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Abstract—We introduce LG-encoding, a novel approach to
text encoding that shuffles the position of letters anticipating an
improved compression performance. Our technique brings
together the repeating letters in a word, so as to inflate
redundancy to be exploited by the compression algorithm to
follow. The encoding process introduces no significant
overhead: It is easily reversible as it only involves repositioning
the letters in a text. We experiment LG-encoding on text from 4
different source languages: English, French, German, and
Spanish with a set of well-known compression algorithms that
follows the encoding: Arithmetic Coding, Huffman Coding,
BWT and PPM. Our results yield promising outcomes as we
achieve substantially better compression rates for Arithmetic
Coding and Huffman Coding that follows LG-encoding. We
also propose use of our method in large data repositories, such
as cloud, as it also provides significant level of security by
shuffling the letters of words in text.

Index Terms—Text encoding, lossless text compression.

I.  INTRODUCTION

In an era of ultimate storage and transmission needs, it is
getting more and more important to reduce the amount of
data without losing the actual content. Lossless compression
algorithm help accomplish this goal. Whether it is in the form
of stored data (as in the case of a database, cloud, or any sort
of storage media), or in the form of transmitted data (as in the
case of a network communication), we need to optimize the
media use to its upmost performance. So, research tries to
push the theoretical upper limit more to compress text in a
lossless manner. This study introduces a novel text-encoding
scheme to help realize this goal: We group together the
multiple occurrences of the same letter in a word in the hope
to exploit redundancy better later, when we compress text
afterwards. We call our method Letter Group (LG)-encoding.

We use the LG-encoding as a front end to prepare text for a
lossless compression algorithm that is anticipated to yield
improved performance. When an unprocessed text is input to
a compression algorithm, the degree to which the text could
be compressed is bound by the original position of the letters
in the text. The LG-encoding we introduce repositions those
letters in text -if it is part of a repeating group of letters-,
causes an inflated redundancy in text, and therefore helps it
compress better. Our goal is to see the practical tool that is
generated as a result of this work being used for increased
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storage and transmission performance such as large
databases, clouds, search engine retrievals and even ordinary
communication on a daily basis.

The purpose of this paper is twofold: First we inquire when
LG-encoding is used as a front end, how much improvement
is attained in benchmark compression tools, such as
Arithmetic Coding, Huffman Coding, Burrows Wheeler
transform (BWT), and Prediction by Partial Matching
(PPM). The BWT and PPM are not only the better
performing algorithms in our compression set, but also the
best tools among lossless text compression algorithms. So,
this work also investigates how much, if we can, improve
these better performing compression tools when preceded by
LG-encoding. Second, we measure how LG-encoding
performs under different source languages, so as to
investigate if source language is a determinant in the
performance of the compression algorithms we use.

The rest of the paper is organized as follows: Section Il
summarizes related work, Section 111 describes our scheme,
Section IV presents results and comparative work, and
Section V concludes and gives future insights about our
design.

Il. RELATED WORK

Several scholar works on the field of focus on the same
goal as ours: Preprocess text to help it compress better. One
such study applies Edge-guided text compression that is
based on graphs, ordered pairs and sets [1] to transform text
into a word net; the adjacencies of the word have a direct
relationship with the unique graph, which is the result of the
word net. Our approach has less complexity as it only
involves letter repositioning, rather than complex data
structures as graphs.

Another text encoding introduced by [2] is to form string
dictionaries by dividing text in blocks. Once the dictionaries
are formed, strings are stored in a tree structure.

In Ref. [3], authors keep track of the word frequency while
both comparing and separating the words with different
frequency. They adaptively change the position for words to
compress it better. This idea is an expansion of our approach
as it extends the letter repositioning we apply to word
repositioning.

The work in [4] implements Star-encoding to text, where a
separate dictionary of words based on word length is used to
encode actual words of the input text therefore an abundance
of stars are created to help compress it better. The major
overhead of this work is the requirement to store a shared
dictionary on sender and receiver, which does not exist in our
approach.
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The authors in [5] exploit word based byte-oriented
compression, and then transit text through character
positioned compression. They use end-tagged dense code, as
it is easier to build than a Huffman code.

Obviously, our scheme can be further implemented on
emerging areas, such as mobile devices, where the best rates
for storage and compression performances become the
ultimate need [6].

I1l. IMPLEMENTATION AND RESULTS

The fundamental technique we use for LG-Encoding is
illustrated in Fig. 1 below. During LG-encoding (step 2), our
scheme applies a one pass scan to input text to explore
multiple occurrences of the same character. For each such
finding, a key is stored for the character that has multiple
occurrences, together with its corresponding positions. This
key and position tracks are particularly important to keep as
we want our method to be reversible without any loss, i.e. the
input text of step 1 should be the same as the text generated
after step 8 in Fig. 1.

After LG-encoding, a compression algorithm from a
repository of algorithms is selected (step 3) to compress the
input text (step 4) and the output text is generated. It is this
output text that we store and or transmit, instead of the
original input text. To reveal the original input, first
decompression is applied to output text (step 6), then
LG-decoding decoding is implemented (step 7) to yield the
input text.
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Fig. 1. Overall LG-encoding followed by compression scheme.

A. Corpora

TABLE I: ENGLISH CORPORA WITH SELECTED TEXT FROM CALGARY
CORPUS AND CANTERBURY CORPUS [7], [8]
File Name | Size(Byte) | Description
Calgary

bib 111261
bookl 768771
boak2 610856

Biblicgraphy
Fiction book
non-fiction book

news 377108 USENET batch file
paperl 53161 technical paper
paperd 821599 technical paper
trans 93645 Transcript terminal session
File Name | Size(Byte) | Description
Canterbury
asyoulike 152089 Shakespeare
alice29 125179 English text
fields 11150 C source
icell 426754 Technical writing
plrabnl2 481861 Poetry

This study presents the results of applying LG-encoding to
4 different source languages: English, French, German, and

Spanish. The detail of each corpus is given in Table I through
Table 1V. We use the Standard English corpora: Calgary
Corpus and Canterbury Corpus for English (Table I). For the
rest of the source languages, we compile and use text from
available corpora, whose details are presented in Table I1, 111,
and 1V. We also apply a pre-processing to each text to filter
punctuation marks, non-alphabet characters and multiple
occurrences of space character before LG-encoding and
compression.

TABLE I1: DEREKO GERMAN CORPUS WITH SELECTED TEXT FROM COSMAS
11 DATABASE [9]

File Name | Size(Byte) Description

docl.txt 17720 Binnenhandel Der DDR

doc2.txt 17106 Pressemitte ilung - 132/4/70 - NRW
history.txt 16487 Bemerkungen Zur Modernen Darstellung Natinaler
horror.txt 15223 Der Scgrecken Von Takera

SCOpE. TNt 15545 Brunte Horoskop

TABLE I1I: FRENCH CORPUS WITH SELECTED TEXT FROM CORPUS OF
SPOKEN FRENCH [10]

File Name | Size(Byte) Description
anthology 57055 Anthologle du journalisme
darwinOrigns | 1391304 L'origine des espéces
dominigue 442548 Dominigue
football 20456 Motes sur le foot-ball (1897)
meditations 176650 Les Meditations

TABLE IV: SPANISH CORPUS WITH SELECTED TEXT FROM [11]

File Name | Size(Byte) Description
pachecho.txt 78708 Pachecosy palomegues
palabras.txt 43610 Palabras y plumas
palauw.txt 69133 El palau de vidre
palomares. txt 15318 Palomares(Palomares)
ramilletes.text B307 Los ramilletes

B. Text Processing via LG-Encoding

The idea behind LG-Encoding is to bring together multiple
occurrences of the same letter in a word. The algorithm
traverses the text to find such occurrences and starts
combining them as the traversal progresses. To assure that
the algorithm is reversible, we also keep track of position
placeholders for each letter moved. We use word end (space
character) as the deli meter to stop encoding, which is to be
followed by the next word encoding.

C. Compressing the LG-Encoded Text

We employ four widely used conventional compression
algorithms to test the performance improvement of our star
encoding front end on each. These algorithms are Arithmetic
Coding, Huffman Coding [12], a combination of the
algorithms Burrows Wheeler Transform (BWT) + Run
Length Encoding (RLE) + Move to Front (MTF) +
Arithmetic Coding (ARI) —we call this set BWT -, and PPM*
[12]-[16].

The reason why we use these compression algorithms is
that we want to compare the performance of our scheme with
what is considered as benchmark compression tools. Also,
we would like to see how much we could improve the
performance of these tools. Among them, particularly
Arithmetic Coding and Huffman Coding are more promising
for improvement, as other compression algorithms in our
package outperform them. The BWT and PPM are not only
the better performing algorithms in our compression set, but
also the best tools among lossless text compression
algorithms. This work investigates how much, if we can,
improve these better performing compression tools when
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preceded by LG-encoding.

IV. RESULTS

One goal of this work is to reveal how LG-encoding
affects the compression performance of Arithmetic Coding,
Huffman Coding, BWT, and PPM on 4 different source
languages as English, French, German, and Spanish. In other
words, the effect of LG-encoding to compression algorithms
is measured. To reveal this, we first apply our LG-encoding
scheme as a front end to text from each source language, and
then run each compression algorithm to see how the

compression rate is affected. All compression rates measured
in bits per character (bpc).

In Fig. 2, we see that for Arithmetic Coding and Huffman
Coding, LG-encoding improves the compression
performance for each text, with average improvement rate of
13.9% for Arithmetic Coding and 14.24% for Huffman
Coding. For already better performing compression tools
BWT and PPM, though, for almost all text compression
performance deteriorates when preceded by LG-encoding.
Except for the file “news”, the compression performance
deteriorates 5.3% and 3.23% on average, for BWT and PPM,
respectively.
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Fig. 3. LG-encoding on English Canterbury Corpus.
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Fig. 4. LG-encoding on French Corpus.
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Fig. 6. LG-encoding on Spanish Corpus.

We repeat experiments on the other English Corpus:
Canterbury Corpus, whose results are presented in Fig. 3.

Fig. 3 shows a similar trend in terms of compression
performance for each compression algorithm: For Arithmetic
Coding LG-encoding improves the compression rate by
9.90% on average, while for Huffman Coding improvement
rate becomes 11.59% on average. These rates are lower than
that of Calgary Corpus, simply because the text files are
different now. For BWT and PPM, LG-encoding deteriorates
compression rate by 6.55% and 3.70%, respectively.

For French corpus, compression performance change per
algorithm is illustrated in Fig. 4.

As seen in Fig. 4, the LG-encoding improves the
performance of Arithmetic Coding with an average rate of
9.84%, and the performance of Huffman Coding with an
average rate of 10.18%. The LG-encoding worsens the other
two compression algorithms with average rates of 4.82%, and
3.76%.

When the source language is German, the compression
rate plots with and without LG-encoding are illustrated in Fig.
5.

LG-encoding affects performance of compression
algorithms similarly: Arithmetic Coding and Huffman
Coding improves with average rates of 10.98% and 12.36%
(the highest so far), and BWT and PPM worsens with
average rates of 9.09% and 6.56% (the lowest so far).

For Spanish being the source language, LG-encoding
exhibits a similar result as seen in Fig. 6.

The change in compression performance is consistently
positive for Arithmetic Coding and Huffman Coding, as we
observe an improvement after LG-encoding in these
algorithms for each source language (Fig. 2 through 6).
However, the consistent deterioration in BWT and PPM
performances could be an indication that for these algorithms
the theoretical upper limit is already achieved and
LG-encoding cannot make their compression rates any better.
To further investigate the effect of LG-encoding per
algorithm, we compare the average rate of change in
compression performance for each source language. Table V
through 9 present the resulting compression rates measured
in bits per character (bpc).

TABLE V: THE EFFECT OF LG-ENCODING ON ARITHMETIC CODING

Language plain LG-encoding | % change
ENG-Calgary 5.00 4.25 14.22%
ENG- Canterbury| 4.76 4.28 10.01%
French 4.45 4.05 9.89%
German 4.82 4.25 10.99%
Spanish 4.57 4,13 9.47%

Table V indicates that for Arithmetic Coding, the
LG-encoding improves compression performance for each
source language. The improvement rates are very close,
where English leads with an average of 12.12%
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improvement, and is followed by German with 10.99%, then
French with 9.89%, and Spanish with 9.47% improvement
achieved after employing LG-encoding. The results show
that for Arithmetic coding, the most sensitive language to
LG-encoding is English, and the least sensitive is Spanish.

The effect of LG-encoding on Huffman Coding has a
similar behavior as seen in Table VI.

TABLE VI: THE EFFECT OF LG-ENCODING ON HUFFMAN CODING

Language plain LG-encoding | % change
ENG-Calgary 5.02 4.29 14.56%
ENG- Canterbury|  4.75 4.22 11.76%
French 451 4.05 10.25%
German 4.83 4.23 12.37%
Spanish 4.59 4.10 10.60%

As seen in Table VI, for Huffman coding English

continues to be the language that is most improved by
LG-encoding with an average rate of 13.16%. German
follows with 12.37%, then Spanish and French follows with
rates 10.60% and 10.25%, respectively.

Both Table VII and Table VIII show that the LG-encoding
deteriorates the compression performance for BWT and PPM
in all source languages. When the algorithm is BWT, the
worsening happens with the rates for German being the
highest, then for English (when we take the average of
Calgary and Canterbury corpora), then for French, and for
Spanish (Table VII). When the algorithm is PPM, the rates of
deterioration in compression performance are not as much as
that of BWT: The highest rate of deterioration is recorded for
German with 6.38%, then for French with 3.44%, then for
English with an average rate (for Calgary and Canterbury
corpora) and for Spanish both with 3.06%. The difference in
LG-encoded compression rate for the same language
attributes to the linguistic characteristics of the text being
encoded and then compressed.

TABLE VII: THE EFFECT OF LG-ENCODING ON BWT

Language plain LG-encoding | % change
ENG-Calgary 246 2.56 -4.21%
ENG- Canterbury 2.55 2.71 -6.42%
French 262 2.74 -4.53%
German 3.14 3.42 -B.88%
Spanish 3.09 3.23 -4.44%

TABLE VIII: THE EFFECT OF LG-ENCODING ON PPM

Language plain LG-encoding | % change
ENG-Calgary 2.13 2.18 -2.46%
ENG- Canterbury 2.22 2.30 -3.66%
French 241 245 -3.44%
German 2.79 2.97 -6.38%
Spanish 2.79 2.B8 -3.06%

This result could be an indication that BWT as well as
PPM already perform very well on plain text and any further
encoding does not help improve this rate.

V. CONCLUSIONS AND FUTURE WORK

We introduce a new encoding scheme called LG-encoding
that exploits the idea that if multiple occurrences of the same
letter are brought together, redundancy will increase to help

improve compression performance. To investigate the effect
of LG-encoding on text, we employ 4 different compression
algorithms (Arithmetic Coding, Huffman Coding, BWT, and
PPM) on 4 source languages (English, French, German, and
Spanish). We propose use of our method in large data
repositories, such as cloud, as it also provides significant
security by shuffling the letters of words. We measure the
rate of change in compression performance for 4 algorithms
and the results show that LG-encoding improves the
performance of Arithmetic Coding in the range between
14.22% to 9.47% for each source language. It also improves
the performance of Huffman Coding within a range 14.56%
to 10.25% for each source language. For BWT and PPM,
LG-encoding  deteriorates, rather than  improving
compression performance at rates between 4.44% to 8.88%
for BWT and between 3.06% to 6.38% for PPM.

We also observe that for each source language, the
behavior of the scheme (compression preceded by
LG-encoding) is similar: A significant improvement for
Arithmetic Coding and Huffman Coding, and deterioration
(with less significance than the improvement rates) for BWT
and PPM.

As for future work, we plan on extending the LG-encoding
to include all letters of the text, rather than words only, in the
hope to get even better compression. We also consider
employing other compression algorithms to see how their
performance will be affected by LG-encoding.

Moreover, we consider encrypting the LG-encoded text
further with a symmetric encryption algorithm (e.g. AES) to
offer even better security in cloud. With a cloud based
encryption on LG-encoded text followed by a hash
algorithm, we expect to speed up the encryption process.
Furthermore, we plan on a client based LG-encoding so as to
improve network utilization.

REFERENCES

[1] M. A. Martinez-Prieto, J. Adiego, and P. Fuente, “Natural language
compression on edge-guided text processing,” Journal of Information
Sciences, vol. 181, no. 24, Santiago, Chile, 2011.

[2] M. A. Martinez-Prieto, R. B. Nieves, N. Gonzalo, and C. Rodrigo,
Compressed String Dictionaries, Mideplan, Chile, 2011.

[3] N. Brisaboa, A. Farma, N. Gonzalo, and J. Parama “Dynamic
lightweight text compression,” ACM Transactions on Information
Systems, pp. 1-32, 2010.

[4] C.E. Cankaya and O. Darwish, “Improving compression performance
with a star encoding front end: A linguistic comparison,” in Proc. 2013
World Comp., Las Vegas, NV, 22-25 July, 2013.

[5] A.Farife, G. Navarro, and J. Param& Boosting Text Compression with
Word-Based Statistical Encoding, Oxford University Press, Oxford,
UK, 2011, pp. 112-118.

[6] R. Pizzolante, B. Carpentieri, A. Castiglione, and F. Palmieri, "Text
compression and encryption through smart devices for mobile
communication,” IMIS, pp. 672-677, 3-5 July, 2013.

[7]1 English Calgary Corpus. [Online]. Available:
http://corpus.canterbury.ac.nz/descriptions/#calgary
[8] English Canterbury Corpus. [Online]. Available:

http://corpus.canterbury.ac.nz/descriptions/#cantrbry

[91 German Corpus URL: COSMAS II, Institute for Deutsche Sprache.
[Online]. Available:
http://www.ids-mannheim.de/cosmas2/projekt/registrierung/

[10] French Corpus URL: Corpus of Spoken French, Centre for Languages,
Linguistics, & Area Studies. University of the West England. [Online].
Auvailable: http://www.llas.ac.uk/resources/mb/80

[11] Spanish Corpus. [Online]. Available:
http://www.cervantesvirtual.com/bib/seccion/literatura/psegundonivel
d6b2.html?conten=catalogo


http://corpus.canterbury.ac.nz/descriptions/#calgary
http://corpus.canterbury.ac.nz/descriptions/#cantrbry
http://www.ids-mannheim.de/cosmas2/projekt/registrierung/
http://www.llas.ac.uk/resources/mb/80
http://www.cervantesvirtual.com/bib/seccion/literatura/psegundoniveld6b2.html?conten=catalogo
http://www.cervantesvirtual.com/bib/seccion/literatura/psegundoniveld6b2.html?conten=catalogo

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

[12] R. Ahlswede, A. Ahlswede, I. Alth&er, C. Deppe, and U. Tamm, “Data
compression,” Storing and Transmitting Data Foundations in Signal
Processing, Communications and Networking, vol. 10, pp. 9-38, 2014.

[13] J. Kelley and R. Tamassia, “secure compression: Theory & practice,”
IACR Cryptology, 2014.

[14] D. Zhang, Q. Liu, Y. Wu, Y. Li, and L. Xiao, “Compression and
indexing based on BWT: A survey,” in Proc. Web Information System
and Application Conference, Yangzhou, China, November 2013.

[15] W. Oliveira, E. Justinoa, and L. S. Oliveira, “Comparing compression
models for authorship attribution,” Journal of Forensic Science
International, vol. 228, pp. 100-104, 2013.

[16] H. Kruse and A. Mukherjee, “Preprocessing text to improve
compression ratios,” in Proc. DCC '98, 1998, p. 556.

Ebru Celikel Cankaya is a senior lecturer in the Department of Computer
Science at the University of Texas at Dallas (UTD) where she has been a
faculty member since 2012. Dr. Cankaya has completed her postdoctoral
research at the same institute in the area of database security. She has
received her Ph.D. degree from Ege University, Turkey. Before joining to
UTD, she has worked as a faculty member at University of North Texas,
Earlham College, and Ege University. Her research interests lie in the area of
computer and database security, lossless compression, and cryptology.

Hina Vinayak is doing her bachelors in telecommunications engineering at
The University of Texas at Dallas in Texas, USA. She is interested in
research related to computer technology, compression algorithms, and
networking. She plans to pursue her career in the telecommunications
industry and in academia with MBA with concentration in information
technology.



