
 

Abstract—This scheme considers a text document made up 

of character such as letters of the alphabet, punctuation marks 

and special characters/symbols. If we represent each character 

that makes up the document as 𝒄𝟏, 𝒄𝟐,… , 𝒄𝒏,  compression is 

achieved by taking each of these characters that makes up the 

text one at a time and then search first, for the position of the 

last occurrence of a particular character being considered for 

compression together with the length of its digits, and then, 

starting from the beginning of the text file, note all the 

positions where this character has occurred. The positions of 

occurrence of this character while the search is on, is made 

equal to the length of the digit of the last occurrence of the 

character by padding it with zeroes to the left of the most 

significant bit, if need be. Concatenate the values representing 

the positions of the occurrence of a character and covert the 

concatenated string into a decimal value. Divide this value 

successively by 2 until the result lies between one and less than 

two. Store the quotient obtained from these divisions and the 

sum of the number of times the division was carried out as an 

index k. Decompression is the reverse of the steps just 

described, and this is achieved by taking each character; 

obtained their corresponding quotient (q), index k and length li. 

To recover the decimal positions of the concatenated values, we 

multiply the quotient (q) by 2
k
. We then use the length of this 

particular character to identify positions where they occurred. 

This scheme, which is lossless compression, has its ratio 

tending to zero when the text file is very large. 

 
Index Terms—Compression, compression ratio, 

decompression, lossless, scheme, text file. 

 

I. INTRODUCTION 

One primary objective of a data compression scheme is to 

achieve better compression ratio which is derived as 
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  𝑠𝑖𝑧𝑒

𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑  𝑠𝑖𝑧𝑒
. When compression ratio moves towards 

zero the space saved will move towards 100%. It then means 

that the smaller the ratio, the better the compression scheme 

and the better the space saved. This scheme being proposed 

is an extension of our earlier schemes described in [1]-[3]. 

In [1] we use the product and sum in order to achieve 

compression and decompression. This scheme, represented 

by table I assumed that documents are made of letters of the 

alphabets, punctuation marks and special characters. In this 

scheme, characters were represented by l1, l2,..,ln. Each 

character was then analyzed into form in table I. In this 

table, li represents the character being compressed; k 

represents the length of character under consideration which 

also symbolizes the number of times the character occurred 

in the text (document). 


)(

1

ilk

i
i

 is the product of the 

occurrences of this character. The occurrences are taken as 

 
Manuscript received April 18, 2014; revised August 5, 2014. 

Sunday Eric Adewumi is with the Federal University Lokoja, Nigeria (e-

mail: sunday.adewumi@fulokoja.edu.ng).  

the factors of the product. They are represented by 𝛼𝑖  the 

positional location where li occurred and 𝛼𝑘(𝑙𝑖)
called the 

upper bound (U), representing the last value where the 

position li occurred. Each row of the compression table I 

represent each character of the document being compressed. 

The series 𝛼𝑖  (the occurrence of a letter or character li) are 

taken as subset of the factors of the products P denoted by 




)(

1

ilk

i
i

 , while 


)(

1

ilk

i

i represents  the sum (S) of the factors. 

The compression table takes each character, defines its 

length of occurrence, the sum of these occurrences, the 

product and U which is the last position where li occurred. 

The occurrences of each letter are arranged progressively in 

ascending order of magnitude. The occurrence when taken 

as the factors of a number N, their sum is taken as S. In this 

method high compression is achieved with documents with 

large string of characters. However, decompression 

algorithm could not be easily achieved because there was 

the need to find factors of number to be able to identify the 

positions where a particular character appeared in a text file. 

This proved difficult as factoring a large number could be 

prohibitive. Table I is a sample of compression from this 

first scheme. 

 
TABLE I: FIRST COMPRESSION SCHEME 

i
l  k  

P=


)(

1

ilk

i
i

  S=


)(

1

ilk

i

i
 U=

)( ilk
  

 

In our second scheme described in [2], a text file is 

compressed into a table with 3 columns (Table II). In this 

scheme, positions of occurrence of a character is converted 

into binary digits (bits), these bits position are concatenated 

and converted to a decimal number. The length of the last 

position of occurrence of a particular character is preserved 

for use during decompression. Specifically, compression is 

achieved in the following steps: 

 Take each letter il of alphabets (characters) that makes up 

the text document;  

 Find the positions where each of these letters occurs 

 Covert each position to a binary number.   

 The binary string length k representing the last position 

of occurrence is used as the standard length for each 

binary string. This means that if other positions are not k-

length when converted, it has to be padded on the left to 

make it k-length compliant. 

 Concatenate the binary strings for each alphabet 

(character); this is in turn converted to decimal number to 

complete the compression. 

 Store the length k representing the binary string of the 

last occurrence of a particular alphabet (character) for use 

during the decompression. 

Character Analysis Scheme for Compressing Text Files 

Sunday Eric Adewumi 

International Journal of Computer Theory and Engineering, Vol. 7, No. 5, October 2015

362DOI: 10.7763/IJCTE.2015.V7.986



However, it was observed that even though compression 

was achieved, the amount of bit strings involved gave us 

reasons to continue to search for better schemes.  
 

TABLE II: SECOND COMPRESSION ALGORITHM 

il  d = decimal 

number equivalent 

of kj (the length of 

binary string) 

k (the length representing 

the binary string of the 

last occurrence of a 

particular alphabet) 

 

In our third scheme as shown in [3], a table of six 

columns is used to achieve compression. Table III is a 

representation of this scheme. The scheme starts by 

obtaining the ASCII code of each character being 

compressed. The first column contains the converted ASCII 

value to decimal; the next column represents the length of 

binary string for each character, their decimal equivalent, 

length of binary string for each repetition of each character, 

decimal values for the positions and length of binary string 

for each position. In summary, compression is made up the 

following: 

 One decimal value representing the ASCII codes that 

makes up the document 

 The length in binary of each of the characters that makes 

up the document 

 The decimal number representing the positions of all the 

characters that make up the document 

 Decimal value representing the number of time each 

character occurred in the text 

 The binary length for the positions of each character 

 The binary length for each character that makes up the 

document. 

 
TABLE III: THIRD COMPRESSION 

Decimal values for the character 

texts that make up the document 

Length of binary string 

for each character 

Decimal value for 

the number of times 

a character repeats 

Length of binary 

string for each 

repetition 

Decimal values 

for all the 

positions 

Length of binary 

string for each 

position 

 

We noted again that lots of strings are involved and these 

might not make for the compression we really desire; hence 

the new algorithm, which we hope will provide better 

compression ratio. This is described in the methodology 

section of this paper. 

Various schemes have been devised to reduce the 

compression ratio of text files. A study of different methods 

of data compression algorithms on English text files were 

carried out by [4]; namely: LZW, Huffman, Fixed-length 

code (FLC), and Huffman after using Fixed-length code 

(HFLC). They evaluated and tested these algorithms on 

different text files of different sizes and made a comparison 

in terms of compression: Size, Ratio, Time (Speed), and 

Entropy. At the end they found that LZW is the best 

algorithm in all of the compression scales that were tested.   

In their paper, [5] presented a new lossless text 

compression technique which utilizes syllable-based 

morphology of multi-syllabic languages. The proposed 

algorithm is designed to partition words into its syllables 

and then to produce their shorter bit representations for 

compression. The method which has six main components 

namely source file, filtering unit, syllable unit, compression 

unit, dictionary file and target file. The number of bits in 

coding syllables depends on the number of entries in the 

dictionary file. They concluded by noting that the 

compression rates were observed to change from 13.0% to 

43.2%. Their experiences indicated that higher compression 

rates were achieved with increasing text sizes. A new 

optimization technique has been proposed in [6]. In this 

paper, they proposed a new algorithm for data compression, 

called j-bit encoding (JBE). This algorithm is designed to 

manipulate each bit of data inside a file to minimize the size 

without losing any data after decoding, classified as lossless 

compression. The algorithm was intended to be combined 

with other data compression algorithms to optimize the 

compression ratio. 

A compression techniques based on two level approaches 

was proposed by [7]. In this paper they proposed two levels: 

first reduction and second compression. Reduction is 

accomplished using a word lookup table and not the 

traditional indexing system, and then compression was done 

using currently available compression methods. The lookup 

table would be a part of the operating system and the 

reduction would be done also by the operating system. They 

concluded by saying the method that uses word lookup table 

will make any text segment able to use lesser memory space. 

Ref. [8] uses a two stage method to achieve this. In their 

proposal, they combined both LZW and Huffman algorithm 

and discovered compression reduced by 5%. 

In Ref. [9], a survey of dictionary based preprocessing 

methods in text compression was carried out and the authors 

concluded that it provided 2% more compression ratio.  

 

II. METHODOLOGY 

In this new technique being proposed, compression of a 

text file when completed produces a table with the following 

entries: the list of characters that makes up the text file, the 

quotient (index k) that emerges after the successive division 

by 2, the decimal number representing the concatenated 

values of the positions of an alphabet and the length of the 

last occurrence of a particular character within the text will 

emerge. During decompression, each alphabet that makes up 

the text is taken one at a time and their positions recovered 

by multiplying the quotient obtained for that character by 2k. 

The resulting value represents the positions where a 

particular character occurred in the text. We then use the 

length to identify these positions of occurrence and 

subsequently write the alphabet into their positions one after 

the other until all the characters have been written. When a 

text is compressed by this scheme, the compression table is 

likely to come to a page or two, no matter how large the text 

file may be. This would happen because compression is 

achieved through the analysis of the alphabets that makes up 

the text in addition to all special characters that also 

appeared in the text. The compression ratio, which is 

derived by 
compressed  size

𝑢  ncompressed  size
 tends to zero when the text file 

International Journal of Computer Theory and Engineering, Vol. 7, No. 5, October 2015

363



is large. The scheme leads to a lossless compression. 

Compression is achieved by doing the following analysis: 

 Take each characters that makes up the text file 

 Find all the positions the character occurred in the text 

and concatenate these positions into one decimal value 

 Find the Quotient (q) of successive division by 2 until the 

result is less than 2 but greater than one  

 Store the index (k) which is the sum of the number of 

times division by 2 was done on the decimal value (di)  

 Store the number of times each character occurred. 

 
TABLE IV: COMPRESSION ANALYSIS 

Character 

 

 

 

 

 

 

 

 

 

 

ci 

Decimal 

value of 

the 

concaten

ated 

position 

of a 

character 

 

 

 

di 

Quotient 

(q) of 

successive 

division 

by 2 until 

the result 

is less 

than 2 but 

greater 

than one 

 

q 

index (k) 

which is 

the sum of 

the 

number of 

times the 

value was 

used to 

divide 

decimal 

(di)  

k 

Length of 

the 

occurrence 

of each 

character 

 

 

 

 

 

 

li 

 

After the character analysis in Table IV, the actual 

compression table would Table V.  

 
TABLE V: THE ACTUAL COMPRESSION 

Character` 

 

 

 

 

 

 

 

 

 

ci 

Quotient (q) 

of successive 

division by 2 

until the result 

is less than 2 

but greater 

than one 

 

 

 

q 

index (k) 

which is the 

sum of the 

number of 

times the 

value was 

used to 

divide 

decimal (di)  

 

k 

Length of the 

occurrence of 

each character 

 

 

 

 

 

 

 

li 

 

Decompression is represented in Table VI and it is 

achieved by doing the following: 

 Take each compressed character (ci) 

 Find the decimal value of the positions of ci by 

multiplying the quotient (q) with 2k where k represents 

the sum of the number of division 

 Use the length (li) to the positions where the characters 

have occurred in the text. 
 

TABLE VI: DECOMPRESSION 

Character 

 

 

 

 

 

 

 

 

ci 

Find the 

decimal value 

of the 

concatenated 

position of a 

character 

 

 

 

di 

Identify the 

length of the 

occurrence of 

each character 

 

 

 

 

 

li 

 

III. RESULT/EXAMPLES 

We use an example to demonstrate how a compression 

and decompression is achieved using this scheme. Assuming 

we wish to compress a text such as Lokoja and Abuja. Table 

VII is text and the positions of the characters that make up 

the text. To compress this text, we carry out an analysis of 

the characters that make up the text as follows: 

 
TABLE VII: POSITIONS OF A TEXT TO BE COMPRESSED 

L o K O j A  a n D  A b U J a 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

 

We now put this text in form of Table IV to produce the 

compression table (Table VIII) as follows: 
 

TABLE VIII: COMPRESSION ANALYSIS 

Character 

 

 

 

 

 

 

 

 

ci 

Decimal 

value of 

the 

concaten

ated 

position 

of a 

character 

 

di 

Quotient 

(q) of 

successive 

division by 

2 until the 

result is 

less than 2 

but greater 

than one 

Q 

index (k) 

which is the 

sum of the 

number of 

times the 

value was 

used to 

divide 

decimal (di)  

k 

Length of 

the 

occurrence 

of each 

character 

 

 

 

 

li 

A 0608121

6 

1.44987487

79296875 

22 2 

B 13 1.625 3 2 

D 10 1.25 3 2 

J 0515 1.00585937

5 

9 2 

K 3 1.5 1 1 

L 1 0.5 1 1 

N 9 1.125 3 1 

O 24 1.5 4 1 

U 14 1.75 3 2 

Space 0711 1.38867187

5 

9 2 

 

The actual compression will be represented by the Table 

IX. 
 

TABLE IX: ACTUAL COMPRESSION 

Character 

 

 

 

 

 

 

 

ci 

Quotient (q) of 

successive division by 

2 until the result is less 

than 2 but greater than 

one 

 

 

 

Q 

index (k) 

which is the 

sum of the 

number of 

times the 

value was 

used to divide 

decimal (di)  

k 

Length of 

the 

occurrenc

e of each 

character 

 

 

 

li 

A 1.4498748779296875 22 2 

B 1.625 3 2 

D 1.25 3 2 

J 1.005859375 9 2 

K 1.5 1 1 

L 0.5 1 1 

N 1.125 3 1 

O 1.5 4 1 

U 1.75 3 2 

Space 1.388671875 9 2 

 

IV. DECOMPRESSION 

Decompression is the process of reversing what we have 

in Table IX in order to recover the positions of the 

characters indicated in the first column. This is achieved in 

Table X. 

In Table X, the characters that make up the text together 

with their positions have been recovered. The length of 

occurrence for each character is then used to identify 

International Journal of Computer Theory and Engineering, Vol. 7, No. 5, October 2015

364



positions where they have occurred and can then be written. 

 
TABLE X: DECOMPRESSION  

Character 

 

 

 

ci 

Decimal value of the concatenated 

position of a character 

di 

Length of the 

occurrence of 

each character 

 

li 

A 1.4498748779296875 × 222 = 

06081216 

2 

B 13 = 06081216 2 

D 1.25 × 23 = 10 2 

J 1.005859375 × 29 = 0515  2 

K 1.5 × 21 = 3 1 

L 0.5 × 21 = 1 1 

N 1.125 × 23 = 9 1 

O 1.5 × 24 = 24 1 

U 1.75 × 23 = 14 2 

Space 1.388671875 × 29 = 0711 2 

 

V. CONCLUSION 

In this paper, we have shown that text data can be 

compressed by taking each character that form a text file, 

find positions they occurred and concatenate them into one 

decimal value, then divide the value by 2 until the quotient 

of that division becomes less than 2 but greater than one. 

While doing this, we store the length of the last occurrence 

of a character together with the number of times the division 

by 2 was done as index. We have also used a simple 

example to demonstrate how compression and 

decompression could be achieved by the scheme. We have 

shown that compression could be achieved by analyzing the 

alphabets that makes up the text to be compressed. An 

English text for example, will essentially be made up of 

letters of the aA – zZ (26 letters) and some other special 

characters. However large the text may be, it might not be 

more than 2 to 3 pages when compressed by analyzing the 

characters. A dictionary, for example, might not be more 

than 3 pages when compressed with this method. 

REFERENCES 

[1] S. E. Adewumi and E. J. D Garba, “A new text compression 

algorithm,” European Journal of Scientific Research, AMS 

Publishing, Inc., vol. 8, no. 3, pp. 6-14, 2005. 

[2] S. E. Adewumi and E. J. D Garba, “Text compression algorithm: A 

new approach,” Journal of Institute of Mathematics and Computer 

Science, vol. 19, no. 1, pp. 63-68, 2008. 

[3] S. E. Adewumi, “An optimal scheme for compressing text 

documents,” Nigerian Journal of Pure and Applied Sciences, vol. 5, 

no. 1, 2012. 

[4] H. Altarawneh and M. Altarawneh, “Data compression techniques on 

text files: A comparison study,” International Journal of Computer 

Applications, vol. 26, no. 5, pp. 42-54, July 2011. 

[5] I. Akman, H. Bayindir, S. Ozleme, Z. Akin, and S. Misra, “Lossless 

text compression technique using syllable based morphology,” The 

International Arab Journal of Information Technology, vol. 8, no. 1, 

pp. 66-74, January 2011. 

[6] M. A. D. Suarjaya, “A new algorithm for data compression 

optimization,” International Journal of Advanced Computer Science 

and Applications, vol. 3, no. 8, pp. 14-17, 2012. 

[7] M. A. K. Azad, R. Sharmeen, S. Ahmad, and S. M. Kamruzzaman, 

“An efficient technique for text compression,” in Proc. The 1st 

International Conference on Information Management and Business, 

2005, pp. 467-473. 

[8] P. Raja and D. Saraswathi, “An effective two stage text compression 

anddecompression technique for data communication,” International 

Journal of Electronics and Communication Engineering, vol. 4, no. 2, 

pp. 233-241, 2011.   

[9] S. J. Rexline and L. Robert, “Dictionary based preprocessing methods 

in text compression — A survey,” International Journal of Wisdom 

Based Computing, vol. 1, no. 2, pp. 13-18, August 2011. 

 

 

Sunday Eric Adewumi earned a B.Sc. degree in 

computer science from the University of Ibadan, Nigeria 

in 1983; M.Sc. degree in mathematics from the 

University of Jos, Nigeria in 2000 and Ph.D. degree in 

mathematics from Abubakar Tafawa Balewa University, 

Bauchi, Nigeria in 2005. He is currently a professor and 

the head of the Department of Computer Science, Federal 

University Lokoja. 

His areas of interests are in data compression and data security (using 

systems of equations to encrypt messages). His experience in software 

development spans over three decades. 

    Professor Adewumi is a fellow of Nigeria Computer Society (FNCS) and 

a member of Computer Professional Registration Council of Nigeria 

(CPN). 

 

 

International Journal of Computer Theory and Engineering, Vol. 7, No. 5, October 2015

365


