

Abstract—We introduce LG-encoding, a novel approach to

text encoding that shuffles the position of letters anticipating an

improved compression performance. Our technique brings

together the repeating letters in a word, so as to inflate

redundancy to be exploited by the compression algorithm to

follow. The encoding process introduces no significant

overhead: It is easily reversible as it only involves repositioning

the letters in a text. We experiment LG-encoding on text from 4

different source languages: English, French, German, and

Spanish with a set of well-known compression algorithms that

follows the encoding: Arithmetic Coding, Huffman Coding,

BWT and PPM. Our results yield promising outcomes as we

achieve substantially better compression rates for Arithmetic

Coding and Huffman Coding that follows LG-encoding. We

also propose use of our method in large data repositories, such

as cloud, as it also provides significant level of security by

shuffling the letters of words in text.

Index Terms—Text encoding, lossless text compression.

I. INTRODUCTION

In an era of ultimate storage and transmission needs, it is

getting more and more important to reduce the amount of

data without losing the actual content. Lossless compression

algorithm help accomplish this goal. Whether it is in the form

of stored data (as in the case of a database, cloud, or any sort

of storage media), or in the form of transmitted data (as in the

case of a network communication), we need to optimize the

media use to its upmost performance. So, research tries to

push the theoretical upper limit more to compress text in a

lossless manner. This study introduces a novel text-encoding

scheme to help realize this goal: We group together the

multiple occurrences of the same letter in a word in the hope

to exploit redundancy better later, when we compress text

afterwards. We call our method Letter Group (LG)-encoding.

We use the LG-encoding as a front end to prepare text for a

lossless compression algorithm that is anticipated to yield

improved performance. When an unprocessed text is input to

a compression algorithm, the degree to which the text could

be compressed is bound by the original position of the letters

in the text. The LG-encoding we introduce repositions those

letters in text -if it is part of a repeating group of letters-,

causes an inflated redundancy in text, and therefore helps it

compress better. Our goal is to see the practical tool that is

generated as a result of this work being used for increased

Manuscript received September 7, 2014; revised November 18, 2014.

This work was supported by the NanoTech Institute, at the University of

Texas at Dallas.

The authors are with the University of Texas at Dallas, Department of

Computer Science, Richardson, TX USA (e-mail: {exc067000,

hxv121530}@utdallas.edu).

storage and transmission performance such as large

databases, clouds, search engine retrievals and even ordinary

communication on a daily basis.

The purpose of this paper is twofold: First we inquire when

LG-encoding is used as a front end, how much improvement

is attained in benchmark compression tools, such as

Arithmetic Coding, Huffman Coding, Burrows Wheeler

transform (BWT), and Prediction by Partial Matching

(PPM). The BWT and PPM are not only the better

performing algorithms in our compression set, but also the

best tools among lossless text compression algorithms. So,

this work also investigates how much, if we can, improve

these better performing compression tools when preceded by

LG-encoding. Second, we measure how LG-encoding

performs under different source languages, so as to

investigate if source language is a determinant in the

performance of the compression algorithms we use.

The rest of the paper is organized as follows: Section II

summarizes related work, Section III describes our scheme,

Section IV presents results and comparative work, and

Section V concludes and gives future insights about our

design.

II. RELATED WORK

Several scholar works on the field of focus on the same

goal as ours: Preprocess text to help it compress better. One

such study applies Edge-guided text compression that is

based on graphs, ordered pairs and sets [1] to transform text

into a word net; the adjacencies of the word have a direct

relationship with the unique graph, which is the result of the

word net. Our approach has less complexity as it only

involves letter repositioning, rather than complex data

structures as graphs.

Another text encoding introduced by [2] is to form string

dictionaries by dividing text in blocks. Once the dictionaries

are formed, strings are stored in a tree structure.

In Ref. [3], authors keep track of the word frequency while

both comparing and separating the words with different

frequency. They adaptively change the position for words to

compress it better. This idea is an expansion of our approach

as it extends the letter repositioning we apply to word

repositioning.

The work in [4] implements Star-encoding to text, where a

separate dictionary of words based on word length is used to

encode actual words of the input text therefore an abundance

of stars are created to help compress it better. The major

overhead of this work is the requirement to store a shared

dictionary on sender and receiver, which does not exist in our

approach.

A Novel Text Processing for Better Compression and

Security in Cloud

Ebru Celikel Cankaya and Hina Vinayak

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

1DOI: 10.7763/IJCTE.2016.V8.1011

The authors in [5] exploit word based byte-oriented

compression, and then transit text through character

positioned compression. They use end-tagged dense code, as

it is easier to build than a Huffman code.

Obviously, our scheme can be further implemented on

emerging areas, such as mobile devices, where the best rates

for storage and compression performances become the

ultimate need [6].

III. IMPLEMENTATION AND RESULTS

The fundamental technique we use for LG-Encoding is

illustrated in Fig. 1 below. During LG-encoding (step 2), our

scheme applies a one pass scan to input text to explore

multiple occurrences of the same character. For each such

finding, a key is stored for the character that has multiple

occurrences, together with its corresponding positions. This

key and position tracks are particularly important to keep as

we want our method to be reversible without any loss, i.e. the

input text of step 1 should be the same as the text generated

after step 8 in Fig. 1.

After LG-encoding, a compression algorithm from a

repository of algorithms is selected (step 3) to compress the

input text (step 4) and the output text is generated. It is this

output text that we store and or transmit, instead of the

original input text. To reveal the original input, first

decompression is applied to output text (step 6), then

LG-decoding decoding is implemented (step 7) to yield the

input text.

Fig. 1. Overall LG-encoding followed by compression scheme.

A. Corpora

TABLE I: ENGLISH CORPORA WITH SELECTED TEXT FROM CALGARY

CORPUS AND CANTERBURY CORPUS [7], [8]

This study presents the results of applying LG-encoding to

4 different source languages: English, French, German, and

Spanish. The detail of each corpus is given in Table I through

Table IV. We use the Standard English corpora: Calgary

Corpus and Canterbury Corpus for English (Table I). For the

rest of the source languages, we compile and use text from

available corpora, whose details are presented in Table II, III,

and IV. We also apply a pre-processing to each text to filter

punctuation marks, non-alphabet characters and multiple

occurrences of space character before LG-encoding and

compression.

TABLE II: DEREKO GERMAN CORPUS WITH SELECTED TEXT FROM COSMAS

II DATABASE [9]

TABLE III: FRENCH CORPUS WITH SELECTED TEXT FROM CORPUS OF

SPOKEN FRENCH [10]

TABLE IV: SPANISH CORPUS WITH SELECTED TEXT FROM [11]

B. Text Processing via LG-Encoding

The idea behind LG-Encoding is to bring together multiple

occurrences of the same letter in a word. The algorithm

traverses the text to find such occurrences and starts

combining them as the traversal progresses. To assure that

the algorithm is reversible, we also keep track of position

placeholders for each letter moved. We use word end (space

character) as the deli meter to stop encoding, which is to be

followed by the next word encoding.

C. Compressing the LG-Encoded Text

We employ four widely used conventional compression

algorithms to test the performance improvement of our star

encoding front end on each. These algorithms are Arithmetic

Coding, Huffman Coding [12], a combination of the

algorithms Burrows Wheeler Transform (BWT) + Run

Length Encoding (RLE) + Move to Front (MTF) +

Arithmetic Coding (ARI) – we call this set BWT -, and PPM*

[12]-[16].

The reason why we use these compression algorithms is

that we want to compare the performance of our scheme with

what is considered as benchmark compression tools. Also,

we would like to see how much we could improve the

performance of these tools. Among them, particularly

Arithmetic Coding and Huffman Coding are more promising

for improvement, as other compression algorithms in our

package outperform them. The BWT and PPM are not only

the better performing algorithms in our compression set, but

also the best tools among lossless text compression

algorithms. This work investigates how much, if we can,

improve these better performing compression tools when

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

2

preceded by LG-encoding.

IV. RESULTS

One goal of this work is to reveal how LG-encoding

affects the compression performance of Arithmetic Coding,

Huffman Coding, BWT, and PPM on 4 different source

languages as English, French, German, and Spanish. In other

words, the effect of LG-encoding to compression algorithms

is measured. To reveal this, we first apply our LG-encoding

scheme as a front end to text from each source language, and

then run each compression algorithm to see how the

compression rate is affected. All compression rates measured

in bits per character (bpc).

In Fig. 2, we see that for Arithmetic Coding and Huffman

Coding, LG-encoding improves the compression

performance for each text, with average improvement rate of

13.9% for Arithmetic Coding and 14.24% for Huffman

Coding. For already better performing compression tools

BWT and PPM, though, for almost all text compression

performance deteriorates when preceded by LG-encoding.

Except for the file “news”, the compression performance

deteriorates 5.3% and 3.23% on average, for BWT and PPM,

respectively.

Fig. 2. LG-encoding on English Calgary Corpus.

Fig. 3. LG-encoding on English Canterbury Corpus.

Fig. 4. LG-encoding on French Corpus.

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

3

Fig. 5. LG-encoding on German Corpus.

Fig. 6. LG-encoding on Spanish Corpus.

We repeat experiments on the other English Corpus:

Canterbury Corpus, whose results are presented in Fig. 3.

Fig. 3 shows a similar trend in terms of compression

performance for each compression algorithm: For Arithmetic

Coding LG-encoding improves the compression rate by

9.90% on average, while for Huffman Coding improvement

rate becomes 11.59% on average. These rates are lower than

that of Calgary Corpus, simply because the text files are

different now. For BWT and PPM, LG-encoding deteriorates

compression rate by 6.55% and 3.70%, respectively.

For French corpus, compression performance change per

algorithm is illustrated in Fig. 4.

As seen in Fig. 4, the LG-encoding improves the

performance of Arithmetic Coding with an average rate of

9.84%, and the performance of Huffman Coding with an

average rate of 10.18%. The LG-encoding worsens the other

two compression algorithms with average rates of 4.82%, and

3.76%.

When the source language is German, the compression

rate plots with and without LG-encoding are illustrated in Fig.

5.

LG-encoding affects performance of compression

algorithms similarly: Arithmetic Coding and Huffman

Coding improves with average rates of 10.98% and 12.36%

(the highest so far), and BWT and PPM worsens with

average rates of 9.09% and 6.56% (the lowest so far).

For Spanish being the source language, LG-encoding

exhibits a similar result as seen in Fig. 6.

The change in compression performance is consistently

positive for Arithmetic Coding and Huffman Coding, as we

observe an improvement after LG-encoding in these

algorithms for each source language (Fig. 2 through 6).

However, the consistent deterioration in BWT and PPM

performances could be an indication that for these algorithms

the theoretical upper limit is already achieved and

LG-encoding cannot make their compression rates any better.

To further investigate the effect of LG-encoding per

algorithm, we compare the average rate of change in

compression performance for each source language. Table V

through 9 present the resulting compression rates measured

in bits per character (bpc).

TABLE V: THE EFFECT OF LG-ENCODING ON ARITHMETIC CODING

Table V indicates that for Arithmetic Coding, the

LG-encoding improves compression performance for each

source language. The improvement rates are very close,

where English leads with an average of 12.12%

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

4

improvement, and is followed by German with 10.99%, then

French with 9.89%, and Spanish with 9.47% improvement

achieved after employing LG-encoding. The results show

that for Arithmetic coding, the most sensitive language to

LG-encoding is English, and the least sensitive is Spanish.

The effect of LG-encoding on Huffman Coding has a

similar behavior as seen in Table VI.

TABLE VI: THE EFFECT OF LG-ENCODING ON HUFFMAN CODING

As seen in Table VI, for Huffman coding English

continues to be the language that is most improved by

LG-encoding with an average rate of 13.16%. German

follows with 12.37%, then Spanish and French follows with

rates 10.60% and 10.25%, respectively.

Both Table VII and Table VIII show that the LG-encoding

deteriorates the compression performance for BWT and PPM

in all source languages. When the algorithm is BWT, the

worsening happens with the rates for German being the

highest, then for English (when we take the average of

Calgary and Canterbury corpora), then for French, and for

Spanish (Table VII). When the algorithm is PPM, the rates of

deterioration in compression performance are not as much as

that of BWT: The highest rate of deterioration is recorded for

German with 6.38%, then for French with 3.44%, then for

English with an average rate (for Calgary and Canterbury

corpora) and for Spanish both with 3.06%. The difference in

LG-encoded compression rate for the same language

attributes to the linguistic characteristics of the text being

encoded and then compressed.

TABLE VII: THE EFFECT OF LG-ENCODING ON BWT

TABLE VIII: THE EFFECT OF LG-ENCODING ON PPM

This result could be an indication that BWT as well as

PPM already perform very well on plain text and any further

encoding does not help improve this rate.

V. CONCLUSIONS AND FUTURE WORK

We introduce a new encoding scheme called LG-encoding

that exploits the idea that if multiple occurrences of the same

letter are brought together, redundancy will increase to help

improve compression performance. To investigate the effect

of LG-encoding on text, we employ 4 different compression

algorithms (Arithmetic Coding, Huffman Coding, BWT, and

PPM) on 4 source languages (English, French, German, and

Spanish). We propose use of our method in large data

repositories, such as cloud, as it also provides significant

security by shuffling the letters of words. We measure the

rate of change in compression performance for 4 algorithms

and the results show that LG-encoding improves the

performance of Arithmetic Coding in the range between

14.22% to 9.47% for each source language. It also improves

the performance of Huffman Coding within a range 14.56%

to 10.25% for each source language. For BWT and PPM,

LG-encoding deteriorates, rather than improving

compression performance at rates between 4.44% to 8.88%

for BWT and between 3.06% to 6.38% for PPM.

We also observe that for each source language, the

behavior of the scheme (compression preceded by

LG-encoding) is similar: A significant improvement for

Arithmetic Coding and Huffman Coding, and deterioration

(with less significance than the improvement rates) for BWT

and PPM.

As for future work, we plan on extending the LG-encoding

to include all letters of the text, rather than words only, in the

hope to get even better compression. We also consider

employing other compression algorithms to see how their

performance will be affected by LG-encoding.

Moreover, we consider encrypting the LG-encoded text

further with a symmetric encryption algorithm (e.g. AES) to

offer even better security in cloud. With a cloud based

encryption on LG-encoded text followed by a hash

algorithm, we expect to speed up the encryption process.

Furthermore, we plan on a client based LG-encoding so as to

improve network utilization.

REFERENCES

[1] M. A. Martinez-Prieto, J. Adiego, and P. Fuente, “Natural language

compression on edge-guided text processing,” Journal of Information

Sciences, vol. 181, no. 24, Santiago, Chile, 2011.

[2] M. A. Martinez-Prieto, R. B. Nieves, N. Gonzalo, and C. Rodrigo,

Compressed String Dictionaries, Mideplan, Chile, 2011.

[3] N. Brisaboa, A. Farína, N. Gonzalo, and J. Paramá, “Dynamic

lightweight text compression,” ACM Transactions on Information

Systems, pp. 1-32, 2010.

[4] C. E. Cankaya and O. Darwish, “Improving compression performance

with a star encoding front end: A linguistic comparison,” in Proc. 2013

World Comp., Las Vegas, NV, 22-25 July, 2013.

[5] A. Fariña, G. Navarro, and J. Paramá, Boosting Text Compression with

Word-Based Statistical Encoding, Oxford University Press, Oxford,

UK, 2011, pp. 112-118.

[6] R. Pizzolante, B. Carpentieri, A. Castiglione, and F. Palmieri, "Text

compression and encryption through smart devices for mobile

communication," IMIS, pp. 672-677, 3-5 July, 2013.

[7] English Calgary Corpus. [Online]. Available:

http://corpus.canterbury.ac.nz/descriptions/#calgary

[8] English Canterbury Corpus. [Online]. Available:

http://corpus.canterbury.ac.nz/descriptions/#cantrbry

[9] German Corpus URL: COSMAS II, Institute for Deutsche Sprache.

[Online]. Available:

http://www.ids-mannheim.de/cosmas2/projekt/registrierung/

[10] French Corpus URL: Corpus of Spoken French, Centre for Languages,

Linguistics, & Area Studies. University of the West England. [Online].

Available: http://www.llas.ac.uk/resources/mb/80

[11] Spanish Corpus. [Online]. Available:

http://www.cervantesvirtual.com/bib/seccion/literatura/psegundonivel

d6b2.html?conten=catalogo

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

5

http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#cantrbry
http://www.ids-mannheim.de/cosmas2/projekt/registrierung/
http://www.llas.ac.uk/resources/mb/80
http://www.cervantesvirtual.com/bib/seccion/literatura/psegundoniveld6b2.html?conten=catalogo
http://www.cervantesvirtual.com/bib/seccion/literatura/psegundoniveld6b2.html?conten=catalogo

[12] R. Ahlswede, A. Ahlswede, I. Althöfer, C. Deppe, and U. Tamm, “Data

compression,” Storing and Transmitting Data Foundations in Signal

Processing, Communications and Networking, vol. 10, pp. 9-38, 2014.

[13] J. Kelley and R. Tamassia, “secure compression: Theory & practice,”

IACR Cryptology, 2014.

[14] D. Zhang, Q. Liu, Y. Wu, Y. Li, and L. Xiao, “Compression and

indexing based on BWT: A survey,” in Proc. Web Information System

and Application Conference, Yangzhou, China, November 2013.

[15] W. Oliveira, E. Justinoa, and L. S. Oliveira, “Comparing compression

models for authorship attribution,” Journal of Forensic Science

International, vol. 228, pp. 100-104, 2013.

[16] H. Kruse and A. Mukherjee, “Preprocessing text to improve

compression ratios,” in Proc. DCC '98, 1998, p. 556.

Ebru Celikel Cankaya is a senior lecturer in the Department of Computer

Science at the University of Texas at Dallas (UTD) where she has been a

faculty member since 2012. Dr. Cankaya has completed her postdoctoral

research at the same institute in the area of database security. She has

received her Ph.D. degree from Ege University, Turkey. Before joining to

UTD, she has worked as a faculty member at University of North Texas,

Earlham College, and Ege University. Her research interests lie in the area of

computer and database security, lossless compression, and cryptology.

Hina Vinayak is doing her bachelors in telecommunications engineering at

The University of Texas at Dallas in Texas, USA. She is interested in

research related to computer technology, compression algorithms, and

networking. She plans to pursue her career in the telecommunications

industry and in academia with MBA with concentration in information

technology.

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

6

