



Abstract—On administrating a computer system, its

configuration data is important. Thus, the system usually treats

to protect the configuration data. Moreover, recently, computer

systems that consist of large scale network, such as distributed

systems, cloud systems and so on, have been developed. For

these systems, it is an important issue to administrate the

configuration data of each computer of the system. On the other

hand, in general, a computer system becomes more complicated

because of not only its scale but also its improvement of the

services. Then, this causes increase in size of its configuration

data.

In this paper, we introduce the k-monitoring remote data

problem where the remote data rarely happens to be changed.

The data is expected to be changed in at most k bits. We assume

that a remote computer and a local computer are connected by

network, and share the same data of length N at the beginning.

We also assume that some of bits of the remote data are

expected to be changed, after a while. Then, the problem is

finding the protocol between the computers so that the local

computer outputs the each position of the changed bits.

In this paper, we propose the protocols within the

communication bits of length 𝚯 𝐥𝐨𝐠 𝑵 for 1- and 2-Monitoring

Remote Data Protocol.

Index Terms—Humming distance, communication

complexity, redundant coding.

I. INTRODUCTION

On administrating a computer system, its configuration

data is important. For example, when we would administrate

many computers at a computer center, we should keep each

registry, the configuration data of an OS such as MS

Windows, of the computers identical. While each data is

basically kept identical for all of the computers, since system

updates cause the change of the configuration data, we should

assume that the configuration data takes arbitrary value.

On the other hand, recently, computer systems that consist

of a large scale network, such as distributed systems, cloud

systems and so on, have been developed. These systems

consist of a lot of computers. Nevertheless, each computer of

a system does not usually have the different role. Specially, in

order that the system has the redundancy and the scalability,

it usually consists of computers with almost the same

configuration. Thus, it is important for the administrators to

keep the configuration data of each computer identical.

Moreover, in general, a computer system becomes more

Manuscript received September 10, 2014; revised November 18, 2014.

N. Sakamoto is with the Department of Information and Communication

Engineering, Tokyo Denki University, Tokyo, Japan (e-mail:

sakamoto@c.dendai.ac.jp.)

complicated because of not only its scale but also its

improvement of services. This is caused by improvement of

performance, abstraction, and virtualization of the

component (containing OSes) of the computer systems. This

enables the system administration to increase flexibility and

the amount of information. Thus, this also occurs to increase

the amount of the configuration data.

In this paper, we introduce the monitoring remote data

problem where the remote data rarely happens to be changed.

We assume that a remote computer and a local computer are

connected by network, and share the same data of length N at

the beginning. We also assume that some of bits of the remote

data are expected to be changed, after a while. Then, it is the

problem to find the protocol between the computers so that

the local computer outputs the each position of changed bits.

First, we can consider the trivial solution that (1) the

remote computer sends the all configuration data to the local

computer, (2) then the local computer receives the remote

configuration data, and computes the differences. (3) The

local computer outputs each position of differences between

the remote data and the local data. Thus, the problem can be

solved if the protocol is allowed to communicate messages up

to O 𝑁 bits, where 𝑁 is the length of the data that both sides

own. However, do there exist any protocols that

communicate messages in at most o 𝑁 bits?

Secondly, we can consider to apply a hash function such as

MD5 [1] to create the message. A hash function is a

many-one function from a bit stream of an arbitrary length to

a bit stream of the fixed length. It has the property that it is

difficult to compute the original bit stream from a function

value. Moreover, the function value is expected to be

changed whenever the original bit stream is slightly changed

even if the original bit stream is long. Thus, we can consider

an algorithm that for given a hash function value from the

remote side, the local computer seeks difference by searching

all slightly changed data where the hush function value

matches the received value. However, since the length of the

hash function value is limited, some two slightly different

changes for a sufficient long bit stream must yield the same

hash function value. Then, so far as applying a hash function,

we cannot determine each position of the changed bits for a

sufficient long bit stream.

Now, in this study, in order to formulate the monitoring

remote data problem, we propose the following conditions:

1) The remote computer and the local computer has the

same data at the beginning;

2) The remote data might be changed, but the degree of

change is limited;

3) The length of communication messages is limited to

𝑜 𝑁 where the length of the data is 𝑁;
4) Finally, the local computer outputs each position of the

changes of the remote data.

From the point of view that the data is slightly changed,

Monitoring Remote Data Problem

Naoshi Sakamoto

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

36DOI: 10.7763/IJCTE.2016.V8.1016

 International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

37

our study is resembling to the theory of error-correction code,

and the theory of redundant array. However, our study is

different from these since our study assumes that the length

of data is not limited.

In this paper, we propose the protocols for the problem

within the communication bits of length Θ log 𝑁 with the

assumption that the number of changed bits is limited within

at most either one or two.

The structure of this paper is the following: In Section II,

we introduce the related works. In Section III, we define

some notations. Then, Section IV, we propose several

theories and protocols for 1 bit and 2 bit difference. In

Section V we conclude and propose a conjecture.

II. RELATED WORKS

Yao proposed the notion of communication complexity [2].

This investigates the complexity of functions by comparing

the length of required communication messages to compute

the function. Assume that the person 𝑃1 has an integer

𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 1) and the person 𝑃2 has another integer

𝑗 (0 ≤ 𝑖 ≤ 𝑛 − 1). For given a function 𝑓 ∶ ℕ × ℕ → 0,1 ,
this study investigates the amount of bits for communication

between 𝑃1 and 𝑃2 that function f requires to compute the

value 𝑓(𝑖, 𝑗). One of what he showed is that the identification

function requires at least log2 𝑛 − 2 bits. Note that it is trivial

to compute the identification function within log2 𝑛 bits

message (for example, 𝑃1 sends 𝑖 itself to 𝑃2).

The study of communication complexity has no restriction

for the input data except for the assumption that the input data

belongs to the fixed set. Moreover, the study aims to compare

the complexity between functions by the amount of

communication bits. On the other hand, our study considers

the amount of communication bits to compute each position

of difference between two data by assuming the strong

correlation between them. That is, our study is different from

the one of communication complexity in the point of the

restriction for the input data.

By considering sharing the same data as a redundant

storage, and the detection of the difference of the data as

error-correcting, we can say that our study would concern

with the study of data redundancy such as RAID5 and RAID6

[3], [4]. RAID5 and RAID6 are the storage virtualization

technology to store every data of a few bit into separate

several storages by dividing information with a certain

method. RAID5 requires three storages, and RAID6 requires

four storages. Then, RAID5 can correct data even if one

storage fails, and RAID6 can also correct data even if at most

two storages fail. The method to dividing information applies

the theory of Galois field. Though the model of this problem

is different from the one of our study, this study contributes to

the basic idea of our algorithm.

III. PRELIMINARY

Let 𝑁 be the bit length of the data. 𝑃𝑟 denotes a remote

player and 𝑃𝑙 denotes a local player. Let 𝐫 = (𝑟1, 𝑟2, . . . , 𝑟𝑁)

be the bit stream that 𝑃𝑟 owns, and 𝐥 = (𝑙1, 𝑙2, . . . , 𝑙𝑁) be the

bit stream that 𝑃𝑙 owns, where 𝐫, 𝐥 ∈ 0,1 𝑁. 𝐻(𝐫, 𝐥) denotes

the Humming distance between r and l.

For a bit stream 𝐱 ∈ 0,1 𝑁 , 𝑖𝑛𝑑𝑒𝑥(𝐱) = 𝑖 | 𝑥𝑖 = 1
denotes the set of positions of one. For 1 ≤ 𝑖 ≤ 𝑁, 𝑖 denotes

the binary representation of i with length log2 𝑁 . 𝑁, 𝑘

denotes (1𝑘 , 2𝑘 , . . . , 𝑁𝑘) . 𝟎 = (0, 0, … ,0) denotes the bit

stream of 0 with length N.

For natural number m, ℤ/𝑚ℤ denotes a group with order

m. ⨁ denotes its operator and 0 denotes its identity. 𝐺𝐹(𝑞)

denotes the Galois field with order of q. +, ⋅, 0, and 1 denotes

the addition symbol, the multiplication symbol, the zero

element symbol, and the unity element symbol, respectively.

Let 𝑆 be the order of S.

Definition 1. Let player 𝑃𝑟 have a bit stream r with bit

length N, and player 𝑃𝑙 have a bit stream l with bit length N.

k-Monitoring Remote Data Problem is the problem that 𝑃𝑙

outputs each position of different between r and l by

communicating each other, when 𝐻(𝐫, 𝐥) is at most k.

IV. PROTOCOLS

A. Lower Bound

Theorem 1. k-Monitoring Remote Data Problem requires

communication message of more than Ω(log2 𝑁) bits.

Proof. For a bit stream l, consider a set 𝑅 = 𝐫|𝐻(𝐫, 𝐥) ≤
𝑘 . The number of elements of R is given by (1):

 𝑅 =
𝑁
𝑖
 𝑘

𝑖=0 . (1)

Whichever r is taken from R, 𝑃𝑙 must output the different

value. Thus, 𝑃𝑙 must communicate the enough amount of

information to distinguish each element of R with 𝑃𝑟 . Then,

we have the minimum amount of communication bits by (2).

 log2 𝑅 ≥ log2
𝑁
𝑘

≥ log2 𝑁 .
(2)

Therefore, the minimum amount of communication bits is

Ω(log2 𝑁).

B. A Protocol Computing the Difference of One Bit

In this section, for the remote data r and the local data l, we

assume that the humming distance between r and l is at most

one.

Let’s consider a finite undirected graph such that its vertex

set consists of the whole bit streams of the length N, and each

pair of vertices is connected if the humming distance of the

pair is equal to one. This graph is called a Boolean cube (Fig.

1). According to the definition, each degree of the vertices is

N. Now, we can consider the label of each edge that indicates

the position of the changed bit. Then, we can easily know that

for every vertex, each label of edges connected to the vertex

is different each other, and formed of the numbers from 1 to

N (Fig. 2).

Now, we propose a protocol such that the players do not

communicate each other, but simply the remote player 𝑃𝑟

computes a value of a function and sends the value to the

local player 𝑃𝑙 only. Let 𝑐(⋅) be the function that 𝑃𝑟

computes.

1) Protocol 1

1) At the remote side, 𝑃𝑟 computes 𝑚 = 𝑐(𝐫), then sends

m to 𝑃𝑙 ;

 International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

38

2) At the local side, 𝑃𝑙 receives m, computes the position

of the changed bit by using m and l, then outputs it.

Now, for 0, the bit stream of length N where all bits are 0,

consider 𝑐(𝟎). Moreover, for any bit stream r, consider the

representation of 𝑐(𝐫) as the path from 0 to r on the Boolean

cube. Then, we consider the transformation for the value of c.

Let 𝑠𝑗 (1 ≤ 𝑗 ≤ 𝑁) be the transformation between 𝑐(𝐱) and

𝑐(𝒚) where x and y differ only at the j-th bit, and let S be the

set of all 𝑠𝑗 (1 ≤ 𝑗 ≤ 𝑁) and the identity transformation.

Then, we can represent 𝑐(𝐫) as a sequence of 𝑠𝑟1
, . . . , 𝑠𝑟𝑛

,

where 𝑟1, . . . , 𝑟𝑛 are the positions of one in r and 𝑐(𝐫) =

 𝑠𝑟𝑛
(… (𝑠𝑟1

 (𝑐(𝟎)))) holds.

Fig. 1. Boolean cube.

Fig. 2. Assignment of the edge label.

Lemma 2. S is a finite abelian group.

Proof. Let e be the identity transformation of S. Consider

about the composition of the elements of S. The composition

has the following properties:

1) It is equivalent to invert i-th bit and j-th bit before invert

k-th bit and to invert i-th bit before invert and j-th bit and

k-th bit;

2) It is equivalent to apply the same transformation twice

and to apply nothing.

3) It is equivalent to invert i-th bit before invert j-th bit and

to invert j-th bit before invert i-th bit.

Let ⨁ denote the composition of transformations. Then,

we can express the above properties as (3), (4), and (5) for

𝑖, 𝑗, 𝑘 ∈ 𝑆:

 𝑖 ⨁ 𝑗 ⨁ 𝑘 = 𝑖 ⨁ 𝑗 ⨁ 𝑘 , (3)

𝑘 ⨁ 𝑘 = 𝑒, (4)

𝑖 ⨁ 𝑗 = 𝑗 ⨁ 𝑖. (5)

Thus, since we show that S has the associative law, the

property that every element has an inverse element, and the

commutative law, then S is a finite abelian group.

Lemma 3. If S contains the transformations for 1 bit

difference only, the minimum group of S is isomorphic to

ℤ/2mℤ, where m is at least log2(𝑁 + 1) .
Proof. Since S is a finite abelian group, S can be

decomposed into the direct sum of cyclic groups of

primepower order, according to the fundamental theorem.

Now, we assume that S is the minimum group, and S can be

decomposed into 𝐾⨁ℤ/𝑝𝑘ℤ where K is a group, 𝑝 (𝑝 ≥ 3)

is a prime, and 𝑘 ≥ 1 . However, there exists only one

element s in ℤ/𝑝𝑘ℤ such that 𝑠⨁ 𝑠 = 𝑒 since 𝑝𝑘 is an odd

number. Then the number of elements s such that 𝑠⨁ 𝑠 = 𝑒

in S and the number of elements s such that 𝑠 ⨁ 𝑠 = 𝑒 in K

are equal. Thus, by considering their orders, this implies

 𝑆 > 𝐾 . However, this contradicts the assumption of the

minimality. That is, if S is the minimum, then S is isomorphic

to ℤ/2𝑚ℤ for some m.

On the other hand, for any bit streams r and l, every s must

be contained by S, where 𝐻(𝐫, 𝐥) = 1 and 𝑠(𝐫) = 𝐥. Since

the length of the bit stream is N, each transformation between

the one bit difference should have the different

representation.

Moreover, S must have the identity transformation. Thus,

the order of S is more than 𝑁 + 1 . Therefore, since

ℤ

2𝑚 ℤ
 ≥ 𝑁 + 1 holds, we have log2 𝑁 + 1 ≤ 𝑚.

Now, let us consider the way to compute 𝑐(⋅) concretely.

We consider the sequence of elements of S that are

corresponding to ones of the bit stream r. Let the positions of

one in r be 𝑟1, ..., and 𝑟𝑛 . Let 𝑠𝑟1
, ..., and 𝑠𝑟𝑛

 be the elements

of S that invert 𝑟1-th, ..., and 𝑟𝑛 -th bit, respectively. Then,

according to (6), we can obtain 𝑠𝑟 in S.

𝑐(𝐫) = 𝑠𝑟𝑛
(… (𝑠𝑟1

 (𝑐(𝟎))))

 = (𝑠𝑟𝑛
⊕ … ⊕ 𝑠𝑟1

)(𝑐(𝟎))

= 𝑠𝑟 𝑐 𝟎 for some 𝑠𝑟 ∈ 𝑆.

(6)

Moreover, for a bit stream l that 𝐻(𝐥, 𝐫) = 1 holds, there

exists a transformation 𝑠 ∈ 𝑆 that satisfies (7) and we obtain

𝑠𝑙 ∈ 𝑆.

𝑐(𝐥) = 𝑠(𝑐(𝐫))
= (𝑠 ⊕ 𝑠𝑟𝑛

⊕ … ⊕ 𝑠𝑟1
)(𝑐(𝟎))

= 𝑠𝑙 𝑐 𝟎 for some 𝑠𝑙 ∈ 𝑆.

(7)

Thus, since S is a finite abelian group, both compositions

of transformations that yield 𝑐(𝐫) and 𝑐(𝐥) are corresponding

to some element 𝑠𝑟 and 𝑠𝑙 of S, where 𝑠𝑟 = 𝑠⨁𝑠𝑙 . Then,

when the remote player 𝑃𝑟 computes and send 𝑠𝑟 , then the

local player 𝑃𝑙 can receive 𝑠𝑟 , compute 𝑠𝑙 and 𝑠𝑟⨁𝑠𝑙 = 𝑠,

and output s. Even if both 𝑠𝑟 and 𝑠𝑙 might not be

corresponding to the position of the bit changes, s must be

corresponding to the position of the bit change, since it is

guaranteed that s is corresponding to a single bit change.

Now, we show an algorithm that computes 𝑐(𝐫) as (8):

 (8)

Thus, we propose Protocol 2 as following:

𝑐 𝐫 = ⊕ 𝑖∈𝑖𝑛𝑑𝑒𝑥 𝒓 𝑖 .

 International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

39

2) Protocol 2

1) At the remote side, according to (8), 𝑃𝑟 computes

𝑚 = 𝑐(𝐫) and sends it to 𝑃𝑙 ;

2) At the local side, once 𝑃𝑙 receives m, 𝑃𝑙 computes

𝑘 = 𝑚 ⨁ 𝑐(𝐥) by using m and (8);

3) If 𝑘 = 0 , 𝑃𝑙 outputs “unchanged,” otherwise, 𝑃𝑙

outputs the position corresponding to k of the changed

bit.

Theorem 4. There exists a protocol solving 1-Monitoring

Remote Data Problem, where the number of message bits is

𝑂(log2 𝑁), the time to compute the communication message

is 𝑂(𝑁 log2 𝑁), and the time to compute the position of the

changed bit is 𝑂(𝑁 log2 𝑁).

C. A Protocol Computing the Difference of at Most Two

Bits

We know that ℤ/2𝑚ℤ is isomorphic to the additive group

of 𝐺𝐹(2𝑚). Now, we correspond the vector representation of

elements of 𝐺𝐹(2𝑚) to the binary representation of natural

numbers. Thus, we can denote the elements of 𝐺𝐹(2𝑚) as the

natural numbers such as 0, 1, . . . , 2𝑚 − 1 . We denote the

inner product of vectors x and y consisting of elements of

𝐺𝐹(2) as 𝐱 ⋅ 𝐲 . According to these definition, we can

consider that 𝐫, 𝐥 ∈ 𝐺𝐹 2 𝑁 and ⟨𝑁, 𝑘⟩ ∈ 𝐺𝐹 2𝑚 𝑁, where

m satisfies 𝑁 ≤ 2𝑚 .

Then we can rewrite protocol 2 as following:

1) Protocol 2’

1) 𝑃𝑟 computes 𝑚 = 𝐫 ⋅ 𝑁, 1 , then send it to 𝑃𝑙 ;

2) Once 𝑃𝑙 receives m, 𝑃𝑙 computes 𝑘 = 𝑚 + 𝐥 ⋅ ⟨𝑁, 1⟩;
3) If 𝑘 = 0 , 𝑃𝑙 outputs “unchanged,” otherwise, 𝑃𝑙

outputs the position corresponding to k of the changed

bit.

For the remote data and the local data 𝐥, we propose

Protocol 3 for 2-Monitoring Remote Data Problem.

2) Protocol 3

1) 𝑃𝑟 computes 𝑚1 = 𝐫 ⋅ ⟨𝑁, 1⟩ , 𝑚2 = 𝐫 ⋅ ⟨𝑁, 2⟩ , and

𝑚3 = 𝐫 ⋅ ⟨𝑁, 3⟩, then send them to 𝑃𝑙 ;

2) Once 𝑃𝑙 receives 𝑚1 , 𝑚2 , and 𝑚3 , 𝑃𝑙 computes

𝑘1 = 𝑚1 + 𝐥 ⋅ ⟨𝑁, 1⟩ , 𝑘2 = 𝑚2 + 𝐥 ⋅ ⟨𝑁, 2⟩ , and

𝑘3 = 𝑚3 + 𝐥 ⋅ ⟨𝑁, 3⟩;
3) By using 𝑘1 , 𝑘2 , and 𝑘3 , 𝑃𝑙 outputs a message by

examining the following conditions:

a) If 𝑘1 = 0, then 𝑃𝑙 outputs “unchanged”;

b) If 𝑘1 ≠ 0 but 𝑘1𝑘2 = 𝑘3 , then 𝑃l outputs the

position corresponding to 𝑘1 ; Note that this

condition means 𝐻(𝐫, 𝐥) is equal to one;

c) If 𝑘1 ≠ 0 nor 𝑘1𝑘2 ≠ 𝑘3 , then 𝑃𝑙 seeks a, b in

𝐺𝐹(2𝑚) where (9) holds, then outputs the two

positions corresponding to a and b.

 (9)

Theorem 5. Protocol 3 can computes the positions of

changed bits collectly.

Proof. Let us consider separately the cases of the value of

the hamming distance:

In the case that 𝐻(𝐫, 𝐥) is zero. that is, 𝐫 = 𝐥:
According to (10), we can see that 𝑘1 is always zero.

𝑘1 = 𝑚1 + 𝐥 ⋅ ⟨𝑁, 1⟩
= 𝐫 ⋅ 𝑁, 1 + 𝐥 ⋅ 𝑁, 1
= 𝐫 + 𝐥 ⋅ 𝑁, 1
= 𝟎 ⋅ 𝑁, 1

= 0.

(10)

Then, in Protocol 3, 𝑃𝑙 outputs “unchanged” when

condition 3a is examined.

In the case that 𝐻(𝐫, 𝐥) is one:

Assume that the bit streams differ at, say, j-th bit. Then, we

have (11).

𝑘1 = (𝐫 + 𝐥) ⋅ ⟨𝑁, 1⟩ = 𝑗
𝑘2 = 𝐫 + 𝐥 ⋅ ⟨𝑁, 2⟩ = 𝑗2,
𝑘3 = 𝐫 + 𝐥 ⋅ ⟨𝑁, 3⟩ = 𝑗3.

(11)

In this case, since j is not zero, Condition 3a does not hold.

On the other hand, since 𝑘1𝑘2 = 𝑗 ⋅ 𝑗2 = 𝑗3 = 𝑘3 holds,

Condition 3b still holds. Then, in Protocol 3, 𝑃𝑙 can detect the

position of the changed bit as 𝑘1 = 𝑗 collectly.

In the case that 𝐻(𝐫, 𝐥) is two:

Assume that the bit streams differ at, say, i-th and j-th bits,

where 𝑖 ≠ 𝑗 nor 𝑖𝑗 ≠ 0.

Then, we have (12).

𝑘1 = 𝑟 + 𝑙 ⋅ ⟨𝑁, 1⟩ = 𝑖 + 𝑗,
𝑘2 = 𝑟 + 𝑙 ⋅ ⟨𝑁, 2⟩ = 𝑖2 + 𝑗2,
𝑘3 = (𝑟 + 𝑙) ⋅ ⟨𝑁, 3⟩ = 𝑖3 + 𝑗3.

(12)

Since 𝑖 ≠ 𝑗 implies 𝑖 + 𝑗 ≠ 0, Condition 3a does not hold.

On the other hand, Condition 3b yields (13).

𝑘1𝑘2 − 𝑘3 = 𝑖 + 𝑗 ⋅ 𝑖2 + 𝑗2 − (𝑖3 + 𝑗3)

= 𝑖2𝑗 + 𝑖𝑗2 = 𝑖𝑗 𝑖 + 𝑗 . (13)

In order that (13) is equal to 0, 𝑖 + 𝑗 must be zero, while

𝑖𝑗 ≠ 0. This implies that i must be equal to j. However, this

contradicts the assumption. Therefore, Condition 3b does not

hold ether.

Hence, 𝑃𝑙 enters Condition 3c, and seeks a and b where (9)

holds. Assume that there exists a pair of solution, say, i and j.

Now, we show that the different elements, say, a and b

from i and j can not satisfy (9).

From 𝑖 + 𝑗 = 𝑎 + 𝑏 = 𝑘1, we find that b is 𝑖 + 𝑎 + 𝑗.

 𝑖3 + 𝑗3 − 𝑎3 + 𝑏3

= 𝑖3 + 𝑗3 + 𝑎3 + 𝑖 + 𝑗 + 𝑎 3

= 𝑖3 + 𝑗3 + 𝑎3 + 𝑖3 + 𝑗3 + 𝑎3

 +𝑖2𝑗 + 𝑖𝑗2 + 𝑎𝑖2 + 𝑎2𝑖 + 𝑎2𝑗 + 𝑎𝑗2
= (𝑖 + 𝑎)(𝑎 + 𝑗)(𝑖 + 𝑗)

(14)

Then, if two pair of elements a and b satisfy (9), 𝑖3 + 𝑗3

and 𝑎3 + 𝑏3 must equal. However, since (14) must be zero, a

should be equal to either i or j, while 𝑖 ≠ 𝑗. However, by

using 𝑘1, if 𝑎 = 𝑖 then 𝑏 = 𝑗, otherwise, if 𝑎 = 𝑗 then 𝑏 = 𝑖.
This contradicts the assumption. That is, if there is a solution,

the solution is unique.

Therefore, in every case, Protocol 3 can determine the

position of the changed bits.

Next, we propose an effective algorithm that seeks a and b

where (9) holds. According to Theorem 5, we have already

known that we can find a and b by searching all exhaustively.

𝑎 + 𝑏 = 𝑘1,

𝑎2 + 𝑏2 = 𝑘2,

𝑎3 + 𝑏3 = 𝑘3.

𝐫

Here, we propose a probabilistic algorithm with polynomial

time for log 𝑁.

Algorithm 4

1) Compute 𝑠 = 𝑘2 − 𝑘3/𝑘1 over 𝐺𝐹(2𝑚);

2) Solve the quadratic equation (15) over 𝐺𝐹(2𝑚) by using

Itoh’s algorithm [5];

𝑥2 + 𝑘1𝑥 + 𝑠 = 0. (15)

3) The solution, say, 𝑥 = 𝑎, 𝑏 is corresponding to the

positions of the changed bit.

Note that we quote Itoh’s algorithm [5] as the following:

1) input: 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏 over 𝐺𝐹(2𝑚);

2) Choose 𝑐 ∈ 𝐺𝐹(2𝑚) at random(𝑐 ≠ 0);

3) if 𝑇𝑟(𝑐𝑎) = 0 then return to 2), where 𝑇𝑟 𝑥 = 𝑥 +
𝑥2 … + 𝑥2𝑚−1;

4) Compute 𝑔(𝑥) = 𝐺𝐶𝐷(𝑓(𝑐−1𝑥, 𝑇𝑟(𝑥));

5) output 𝑐−1𝑑 where 𝑔 𝑥 = 𝑥 − 𝑑.
Rabin and Itoh developed algorithms to solve quadratic

equation over finite fields [5], [6]. Notice that Itoh’s

algorithm is some constant rate faster than Rabin’s one.

Lemma 6. Algorithm 4 can computes a and b collectly in

average polynomial time for m.

Proof. Let the solution be, say, i and j.

Then, we know that s is ij, according to (16).

𝑠 = 𝑘2 − 𝑘3/𝑘1

= 𝑖2 + 𝑗2 − (𝑖3 + 𝑗3)/(𝑖 + 𝑗)

= 𝑖2 + 𝑗2 − (𝑖2 + 𝑖𝑗 + 𝑗2)

= 𝑖𝑗.

 (16)

Then, (15) can be factorized as (17).

𝑥2 + 𝑘1𝑥 + 𝑠 = 𝑥2 + (𝑖 + 𝑗)𝑥 + 𝑖𝑗
= 𝑥 + 𝑖 𝑥 + 𝑗 .

 (17)

Thus, we can see that (15) is the quadratic equation that has

the solution as the positions of the changed bits.

Since s can be found in polynomial time for m and Itoh’s

algorithm can be proceed in average polynomial time for m,

then algorithm 4 can be proceeded in average polynomial

time for m.

Theorem 7. There exists a protocol solving 2-Monitoring

Remote Data Problem, where the number of message bits is

𝑂(log2 𝑁), the time to compute the communication message

is 𝑂(𝑁 log2 𝑁) , and the average time to compute the

position of the changed bit is 𝑂(𝑁 log2 𝑁).

V. CONCLUSION

In the area of Communication Complexity, the problem

whether two data that are placed separately are the same or

not is studied. In this study, we propose k-Monitoring Remote

Data Problem where two input data differ in at most k bits and

a player can use one data. Then, we propose a protocols for

1-Monitoring Remote Data Problem where the number of

message bits is 𝑂(log2 𝑁) , the time to compute the

communication message is 𝑂(𝑁 log2 𝑁) , and the time to

compute the position of the changed bit is 𝑂(𝑁 log2 𝑁) .

Moreover, we propose a protocols for 2-Monitoring Remote

Data Problem where the number of message bits is

𝑂(log2 𝑁), the time to compute the communication message

is 𝑂(𝑁 log2 𝑁), and the average time to compute the position

of the changed bit is 𝑂(𝑁 log2 𝑁).

Now we propose the following conjecture:

Conjecture 8. There exists a protocol solving

k-Monitoring Remote Data Problem, where the number of

message bits is 𝑂(log2 𝑁) , the time to compute the

communication message is 𝑂(𝑁 log2 𝑁) , and the average

time to compute the position of the changed bit is

𝑂(𝑁 log2 𝑁).

REFERENCES

[1] R. Rivest. (Apr. 1992). The MD4 Message-Digest Algorithm. RFC

1320 (Informational), Internet Engineering Task Force. [Online].

Available: http://www.ietf.org/rfc/rfc1320.txt

[2] A. C.-C. Yao, “Some complexity questions related to distributive

computing (preliminary report),” in Proc. the Eleventh Annual ACM

Symposium on Theory of Computing, New York, NY, USA: ACM,

1979, pp. 209-213.

[3] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant

arrays of inexpensive disks (raid),” in Proc. the 1988 ACM SIGMOD

International Conference on Management of Data, New York, NY,

USA: ACM, 1988, pp. 109-116.

[4] B. Dawkins and A. Jones. Common RAID Disk Data Format

Specification, SNIA Technical Position. [Online]. Available:

http://www.snia.org/sites/default/files/SNIA DDF Technical Position

v2.0.pdf

[5] T. Itoh, “Efficient probabilistic algorithm for solving quadratic

equations over finite fields,” Electronics Letters, vol. 23, pp. 869-870,

1987.

[6] M. O. Rabin and M. O. Rabin, “Probabilistic algorithms in finite

fields,” SIAM J. Comput., vol. 9, pp. 273-280, 1979.

Naoshi Sakamoto was born in Japan in 1964. He

graduated from the University of

Electro-Communication in 1987, and received his

M.S. and D.S. degrees from Tokyo Institute of

Technology in 1989 and 2001, respectively.

 From 1992 to 1997, he was a research assistant of

Computer Center of Hitotsubashi University. From

1997 to 2001, he was a research assistant at Tokyo

Institute of Technology. Since 2001, he has been an

associate professor at Tokyo Denki University.

 He got the 1999 IEICE excellent paper award. His research interests are

distributed algorithms, randomized algorithms, and complexity theory.

Author’s formal

photo

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

40

