
  

 

Abstract—We introduce LG-encoding, a novel approach to 

text encoding that shuffles the position of letters anticipating an 

improved compression performance. Our technique brings 

together the repeating letters in a word, so as to inflate 

redundancy to be exploited by the compression algorithm to 

follow. The encoding process introduces no significant 

overhead: It is easily reversible as it only involves repositioning 

the letters in a text. We experiment LG-encoding on text from 4 

different source languages: English, French, German, and 

Spanish with a set of well-known compression algorithms that 

follows the encoding: Arithmetic Coding, Huffman Coding, 

BWT and PPM. Our results yield promising outcomes as we 

achieve substantially better compression rates for Arithmetic 

Coding and Huffman Coding that follows LG-encoding. We 

also propose use of our method in large data repositories, such 

as cloud, as it also provides significant level of security by 

shuffling the letters of words in text. 

 

Index Terms—Text encoding, lossless text compression. 

 

I. INTRODUCTION 

In an era of ultimate storage and transmission needs, it is 

getting more and more important to reduce the amount of 

data without losing the actual content. Lossless compression 

algorithm help accomplish this goal. Whether it is in the form 

of stored data (as in the case of a database, cloud, or any sort 

of storage media), or in the form of transmitted data (as in the 

case of a network communication), we need to optimize the 

media use to its upmost performance. So, research tries to 

push the theoretical upper limit more to compress text in a 

lossless manner. This study introduces a novel text-encoding 

scheme to help realize this goal: We group together the 

multiple occurrences of the same letter in a word in the hope 

to exploit redundancy better later, when we compress text 

afterwards. We call our method Letter Group (LG)-encoding.  

We use the LG-encoding as a front end to prepare text for a 

lossless compression algorithm that is anticipated to yield 

improved performance. When an unprocessed text is input to 

a compression algorithm, the degree to which the text could 

be compressed is bound by the original position of the letters 

in the text. The LG-encoding we introduce repositions those 

letters in text -if it is part of a repeating group of letters-, 

causes an inflated redundancy in text, and therefore helps it 

compress better. Our goal is to see the practical tool that is 

generated as a result of this work being used for increased 
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storage and transmission performance such as large 

databases, clouds, search engine retrievals and even ordinary 

communication on a daily basis. 

The purpose of this paper is twofold: First we inquire when 

LG-encoding is used as a front end, how much improvement 

is attained in benchmark compression tools, such as 

Arithmetic Coding, Huffman Coding, Burrows Wheeler 

transform (BWT), and Prediction by Partial Matching 

(PPM). The BWT and PPM are not only the better 

performing algorithms in our compression set, but also the 

best tools among lossless text compression algorithms. So, 

this work also investigates how much, if we can, improve 

these better performing compression tools when preceded by 

LG-encoding. Second, we measure how LG-encoding 

performs under different source languages, so as to 

investigate if source language is a determinant in the 

performance of the compression algorithms we use. 

The rest of the paper is organized as follows: Section II 

summarizes related work, Section III describes our scheme, 

Section IV presents results and comparative work, and 

Section V concludes and gives future insights about our 

design. 

 

II. RELATED WORK 

Several scholar works on the field of focus on the same 

goal as ours: Preprocess text to help it compress better. One 

such study applies Edge-guided text compression that is 

based on graphs, ordered pairs and sets [1] to transform text 

into a word net; the adjacencies of the word have a direct 

relationship with the unique graph, which is the result of the 

word net. Our approach has less complexity as it only 

involves letter repositioning, rather than complex data 

structures as graphs. 

Another text encoding introduced by [2] is to form string 

dictionaries by dividing text in blocks. Once the dictionaries 

are formed, strings are stored in a tree structure.  

In Ref. [3], authors keep track of the word frequency while 

both comparing and separating the words with different 

frequency. They adaptively change the position for words to 

compress it better. This idea is an expansion of our approach 

as it extends the letter repositioning we apply to word 

repositioning. 

The work in [4] implements Star-encoding to text, where a 

separate dictionary of words based on word length is used to 

encode actual words of the input text therefore an abundance 

of stars are created to help compress it better. The major 

overhead of this work is the requirement to store a shared 

dictionary on sender and receiver, which does not exist in our 

approach. 
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The authors in [5] exploit word based byte-oriented 

compression, and then transit text through character 

positioned compression. They use end-tagged dense code, as 

it is easier to build than a Huffman code.  

Obviously, our scheme can be further implemented on 

emerging areas, such as mobile devices, where the best rates 

for storage and compression performances become the 

ultimate need [6].  

 

III. IMPLEMENTATION AND RESULTS 

The fundamental technique we use for LG-Encoding is 

illustrated in Fig. 1 below. During LG-encoding (step 2), our 

scheme applies a one pass scan to input text to explore 

multiple occurrences of the same character. For each such 

finding, a key is stored for the character that has multiple 

occurrences, together with its corresponding positions. This 

key and position tracks are particularly important to keep as 

we want our method to be reversible without any loss, i.e. the 

input text of step 1 should be the same as the text generated 

after step 8 in Fig. 1. 

After LG-encoding, a compression algorithm from a 

repository of algorithms is selected (step 3) to compress the 

input text (step 4) and the output text is generated. It is this 

output text that we store and or transmit, instead of the 

original input text. To reveal the original input, first 

decompression is applied to output text (step 6), then 

LG-decoding decoding is implemented (step 7) to yield the 

input text.  

 

 
Fig. 1. Overall LG-encoding followed by compression scheme. 

 

A. Corpora 

 
TABLE I: ENGLISH CORPORA WITH SELECTED TEXT FROM CALGARY 

CORPUS AND CANTERBURY CORPUS [7], [8] 

 
 

 
 

This study presents the results of applying LG-encoding to 

4 different source languages: English, French, German, and 

Spanish. The detail of each corpus is given in Table I through 

Table IV. We use the Standard English corpora: Calgary 

Corpus and Canterbury Corpus for English (Table I). For the 

rest of the source languages, we compile and use text from 

available corpora, whose details are presented in Table II, III, 

and IV. We also apply a pre-processing to each text to filter 

punctuation marks, non-alphabet characters and multiple 

occurrences of space character before LG-encoding and 

compression.  

 
TABLE II: DEREKO GERMAN CORPUS WITH SELECTED TEXT FROM COSMAS 

II DATABASE [9] 

 
 

TABLE III: FRENCH CORPUS WITH SELECTED TEXT FROM CORPUS OF 

SPOKEN FRENCH [10] 

 
 

TABLE IV: SPANISH CORPUS WITH SELECTED TEXT FROM [11] 

 
 

B. Text Processing via LG-Encoding 

The idea behind LG-Encoding is to bring together multiple 

occurrences of the same letter in a word. The algorithm 

traverses the text to find such occurrences and starts 

combining them as the traversal progresses. To assure that 

the algorithm is reversible, we also keep track of position 

placeholders for each letter moved. We use word end (space 

character) as the deli meter to stop encoding, which is to be 

followed by the next word encoding. 

C. Compressing the LG-Encoded Text 

We employ four widely used conventional compression 

algorithms to test the performance improvement of our star 

encoding front end on each. These algorithms are Arithmetic 

Coding, Huffman Coding [12], a combination of the 

algorithms Burrows Wheeler Transform (BWT) + Run 

Length Encoding (RLE) + Move to Front (MTF) + 

Arithmetic Coding (ARI) – we call this set BWT -, and PPM* 

[12]-[16].  

The reason why we use these compression algorithms is 

that we want to compare the performance of our scheme with 

what is considered as benchmark compression tools. Also, 

we would like to see how much we could improve the 

performance of these tools. Among them, particularly 

Arithmetic Coding and Huffman Coding are more promising 

for improvement, as other compression algorithms in our 

package outperform them. The BWT and PPM are not only 

the better performing algorithms in our compression set, but 

also the best tools among lossless text compression 

algorithms. This work investigates how much, if we can, 

improve these better performing compression tools when 
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preceded by LG-encoding.  

 

IV. RESULTS 

One goal of this work is to reveal how LG-encoding 

affects the compression performance of Arithmetic Coding, 

Huffman Coding, BWT, and PPM on 4 different source 

languages as English, French, German, and Spanish. In other 

words, the effect of LG-encoding to compression algorithms 

is measured. To reveal this, we first apply our LG-encoding 

scheme as a front end to text from each source language, and 

then run each compression algorithm to see how the 

compression rate is affected. All compression rates measured 

in bits per character (bpc). 

In Fig. 2, we see that for Arithmetic Coding and Huffman 

Coding, LG-encoding improves the compression 

performance for each text, with average improvement rate of 

13.9% for Arithmetic Coding and 14.24% for Huffman 

Coding. For already better performing compression tools 

BWT and PPM, though, for almost all text compression 

performance deteriorates when preceded by LG-encoding. 

Except for the file “news”, the compression performance 

deteriorates 5.3% and 3.23% on average, for BWT and PPM, 

respectively. 

 

 
Fig. 2. LG-encoding on English Calgary Corpus. 

 

 
Fig. 3. LG-encoding on English Canterbury Corpus. 

 

 
Fig. 4. LG-encoding on French Corpus. 
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Fig. 5. LG-encoding on German Corpus. 

 

 
Fig. 6. LG-encoding on Spanish Corpus. 

 

We repeat experiments on the other English Corpus: 

Canterbury Corpus, whose results are presented in Fig. 3. 

Fig. 3 shows a similar trend in terms of compression 

performance for each compression algorithm: For Arithmetic 

Coding LG-encoding improves the compression rate by 

9.90% on average, while for Huffman Coding improvement 

rate becomes 11.59% on average. These rates are lower than 

that of Calgary Corpus, simply because the text files are 

different now. For BWT and PPM, LG-encoding deteriorates 

compression rate by 6.55% and 3.70%, respectively.  

For French corpus, compression performance change per 

algorithm is illustrated in Fig. 4.  

As seen in Fig. 4, the LG-encoding improves the 

performance of Arithmetic Coding with an average rate of 

9.84%, and the performance of Huffman Coding with an 

average rate of 10.18%. The LG-encoding worsens the other 

two compression algorithms with average rates of 4.82%, and 

3.76%. 

When the source language is German, the compression 

rate plots with and without LG-encoding are illustrated in Fig. 

5. 

LG-encoding affects performance of compression 

algorithms similarly: Arithmetic Coding and Huffman 

Coding improves with average rates of 10.98% and 12.36% 

(the highest so far), and BWT and PPM worsens with 

average rates of 9.09% and 6.56% (the lowest so far). 

For Spanish being the source language, LG-encoding 

exhibits a similar result as seen in Fig. 6.  

The change in compression performance is consistently 

positive for Arithmetic Coding and Huffman Coding, as we 

observe an improvement after LG-encoding in these 

algorithms for each source language (Fig. 2 through 6). 

However, the consistent deterioration in BWT and PPM 

performances could be an indication that for these algorithms 

the theoretical upper limit is already achieved and 

LG-encoding cannot make their compression rates any better.  

To further investigate the effect of LG-encoding per 

algorithm, we compare the average rate of change in 

compression performance for each source language. Table V 

through 9 present the resulting compression rates measured 

in bits per character (bpc). 

TABLE V: THE EFFECT OF LG-ENCODING ON ARITHMETIC CODING 

 
 

Table V indicates that for Arithmetic Coding, the 

LG-encoding improves compression performance for each 

source language. The improvement rates are very close, 

where English leads with an average of 12.12% 
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improvement, and is followed by German with 10.99%, then 

French with 9.89%, and Spanish with 9.47% improvement 

achieved after employing LG-encoding. The results show 

that for Arithmetic coding, the most sensitive language to 

LG-encoding is English, and the least sensitive is Spanish. 

The effect of LG-encoding on Huffman Coding has a 

similar behavior as seen in Table VI. 

 
TABLE VI: THE EFFECT OF LG-ENCODING ON HUFFMAN CODING 

 
 

As seen in Table VI, for Huffman coding English 

continues to be the language that is most improved by 

LG-encoding with an average rate of 13.16%. German 

follows with 12.37%, then Spanish and French follows with 

rates 10.60% and 10.25%, respectively. 

Both Table VII and Table VIII show that the LG-encoding 

deteriorates the compression performance for BWT and PPM 

in all source languages. When the algorithm is BWT, the 

worsening happens with the rates for German being the 

highest, then for English (when we take the average of 

Calgary and Canterbury corpora), then for French, and for 

Spanish (Table VII). When the algorithm is PPM, the rates of 

deterioration in compression performance are not as much as 

that of BWT: The highest rate of deterioration is recorded for 

German with 6.38%, then for French with 3.44%, then for 

English with an average rate (for Calgary and Canterbury 

corpora) and for Spanish both with 3.06%. The difference in 

LG-encoded compression rate for the same language 

attributes to the linguistic characteristics of the text being 

encoded and then compressed.  

 
TABLE VII: THE EFFECT OF LG-ENCODING ON BWT 

 
 

TABLE VIII: THE EFFECT OF LG-ENCODING ON PPM 

 
 

This result could be an indication that BWT as well as 

PPM already perform very well on plain text and any further 

encoding does not help improve this rate.  

 

V. CONCLUSIONS AND FUTURE WORK 

We introduce a new encoding scheme called LG-encoding 

that exploits the idea that if multiple occurrences of the same 

letter are brought together, redundancy will increase to help 

improve compression performance. To investigate the effect 

of LG-encoding on text, we employ 4 different compression 

algorithms (Arithmetic Coding, Huffman Coding, BWT, and 

PPM) on 4 source languages (English, French, German, and 

Spanish). We propose use of our method in large data 

repositories, such as cloud, as it also provides significant 

security by shuffling the letters of words. We measure the 

rate of change in compression performance for 4 algorithms 

and the results show that LG-encoding improves the 

performance of Arithmetic Coding in the range between 

14.22% to 9.47% for each source language. It also improves 

the performance of Huffman Coding within a range 14.56% 

to 10.25% for each source language. For BWT and PPM, 

LG-encoding deteriorates, rather than improving 

compression performance at rates between 4.44% to 8.88% 

for BWT and between 3.06% to 6.38% for PPM. 

We also observe that for each source language, the 

behavior of the scheme (compression preceded by 

LG-encoding) is similar: A significant improvement for 

Arithmetic Coding and Huffman Coding, and deterioration 

(with less significance than the improvement rates) for BWT 

and PPM. 

As for future work, we plan on extending the LG-encoding 

to include all letters of the text, rather than words only, in the 

hope to get even better compression. We also consider 

employing other compression algorithms to see how their 

performance will be affected by LG-encoding.  

Moreover, we consider encrypting the LG-encoded text 

further with a symmetric encryption algorithm (e.g. AES) to 

offer even better security in cloud. With a cloud based 

encryption on LG-encoded text followed by a hash 

algorithm, we expect to speed up the encryption process. 

Furthermore, we plan on a client based LG-encoding so as to 

improve network utilization.   
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