resembling to the theory of error-correction code, 

and the theory of redundant array. However, our study is 

different from these since our study assumes that the length 

of data is not limited. 

In this paper, we propose the protocols for the problem 

within the communication bits of length Θ log 𝑁  with the 

assumption that the number of changed bits is limited within 

at most either one or two. 

The structure of this paper is the following: In Section II, 

we introduce the related works. In Section III, we define 

some notations. Then, Section IV, we propose several 

theories and protocols for 1 bit and 2 bit difference. In 

Section V we conclude and propose a conjecture.  

 

II. RELATED WORKS 

Yao proposed the notion of communication complexity [2]. 

This investigates the complexity of functions by comparing 

the length of required communication messages to compute 

the function. Assume that the person 𝑃1  has an integer 

𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 1) and the person 𝑃2  has another integer 

𝑗 (0 ≤ 𝑖 ≤ 𝑛 − 1). For given a function 𝑓 ∶ ℕ × ℕ →  0,1 , 
this study investigates the amount of bits for communication 

between 𝑃1  and 𝑃2  that function f requires to compute the 

value 𝑓(𝑖, 𝑗). One of what he showed is that the identification 

function requires at least log2 𝑛 − 2 bits. Note that it is trivial 

to compute the identification function within  log2 𝑛  bits 

message (for example, 𝑃1 sends 𝑖 itself to 𝑃2). 

The study of communication complexity has no restriction 

for the input data except for the assumption that the input data 

belongs to the fixed set. Moreover, the study aims to compare 

the complexity between functions by the amount of 

communication bits. On the other hand, our study considers 

the amount of communication bits to compute each position 

of difference between two data by assuming the strong 

correlation between them. That is, our study is different from 

the one of communication complexity in the point of the 

restriction for the input data. 

By considering sharing the same data as a redundant 

storage, and the detection of the difference of the data as 

error-correcting, we can say that our study would concern 

with the study of data redundancy such as RAID5 and RAID6 

[3], [4]. RAID5 and RAID6 are the storage virtualization 

technology to store every data of a few bit into separate 

several storages by dividing information with a certain 

method. RAID5 requires three storages, and RAID6 requires 

four storages. Then, RAID5 can correct data even if one 

storage fails, and RAID6 can also correct data even if at most 

two storages fail. The method to dividing information applies 

the theory of Galois field. Though the model of this problem 

is different from the one of our study, this study contributes to 

the basic idea of our algorithm.  

 

III. PRELIMINARY 

Let 𝑁 be the bit length of the data. 𝑃𝑟  denotes a remote 

player and 𝑃𝑙  denotes a local player. Let 𝐫 =  (𝑟1, 𝑟2, . . . , 𝑟𝑁) 

be the bit stream that 𝑃𝑟  owns, and 𝐥 =  (𝑙1, 𝑙2, . . . , 𝑙𝑁) be the 

bit stream that 𝑃𝑙  owns, where 𝐫, 𝐥 ∈  0,1 𝑁. 𝐻(𝐫, 𝐥) denotes 

the Humming distance between r and l. 

For a bit stream 𝐱 ∈  0,1 𝑁 , 𝑖𝑛𝑑𝑒𝑥(𝐱)  =  𝑖 | 𝑥𝑖 = 1  
denotes the set of positions of one. For 1 ≤ 𝑖 ≤ 𝑁,  𝑖  denotes 

the binary representation of i with length  log2 𝑁 .  𝑁, 𝑘  

denotes (1𝑘 , 2𝑘 , . . . , 𝑁𝑘) . 𝟎 =  (0, 0, … ,0)  denotes the bit 

stream of 0 with length N. 

For natural number m, ℤ/𝑚ℤ denotes a group with order 

m. ⨁ denotes its operator and 0 denotes its identity. 𝐺𝐹(𝑞) 

denotes the Galois field with order of q. +, ⋅, 0, and 1 denotes 

the addition symbol, the multiplication symbol, the zero 

element symbol, and the unity element symbol, respectively. 

Let  𝑆  be the order of S. 

Definition 1. Let player 𝑃𝑟  have a bit stream r with bit 

length N, and player 𝑃𝑙  have a bit stream l with bit length N. 

k-Monitoring Remote Data Problem is the problem that 𝑃𝑙  

outputs each position of different between r and l by 

communicating each other, when 𝐻(𝐫, 𝐥) is at most k. 

 

IV. PROTOCOLS 

A. Lower Bound 

Theorem 1. k-Monitoring Remote Data Problem requires 

communication message of more than Ω(log2 𝑁) bits. 

Proof. For a bit stream l, consider a set 𝑅 =  𝐫|𝐻(𝐫, 𝐥) ≤
𝑘 . The number of elements of R is given by (1): 

 𝑅 =   
𝑁
𝑖
 𝑘

𝑖=0 .                           (1) 

Whichever r is taken from R, 𝑃𝑙  must output the different 

value. Thus, 𝑃𝑙  must communicate the enough amount of 

information to distinguish each element of R with 𝑃𝑟 . Then, 

we have the minimum amount of communication bits by (2).  

 log2 𝑅  ≥  log2  
𝑁
𝑘

   

≥  log2 𝑁 .                            
(2)

 

Therefore, the minimum amount of communication bits is  

Ω(log2 𝑁). 

B. A Protocol Computing the Difference of One Bit 

In this section, for the remote data r and the local data l, we 

assume that the humming distance between r and l is at most 

one.  

Let’s consider a finite undirected graph such that its vertex 

set consists of the whole bit streams of the length N, and each 

pair of vertices is connected if the humming distance of the 

pair is equal to one. This graph is called a Boolean cube (Fig. 

1). According to the definition, each degree of the vertices is 

N. Now, we can consider the label of each edge that indicates 

the position of the changed bit. Then, we can easily know that 

for every vertex, each label of edges connected to the vertex 

is different each other, and formed of the numbers from 1 to 

N (Fig. 2). 

Now, we propose a protocol such that the players do not 

communicate each other, but simply the remote player 𝑃𝑟  

computes a value of a function and sends the value to the 

local player 𝑃𝑙  only. Let 𝑐(⋅)  be the function that 𝑃𝑟  

computes. 

1) Protocol 1 

1) At the remote side, 𝑃𝑟  computes 𝑚 =  𝑐(𝐫), then sends 

m to 𝑃𝑙 ; 
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2) At the local side, 𝑃𝑙  receives m, computes the position 

of the changed bit by using m and l, then outputs it. 

Now, for 0, the bit stream of length N where all bits are 0, 

consider 𝑐(𝟎). Moreover, for any bit stream r, consider the 

representation of 𝑐(𝐫) as the path from 0 to r on the Boolean 

cube. Then, we consider the transformation for the value of c. 

Let 𝑠𝑗  (1 ≤ 𝑗 ≤ 𝑁) be the transformation between 𝑐(𝐱) and 

𝑐(𝒚) where x and y differ only at the j-th bit, and let S be the 

set of all 𝑠𝑗  (1 ≤ 𝑗 ≤ 𝑁) and the identity transformation. 

Then, we can represent 𝑐(𝐫) as a sequence of 𝑠𝑟1  
, . . . , 𝑠𝑟𝑛

, 

where 𝑟1, . . . , 𝑟𝑛  are the positions of one in r and 𝑐(𝐫)  =

 𝑠𝑟𝑛
(… (𝑠𝑟1

 (𝑐(𝟎)))) holds. 

 

 
Fig. 1. Boolean cube. 

 

 
Fig. 2. Assignment of the edge label. 

 

Lemma 2. S is a finite abelian group. 

Proof. Let e be the identity transformation of S. Consider 

about the composition of the elements of S. The composition 

has the following properties: 

1) It is equivalent to invert i-th bit and j-th bit before invert 

k-th bit and to invert i-th bit before invert and j-th bit and 

k-th bit; 

2) It is equivalent to apply the same transformation twice 

and to apply nothing. 

3) It is equivalent to invert i-th bit before invert j-th bit and 

to invert j-th bit before invert i-th bit. 

Let ⨁ denote the composition of transformations. Then, 

we can express the above properties as (3), (4), and (5) for 

𝑖, 𝑗, 𝑘 ∈ 𝑆: 

 

  𝑖 ⨁ 𝑗  ⨁ 𝑘 =  𝑖 ⨁   𝑗 ⨁ 𝑘  ,                (3) 

 

𝑘 ⨁ 𝑘 =  𝑒,                               (4) 

 

𝑖 ⨁  𝑗 =  𝑗 ⨁ 𝑖.                            (5) 

 

Thus, since we show that S has the associative law, the 

property that every element has an inverse element, and the 

commutative law, then S is a finite abelian group.  

Lemma 3. If S contains the transformations for 1 bit 

difference only, the minimum group of S is isomorphic to 

ℤ/2mℤ, where m is at least  log2(𝑁 + 1) . 
Proof. Since S is a finite abelian group, S can be 

decomposed into the direct sum of cyclic groups of 

primepower order, according to the fundamental theorem. 

Now, we assume that S is the minimum group, and S can be 

decomposed into 𝐾⨁ℤ/𝑝𝑘ℤ where K is a group, 𝑝 (𝑝 ≥ 3) 

is a prime, and 𝑘 ≥  1 . However, there exists only one 

element s in ℤ/𝑝𝑘ℤ such that 𝑠⨁ 𝑠 =  𝑒 since 𝑝𝑘  is an odd 

number. Then the number of elements s such that 𝑠⨁ 𝑠 =  𝑒 

in S and the number of elements s such that 𝑠 ⨁  𝑠 =  𝑒 in K 

are equal. Thus, by considering their orders, this implies 

 𝑆  >   𝐾 . However, this contradicts the assumption of the 

minimality. That is, if S is the minimum, then S is isomorphic 

to ℤ/2𝑚ℤ for some m. 

On the other hand, for any bit streams r and l, every s must 

be contained by S, where 𝐻(𝐫, 𝐥)  =  1 and 𝑠(𝐫)  =  𝐥. Since 

the length of the bit stream is N, each transformation between 

the one bit difference should have the different 

representation. 

Moreover, S must have the identity transformation. Thus, 

the order of S is more than 𝑁 +  1 . Therefore, since 

 
ℤ

2𝑚 ℤ
 ≥ 𝑁 + 1 holds, we have  log2 𝑁 + 1  ≤ 𝑚.  

Now, let us consider the way to compute 𝑐(⋅) concretely. 

We consider the sequence of elements of S that are 

corresponding to ones of the bit stream r. Let the positions of 

one in r be 𝑟1, ..., and 𝑟𝑛 . Let 𝑠𝑟1
, ..., and 𝑠𝑟𝑛

 be the elements 

of S that invert 𝑟1-th, ..., and 𝑟𝑛 -th bit, respectively. Then, 

according to (6), we can obtain 𝑠𝑟  in S. 

 

𝑐(𝐫)  =  𝑠𝑟𝑛
(… (𝑠𝑟1

 (𝑐(𝟎)))) 

 =  (𝑠𝑟𝑛
⊕ … ⊕ 𝑠𝑟1

 )(𝑐(𝟎))  

=  𝑠𝑟 𝑐 𝟎  for some 𝑠𝑟 ∈ 𝑆.              

(6)

 

 

Moreover, for a bit stream l that 𝐻(𝐥, 𝐫)  =  1 holds, there 

exists a transformation 𝑠 ∈  𝑆 that satisfies (7) and we obtain 

𝑠𝑙 ∈ 𝑆. 

 

𝑐(𝐥)  =  𝑠(𝑐(𝐫))  
=  (𝑠  ⊕ 𝑠𝑟𝑛

⊕ … ⊕ 𝑠𝑟1
 )(𝑐(𝟎))  

=  𝑠𝑙 𝑐 𝟎   for some 𝑠𝑙 ∈ 𝑆.                     

(7)

 

 
Thus, since S is a finite abelian group, both compositions 

of transformations that yield 𝑐(𝐫) and 𝑐(𝐥) are corresponding 

to some element 𝑠𝑟  and 𝑠𝑙  of S, where 𝑠𝑟  =  𝑠⨁𝑠𝑙  . Then, 

when the remote player 𝑃𝑟  computes and send 𝑠𝑟 , then the 

local player 𝑃𝑙  can receive 𝑠𝑟 , compute 𝑠𝑙  and 𝑠𝑟⨁𝑠𝑙  =  𝑠, 

and output s. Even if both 𝑠𝑟  and 𝑠𝑙  might not be 

corresponding to the position of the bit changes, s must be 

corresponding to the position of the bit change, since it is 

guaranteed that s is corresponding to a single bit change. 

Now, we show an algorithm that computes 𝑐(𝐫) as (8): 
 

                      (8) 
 

Thus, we propose Protocol 2 as following: 

𝑐 𝐫 = ⊕ 𝑖∈𝑖𝑛𝑑𝑒𝑥  𝒓     𝑖 .
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2) Protocol 2 

1) At the remote side, according to (8), 𝑃𝑟  computes 

𝑚 =  𝑐(𝐫) and sends it to 𝑃𝑙 ; 

2) At the local side, once 𝑃𝑙  receives m, 𝑃𝑙  computes 

𝑘 =  𝑚 ⨁ 𝑐(𝐥) by using m and (8); 

3) If 𝑘 =  0 , 𝑃𝑙  outputs “unchanged,” otherwise, 𝑃𝑙  

outputs the position corresponding to k of the changed 

bit. 

Theorem 4. There exists a protocol solving 1-Monitoring 

Remote Data Problem, where the number of message bits is 

𝑂(log2 𝑁), the time to compute the communication message 

is 𝑂(𝑁 log2 𝑁), and the time to compute the position of the 

changed bit is 𝑂(𝑁 log2 𝑁). 

C. A Protocol Computing the Difference of at Most Two 

Bits 

We know that ℤ/2𝑚ℤ is isomorphic to the additive group 

of 𝐺𝐹(2𝑚 ). Now, we correspond the vector representation of 

elements of 𝐺𝐹(2𝑚 ) to the binary representation of natural 

numbers. Thus, we can denote the elements of 𝐺𝐹(2𝑚 ) as the 

natural numbers such as 0, 1, . . . , 2𝑚 − 1 . We denote the 

inner product of vectors x and y consisting of elements of 

𝐺𝐹(2)  as 𝐱 ⋅  𝐲 . According to these definition, we can 

consider that 𝐫, 𝐥 ∈ 𝐺𝐹 2 𝑁 and ⟨𝑁, 𝑘⟩  ∈  𝐺𝐹 2𝑚 𝑁, where 

m satisfies 𝑁 ≤ 2𝑚 . 

Then we can rewrite protocol 2 as following: 

1) Protocol 2’ 

1) 𝑃𝑟  computes 𝑚 =  𝐫 ⋅  𝑁, 1 , then send it to 𝑃𝑙 ; 

2) Once 𝑃𝑙  receives m, 𝑃𝑙  computes 𝑘 = 𝑚 + 𝐥 ⋅ ⟨𝑁, 1⟩; 
3) If 𝑘 =  0 , 𝑃𝑙  outputs “unchanged,” otherwise, 𝑃𝑙  

outputs the position corresponding to k of the changed 

bit.  

For the remote data  and the local data 𝐥, we propose 

Protocol 3 for 2-Monitoring Remote Data Problem. 

2) Protocol 3 

1) 𝑃𝑟  computes 𝑚1 = 𝐫 ⋅ ⟨𝑁, 1⟩ , 𝑚2 = 𝐫 ⋅ ⟨𝑁, 2⟩ , and 

𝑚3 = 𝐫 ⋅ ⟨𝑁, 3⟩, then send them to 𝑃𝑙 ; 

2) Once 𝑃𝑙  receives 𝑚1 , 𝑚2 , and 𝑚3 , 𝑃𝑙  computes 

𝑘1 = 𝑚1 + 𝐥 ⋅ ⟨𝑁, 1⟩ , 𝑘2 = 𝑚2 + 𝐥 ⋅ ⟨𝑁, 2⟩ , and 

𝑘3 = 𝑚3 + 𝐥 ⋅ ⟨𝑁, 3⟩; 
3) By using 𝑘1 , 𝑘2 , and 𝑘3 , 𝑃𝑙  outputs a message by 

examining the following conditions: 

a) If 𝑘1 = 0, then 𝑃𝑙  outputs “unchanged”; 

b) If 𝑘1 ≠ 0  but 𝑘1𝑘2 = 𝑘3 , then 𝑃l  outputs the 

position corresponding to 𝑘1 ; Note that this 

condition means 𝐻(𝐫, 𝐥) is equal to one;  

c) If 𝑘1 ≠ 0  nor 𝑘1𝑘2 ≠ 𝑘3 , then 𝑃𝑙  seeks a, b in 

𝐺𝐹(2𝑚 )  where (9) holds, then outputs the two 

positions corresponding to a and b. 

 

         (9) 

 

Theorem 5. Protocol 3 can computes the positions of 

changed bits collectly. 

Proof. Let us consider separately the cases of the value of 

the hamming distance: 

In the case that 𝐻(𝐫, 𝐥) is zero. that is, 𝐫 = 𝐥: 
According to (10), we can see that 𝑘1 is always zero. 

𝑘1 = 𝑚1 + 𝐥 ⋅ ⟨𝑁, 1⟩ 
= 𝐫 ⋅  𝑁, 1 + 𝐥 ⋅  𝑁, 1  
=  𝐫 + 𝐥 ⋅  𝑁, 1  
= 𝟎 ⋅  𝑁, 1  

= 0.                                                         

(10)

 

 

Then, in Protocol 3, 𝑃𝑙  outputs “unchanged” when 

condition 3a is examined. 

In the case that 𝐻(𝐫, 𝐥) is one:  

Assume that the bit streams differ at, say, j-th bit. Then, we 

have (11). 

𝑘1 = (𝐫 + 𝐥) ⋅ ⟨𝑁, 1⟩ = 𝑗 
𝑘2 =  𝐫 + 𝐥 ⋅ ⟨𝑁, 2⟩ = 𝑗2, 
𝑘3 =  𝐫 + 𝐥 ⋅ ⟨𝑁, 3⟩ = 𝑗3.                

(11)

 

 

In this case, since j is not zero, Condition 3a does not hold. 

On the other hand, since 𝑘1𝑘2 = 𝑗 ⋅ 𝑗2 = 𝑗3 = 𝑘3  holds, 

Condition 3b still holds. Then, in Protocol 3, 𝑃𝑙  can detect the 

position of the changed bit as 𝑘1 = 𝑗 collectly. 

In the case that 𝐻(𝐫, 𝐥) is two: 

Assume that the bit streams differ at, say, i-th and j-th bits, 

where 𝑖 ≠ 𝑗 nor 𝑖𝑗 ≠ 0. 

Then, we have (12). 

 

𝑘1 =  𝑟 + 𝑙 ⋅ ⟨𝑁, 1⟩ = 𝑖 + 𝑗, 
𝑘2 =  𝑟 + 𝑙 ⋅ ⟨𝑁, 2⟩ = 𝑖2 + 𝑗2, 
𝑘3 = (𝑟 + 𝑙) ⋅ ⟨𝑁, 3⟩ = 𝑖3 + 𝑗3.          

(12)

 

 

Since 𝑖 ≠ 𝑗 implies 𝑖 + 𝑗 ≠ 0, Condition 3a does not hold. 

On the other hand, Condition 3b yields (13). 

 

𝑘1𝑘2 − 𝑘3 =  𝑖 + 𝑗 ⋅  𝑖2 + 𝑗2 − (𝑖3 + 𝑗3) 

= 𝑖2𝑗 + 𝑖𝑗2 = 𝑖𝑗 𝑖 + 𝑗 .                 (13) 

 

In order that (13) is equal to 0, 𝑖 + 𝑗 must be zero, while 

𝑖𝑗 ≠ 0. This implies that i must be equal to j. However, this 

contradicts the assumption. Therefore, Condition 3b does not 

hold ether. 

Hence, 𝑃𝑙  enters Condition 3c, and seeks a and b where (9) 

holds. Assume that there exists a pair of solution, say, i and j. 

Now, we show that the different elements, say, a and b 

from i and j can not satisfy (9). 

From 𝑖 + 𝑗 = 𝑎 + 𝑏 = 𝑘1, we find that b is 𝑖 + 𝑎 + 𝑗. 
 

 𝑖3 + 𝑗3 −  𝑎3 + 𝑏3  

= 𝑖3 + 𝑗3 + 𝑎3 +  𝑖 + 𝑗 + 𝑎 3 

= 𝑖3 + 𝑗3 + 𝑎3  + 𝑖3 + 𝑗3 + 𝑎3 

 +𝑖2𝑗 + 𝑖𝑗2 + 𝑎𝑖2 + 𝑎2𝑖 + 𝑎2𝑗 + 𝑎𝑗2 
= (𝑖 + 𝑎)(𝑎 + 𝑗)(𝑖 + 𝑗)                  

(14)

 

 
Then, if two pair of elements a and b satisfy (9), 𝑖3 + 𝑗3 

and 𝑎3 + 𝑏3 must equal. However, since (14) must be zero, a 

should be equal to either i or j, while 𝑖 ≠ 𝑗. However, by 

using 𝑘1, if 𝑎 = 𝑖 then 𝑏 = 𝑗, otherwise, if 𝑎 = 𝑗 then 𝑏 = 𝑖. 
This contradicts the assumption. That is, if there is a solution, 

the solution is unique. 

Therefore, in every case, Protocol 3 can determine the 

position of the changed bits.  

Next, we propose an effective algorithm that seeks a and b 

where (9) holds. According to Theorem 5, we have already 

known that we can find a and b by searching all exhaustively. 

 

𝑎 + 𝑏 = 𝑘1,

𝑎2 + 𝑏2 = 𝑘2,

𝑎3 + 𝑏3 = 𝑘3.

       

𝐫



  

Here, we propose a probabilistic algorithm with polynomial 

time for log 𝑁. 

Algorithm 4 

1) Compute 𝑠 = 𝑘2 − 𝑘3/𝑘1 over 𝐺𝐹(2𝑚 ); 

2) Solve the quadratic equation (15) over 𝐺𝐹(2𝑚 ) by using 

Itoh’s algorithm [5]; 

 

𝑥2 + 𝑘1𝑥 + 𝑠 = 0.                         (15) 

 

3) The solution, say, 𝑥 = 𝑎, 𝑏  is corresponding to the 

positions of the changed bit. 

Note that we quote Itoh’s algorithm [5] as the following: 

1) input: 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏 over 𝐺𝐹(2𝑚 ); 

2) Choose 𝑐 ∈ 𝐺𝐹(2𝑚 ) at random(𝑐 ≠ 0); 

3) if 𝑇𝑟(𝑐𝑎) = 0  then return to 2), where  𝑇𝑟 𝑥 = 𝑥 +
𝑥2 … + 𝑥2𝑚−1; 

4) Compute 𝑔(𝑥) = 𝐺𝐶𝐷(𝑓(𝑐−1𝑥, 𝑇𝑟(𝑥)); 

5) output 𝑐−1𝑑 where 𝑔 𝑥 = 𝑥 − 𝑑.  
Rabin and Itoh developed algorithms to solve quadratic 

equation over finite fields [5], [6]. Notice that Itoh’s 

algorithm is some constant rate faster than Rabin’s one. 

Lemma 6. Algorithm 4 can computes a and b collectly in 

average polynomial time for m. 

Proof. Let the solution be, say, i and j. 

Then, we know that s is ij, according to (16). 

 

𝑠 = 𝑘2 − 𝑘3/𝑘1 

=  𝑖2 + 𝑗2 − (𝑖3 + 𝑗3)/(𝑖 + 𝑗) 

=  𝑖2 + 𝑗2 − (𝑖2 + 𝑖𝑗 + 𝑗2) 

= 𝑖𝑗.

                                         (16) 

 

Then, (15) can be factorized as (17). 

 

𝑥2 + 𝑘1𝑥 + 𝑠 = 𝑥2 + (𝑖 + 𝑗)𝑥 + 𝑖𝑗 
=  𝑥 + 𝑖  𝑥 + 𝑗 .

                    (17) 

 

Thus, we can see that (15) is the quadratic equation that has 

the solution as the positions of the changed bits. 

Since s can be found in polynomial time for m and Itoh’s 

algorithm can be proceed in average polynomial time for m, 

then algorithm 4 can be proceeded in average polynomial 

time for m.  

Theorem 7. There exists a protocol solving 2-Monitoring 

Remote Data Problem, where the number of message bits is 

𝑂(log2 𝑁), the time to compute the communication message 

is 𝑂(𝑁 log2 𝑁) , and the average time to compute the 

position of the changed bit is 𝑂(𝑁 log2 𝑁). 

 

V. CONCLUSION 

In the area of Communication Complexity, the problem 

whether two data that are placed separately are the same or 

not is studied. In this study, we propose k-Monitoring Remote 

Data Problem where two input data differ in at most k bits and 

a player can use one data. Then, we propose a protocols for 

1-Monitoring Remote Data Problem where the number of 

message bits is 𝑂(log2 𝑁) , the time to compute the 

communication message is 𝑂(𝑁 log2 𝑁) , and the time to 

compute the position of the changed bit is 𝑂(𝑁 log2 𝑁) . 

Moreover, we propose a protocols for 2-Monitoring Remote 

Data Problem where the number of message bits is 

𝑂(log2 𝑁), the time to compute the communication message 

is 𝑂(𝑁 log2 𝑁), and the average time to compute the position 

of the changed bit is 𝑂(𝑁 log2 𝑁). 

Now we propose the following conjecture: 

Conjecture 8. There exists a protocol solving 

k-Monitoring Remote Data Problem, where the number of 

message bits is 𝑂(log2 𝑁) , the time to compute the 

communication message is 𝑂(𝑁 log2 𝑁) , and the average 

time to compute the position of the changed bit is 

𝑂(𝑁 log2 𝑁).  
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