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Abstract—A state space model for mobile terminal motion is 

presented which has the properties observed in true terminal 

motion. This model is used with a Kalman filter to combine the 

information of location estimates made at different times into 

an improved location estimate. This paper also provides 

experimental The performance comparison of the conventional 

non linear Kalman Filters and their adaptive variants for 

mobile dynamic location in urban area.The methodology uses 

TEMS Investigation software to retrieve network information 

including signal strength and cell-identities of various base 

transmitter stations (BTS). The distance from the mobile station 

(MS) to each BTS is therefore determined using 

Walfish-Ikigami radio propagation model. The different 

distances are therefore combined in the framework of nonlinear 

Kalman filter variants. In this work we compare the 

performance of four algorithms, based on the nonlinear 

Kalman Filter. For the mobile terminal localization, the results 

show that both of EKF, AEKF, UKF and AUKF work 

comparably well, in spite of the superior performance of the 

UKF and AUKF algorithms. 

 
Index Terms—Mobile localization, nonlinear kalman filter 

variants, noise covariance adaption, cellular network. 

 

I. INTRODUCTION 

Localization arises repeatedly in many location-aware 

applications such as navigation, autonomous robotic 

movement, and asset tracking. Analytical localization 

methods include triangulation and trilateration. Triangulation 

uses angles, distances, and trigonometric relationships to 

locate an object. Trilateration, on the other hand, uses only 

distance measurements to identify the position of the target. 

Using three reference points with known locations and 

distances to the target object, the object can be located at the 

intersecting point of the three circles. However, in a dynamic 

system where distance measurements are noisy and fluctuate, 

the task of localizing becomes difficult. This uncertainty due 

to measurement noises renders analytical methods almost 

useless. Localization methods capable of accounting for and 

filtering out the measurement noises are desired. The method 

by which the distance measurements are carried out 

determines the sources of noise in these measurements [1]. 

Applications of localization GSM network appeared in the 

beginning of the years 2000 because of the exponential 

increase of the users of the cell phone. Operators of mobile 

telephony were interested in the exploitation of the GSM 

network to ends of localization for its commercial and social 

benefits, for it, a service of localization appeared and used for 

the security of the users, in a first time, then he served to an 

optimal use in a second time. The quality of this service is 

bound closely to the precision of the positioning. 

The location based services (LBS) provided in the 

ubiquitous environment require the accurate positions of the 

users and, as a result, positioning techniques have become 

one of the most important elements in ubiquitous networks 

[2]. The Global Positioning System (GPS) is the most 

representative method of positioning and is widely used in 

practical LBS systems. However, GPS cannot be utilized if 

line of sight visibility to the satellites is lost. 

A mobile terminal, in an RF-based positioning system, 

measures the strengths of the signals received from at least 

three different fixed position stations. Then, by applying an 

RF propagation loss model to these signal strengths, the 

mobile terminal estimates its distances from the stations. By 

applying Kalman filter to the distances and the coordinates of 

the stations, the mobile terminal can estimate its position. To 

obtain a more accurate position from noisy distance 

measurements, the terminal repeats the estimation process a 

number of times and determines its position to be the average 

of the estimations. The Kalman Filter was intensively applied 

to dynamic systems [3]-[6]. The Kalman Filter estimates the 

state of a process by iteratively predicting its state and 

adjusting the prediction with measurements. One of the 

characteristics of the Kalman Filter is that it minimizes the 

mean of the squared error. The problem of the conventional 

Kalman Filter is its applicability only to linear systems, and a 

bad the choice of its parameters affects highly the precision 

of the algorithms. Other variants exist in literature to cover 

the nonlinear cases, and/or to tune iteratively some 

parameters in order to achieve higher precision. 

This paper introduces a mobile GSM dynamic positioning 

approach using Nonlinear and/or adaptive Kalman Filter 

Variants. A performance comparison, in terms of accuracy, is 

then performed based on a real world experience Drive Tests. 

Section II of this paper provides a general overview of the 

developed system. Section III details the Kalman filter 

approach. Section IV details some experimental results 

carried out in Algiers City area. 

 

II. METHODOLOGIE 

The process of finding the location of the MS using the 

cellular network, and thereby enabling further services 
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through operator server, involves several stages. The diagram in Fig. 1 shows the dynamic location process stages. 

 

 
Fig. 1. Block diagram for the general methodology. 

 

A. Determination of Base Stations Locations 

The determination of the location of the BTSs is 

accomplished using the data base of the sites in the public 

operator Mobilis, which updates the location of GSM base 

stations throughout the Algiers. It is therefore possible to 

measure the latitude/longitude positioning of all the 

surrounding base station. 

B. Signal Strength Calculation Stage 

Using TEMS investigation software at the exact reference 

location, the strength of the signal received from the serving 

base station, as well as neighboring base stations, can be 

measured. Indeed, TEMS investigation allows determination 

of the Cell Identity (CI) code of each BTS communicating 

with MS. By forcing the hand over in order to communicate 

directly with a specific CI (or BTS) using the channel number 

of such cell as pointed by the software, TEMS investigation 

also allows us to display the received signal strength (Rx) 

transmitted by each of the surrounding BTS pointed out at 

previous test.hen you submit your final version, after your 

paper has been accepted, prepare it in two-column format, 

including figures and tables. 

C. Distance Calculation 

The distance between each BTS and the handset can be 

determined using one of the empirical propagation models. 

We focused in this paper on Walfish-Ikigami propagation 

model [7], see [8] for an exploration of alternative models. 

Basically, the model provides an expressing of the path loss 

of the signal transmitted by the BTS (Tx) and received signal 

at the MS receiver (Rx), as a function of the distance between 

BTS and MS and the carrier frequency f, also determined 

using TEMS investigation displayed parameters. 

More formally, the Walfish-Ikigamimodel defines a 

parameter intervening in the expression of the model are the 

next one, see [9] and [10]. 

𝐿oss = 𝑇𝑥 − 𝑅𝑥: Path loss (dB) 

f: Frequency bearer (MHz): 800 ≤  𝑓 ≤  2000. 

𝑕𝑏 : Height of antenna (m) of the base station in relation to 

soil:4 ≤ 𝑕𝑏 ≤ 50. 

𝑕𝑚 : Height of antenna (m) of the mobile station in relation 

to soil:1 ≤ 𝑕𝑚 ≤ 3. 

𝑕𝑟 : Middle height (m) of the buildings:𝑕𝑟 ≥ 𝑕𝑚 . 

w: Width of the road (m) where the mobile is situated. 

b: Distance (m) between the centers of buildings. 

d: Distance (Km) between the BS and the mobile: 

 

0.2 ≤ 𝑑 ≤ 5 

 

α: Angle (in degrees) that makes the journey with the axis 

of the road. 

∆𝑕𝑏 = 𝑕𝑏 − 𝑕𝑟 : Height of BS to the over of the roofs. 

∆𝑕𝑚 = 𝑕𝑟 − 𝑕𝑚 : Height of MS below the roofs. 

Case of Line Of Sight LOS 

 

𝐿𝑝 = 42.64 + 26log(𝑑) + 20log(𝑓) 

 

Case of  Non Line Of Sight NLOS 

 

𝐿𝑜𝑠𝑠 =  
𝐿𝑓𝑠 + 𝐿𝑟𝑡𝑠 + 𝐿𝑚𝑠𝑑 , for urbain and suburbain

𝐿𝑓  , if  𝐿𝑟𝑡𝑠 + 𝐿𝑚𝑠𝑑 ≤ 0   
  

 

With:  

𝐿𝑓𝑠 : the attenuation in free space (dB). 

𝐿𝑟𝑡𝑠 : the attenuation due to the diffraction on the roofs of 

the buildings (dB). 

𝐿𝑚𝑠𝑑 : the attenuation due to the multiple diffractions (dB). 

The attenuation in free space: 

𝐿𝑓𝑠 =  32,44 + 20Log(𝑑)  + 20Log(𝑓) 

The attenuation (dB) due to the diffraction on the roofs of 

the buildings: 

𝐿𝑟𝑡𝑠 = −16,9 − 10Log 𝑤 + 10Log 𝑓 + 20Log ∆𝑕𝑚 

+ 𝐿𝑜𝑟𝑖  

𝐿𝑜𝑟𝑖 : is a term that depends on the orientation of the road in 
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relation to the emitter. 

 

𝐿𝑜𝑟𝑖 =  
−10 + 0,3574𝛼,                   0 ≤ 𝛼 ≤ 35°
2,5 + 0,075 𝛼 − 35 ,          35°≤ 𝛼 ≤ 55°
4 − 0,1004 𝛼 − 55 ,           55°≤ 𝛼 ≤ 90°

  

 

The attenuation due to the multiple diffractions: 

𝐿𝑚𝑠𝑑 =  𝐿𝑏𝑠𝑕 + 𝐾𝑎 + 𝐾𝑑Log (𝑑)  + 𝐾𝑓Log (𝑓) –  9Log (𝑏) 

𝐾𝑎  and 𝐾𝑑 : are two factors of empiric correction of the 

height of the antenna. 

𝐾𝑓 : is a factor of adaptation of the different densities of the 

buildings. 

With: 

𝐿𝑏𝑠𝑕 =  
−18Log 1 + ∆𝑕𝑏 ,       𝑕𝑏 > 𝑕𝑟
0,                                       𝑕𝑏 ≤ 𝑕𝑟

  

𝐾𝑎 =

 
 

 
54,                                      𝑕𝑏 > 𝑕𝑟
54 − 0,8∆𝑕𝑏   ,                   𝑑 ≥ 0,5 and 𝑕𝑏 ≤ 𝑕𝑟

54 − 0,8∆𝑕𝑏  
𝑑

0,5
 ,           𝑑 < 0,5 and 𝑕𝑏 ≤ 𝑕𝑟

 𝐾𝑑

=  

18,                                ∆𝑕𝑏 > 0   

18 − 15  
∆𝑕𝑏
∆𝑕𝑚

 ,         ∆𝑕𝑏 ≤ 0  
 𝐾𝑓

=  
−4 + 0,7  

𝑓

925
− 1 , average city

−4 + 1,5  
𝑓

925
− 1 , big city

  

 

In the absence of detailed data on the structure of the 

buildings, the Cost231 recommends the following 

values:  20m ≤ 𝑏 ≤ 50m , 𝑤 = 𝑏/2 [9]. In our simulation, 

we use the following data: 

The distance (in meters) between the centers of buildings is 

𝑏 = 50m, the width of the road is 𝑤 = 25m, the angle (in 

degrees) who makes the journey with the axis of the road is 

𝛼 = 30°, the middle height (in meters) of the buildings is 

𝑕𝑟 = 15m [10]. 

The carrier frequency f is determined by the following 

expression [11]: 

 

𝑓 =  1805 +  0.2 (ARFCN − 511) 

 

where ARFCN stands for BTS carrier channel number as 

displayed by TEMS investigation software. 

Consequently, as all parameters are known, allows us to 

straightforwardly determine the distance d from the path loss 

(𝑇𝑥 − 𝑅𝑥) expression. 

D. Mobile Positioning Location 

Once the distance between MS-BTS is gotten from each of 

the neighboring BTS, a dynamic model of Nonlinear Kalman 

Filters (EKF, AEK, UKF and AUKF) are used to determine 

the coordinates of the MS position, in terms of latitude and 

longitude. 

 

III. KALMAN FILTER 

Kalman filtering is widely known as being very useful to 

estimate system states that can only be observed inaccurately: 

it can be shown that of all possible filters, it is the one that 

minimizes the variance of the estimation error. This filter is 

not complex to implement it because its recursive nature. For 

a detailed description of the Kalman filter see [9] and [12]. 

The Kalman filter is an iterative approach that uses prior 

knowledge of noise characteristics to account for and filter 

out the noise. However, problems arise when attempting to 

model noise. Attempts at measuring noise are only 

approximations and do not indicate the real distribution of the 

noise. The Kalman filter can only be used for linear stochastic 

processes. for non-linear processes the Extended Kalman 

Filter (EKF) is the most widely used approach. The main 

concept of the EKF is the propagation of Gaussian random 

variables which approximates the state distribution through 

the first order linearization of the nonlinear model [13]. 

Therefore, the degree of accuracy of the EKF relies on the 

validity of the linear approximation and is not suitable for 

highly non-Gaussian conditional probability density 

functions, since it only updates the first two moments (mean 

and covariance) [13]. In addition, the calculation of the 

Jacobian matrix, used to linearize the nonlinear function in an 

EKF algorithm, can be complex causing implementation 

difficulties [14], [15]. In order to overcome these limitations, 

the Unscented Kalman Filter (UKF) has been proposed by 

Julier and Uhlmann [14], [15]. Based on EKF and UKF, 

adaptive Kalman filters have been developed to achieve 

much better estimation performance for non linear systems 

by adjusting the noise covariance matrices during estimation 

[16]. 

Once distance measurements are obtained from at least 

three base stations, the static model of the Kalman Filter 

algorithm is applied to calculate the position of the mobile 

phone (MS) in latitude and longitude coordinates. The 

accuracy of the result depends on how far it is from the 

location where signal strength measurements have been 

taken. This is determined using our GPS device at the exact 

location of the experiment. 

Either 𝑋𝑘  
𝐿𝑘
𝑙𝑘
  is the vector representing the position of the 

mobile station (MS) at time k, L being the latitude and l the 

longitude. As the dynamic of the MS is taken into account; 

that is, one assumes when the MS is connected to different 

BTSs. In other words, the state model of the target is given by 

Xk+1=kXk+Wk                                  (1) 

where k is the state transition matrix and the system error 

𝑊𝑘  ~ 𝒩(0,𝑄𝑘) corresponds to the modeling error. 

Either 𝐵𝑖  
𝐿𝑖
𝑙𝑖
  is the vector representing the latitude and 

longitude of the i-th base station (BTS). 

Let 𝐷𝑖(𝑘)be the (noised) distance between the ith BTS and 

the MS position at time k; R is the earth radius (6378.135km). 

𝐷𝑖(𝑘)  is defined using the spherical law of cosines as 

follows: 

𝐷𝑖 𝑘 =
𝑅. acos sin 𝐿𝑘 sin 𝐿𝑖 + cos 𝐿𝑘 cos 𝐿𝑖 cos(𝑙𝑖 −𝑙𝑘  ) +
𝜀(𝑘)                                                                                      (2) 

where 𝜀(𝑘) is, zero-mean Gaussian noise with the variance 

International Journal of Computer Theory and Engineering, Vol. 7, No. 5, October 2015

356



  

A. Extended Kalman Filter 

The Extended Kalman Filter (EKF) has been used for 

many years to estimate the state of nonlinear systems from 

noisy measurements, and it has been probably the first 

concrete application of Kalman’s work on filtering [17]. 

The EKF algorithm is described as follows: 

1) The predicting process 

State updating: 

 

𝑋 𝑘
− = 𝑓(𝑋 𝑘−1,𝑢𝑘−1)                             (3) 

 

Error covariance updating: 

 

𝑃𝑘
− = 𝐴𝑘−1  𝑃𝑘−1𝐴𝑘−1

𝑇 + 𝑄                        (4) 

 

2) The updating process 

Kalman gain determining: 

 

𝐾𝑘  =  𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇   +  𝑅0 )−1                   (5) 

 

State estimation update 

 

𝑋 𝑘  =  𝑋 𝑘
− + 𝐾𝑘  . (𝑑𝑖  −  𝐷 𝑖)                          (6) 

 

Update of state covariance:  

 

𝑃𝑘+1 = (𝐼 –  𝐾𝑘𝐻𝑖) .𝑃𝑘                                   (7) 

 

where 𝐻𝑖 𝑘  stands for the Jacobian Matrix of 𝐷 𝑖  

 

𝐻𝑖 𝑘  =   
𝜕𝐷 𝑖(𝑘)

𝜕𝑙𝑘

𝜕𝐷 𝑖(𝑘)

𝜕𝑙𝑘
                              (8) 

 

With        

 

𝜕𝐷 𝑖

𝜕𝐿𝐾
= 𝑅  

sin ( 𝐿𝑘) cos ( 𝐿𝑖) cos  𝑙𝑖−𝑙𝑘 −cos  𝐿𝑘 sin  𝐿𝑖 

 1− sin  𝐿𝑘 sin  𝐿𝑖 +cos  𝐿𝑘 cos  𝐿𝑖 cos  𝑙𝑖−𝑙𝑘  
2
    (9) 

 

𝜕𝐷 𝑖

𝜕𝑙𝑘
= 𝑅  

cos  𝐿𝑘 cos  𝐿𝑖 sin  𝑙𝑖−𝑙𝑘 

 1− sin  𝐿𝑘 sin  𝐿𝑖 +cos  𝐿𝑘 cos  𝐿𝑖 cos  𝑙𝑖−𝑙𝑘  
2
    (10) 

 

B. Unscented Kalman Filter 

The UKF is a recursive state estimator based on the 

Unscented Transform, which is a method to approximate the 

mean and covariance of a random variable undergoing a 

nonlinear transformation [18], [19]. The underlying idea is to 

estimate the statistics of the transformed variable from a set 

of 2n+1 points (called sigma points), with n being the 

dimension of the considered estimation problem. Sigma 

points are generated deterministically, on the basis of the 

(known) covariance matrix of the initial random variable and 

depending on the parameters of the filter. The procedure for 

implementing the UKF can be summarized as follows. 

Before estimation, the state vector is initialized with the 

mean of 𝑋0 and the error covariance of 𝑃0. 

𝑋 0 = 𝐸 𝑋0 , 𝑃0 = 𝐸( 𝑋0 − 𝑋 0 (𝑋0 − 𝑋 0)𝑇)          (11) 

 

1) The predicting process 

a)  Computing sigma points: At time step k-1, the state 

estimate is assumed with mean 𝑋 𝑘−1  and error 

covariance  𝑃𝑘−1. A set of 2n+1 weighted samples called 

sigma points are selected as follows: 

 

𝑋 𝑘−1
(𝑖)

= 𝑋 𝑘−1, 𝑖 = 0                               (12) 

 

𝑋 𝑘−1
(𝑖)

= 𝑋 𝑘−1 +   (𝑛 + 𝜆) 𝑃𝑘−1 𝑖 , 𝑖 = 1,… ,𝑛        (13) 

 

𝑋 𝑘−1
(𝑖)

= 𝑋 𝑘−1 −   (𝑛 + 𝜆) 𝑃𝑘−1 𝑖 , 𝑖 = 𝑛 + 1,… ,2𝑛   (14) 

 

where λ is a scaling factor determined by: 𝜆 = 𝛼2 𝑛 + 𝜅 −
𝑛 . The constant α is set to a small positive value. It 

determines the spread of the sigma points around  𝑋 𝑘−1. The 

constant κ is the secondary scaling parameter usually set to 0. 

The expression of   (𝑛 + 𝜆) 𝑃𝑘−1 𝑖  represents the i-th 

column of the matrix square root of (𝑛 + 𝜆) 𝑃𝑘−1. Define the 

mean weights Wm associated with the sigma points as 

𝑊𝑚
(𝑖)

=
𝜆

𝜆+𝑛
, 𝑖 = 0                               (15) 

𝑊𝑚
(𝑖)

=
𝜆

2(𝜆+𝑛)
, 𝑖 = 1,… ,2𝑛                    (16) 

b) Propagating sigma points: Propagate each sigma point 

by: 

 

𝑋 𝑘|𝑘−1
(𝑖)

= 𝑓(𝑋 𝑘−1
 𝑖 ,𝑢𝑘−1)                       (17) 

 

c) Determining a priori state estimate and a priori estimate 

error covariance. 

The a priori state estimate 𝑋 𝑘|𝑘−1 at time instant k|k-1 is 

computed by 

𝑋 𝑘|𝑘−1 =  𝑊𝑚
(𝑖)
𝑋 𝑘|𝑘−1

(𝑖)2𝑛
𝑖=0                    (18) 

To obtain the a priori estimate error covariance 𝑃𝑘|𝑘−1 , 

define the variance weights Wc as 

𝑊𝑐
(𝑖)

=
𝜆

𝜆+𝑛
+ (1 − 𝛼2 + 𝛽), 𝑖 = 0                  (19) 

𝑊𝑐
(𝑖)

=
𝜆

2(𝜆+𝑛)
, 𝑖 = 1,… . ,2𝑛                          (20) 

𝑃𝑘|𝑘−1 =  𝑊𝑐
 𝑖 (𝑋 𝑘|𝑘−1

(𝑖)
− 𝑋 𝑘|𝑘−1

2𝑛
𝑖=0 )(𝑋 𝑘|𝑘−1

(𝑖)
− 𝑋 𝑘|𝑘−1)𝑇 +

𝑄                      (21) 

 

2) The updating process  

a) Computing sigma points: At time instant k|k-1,a new set 

of sigma points based on the a priori state estimate 

𝑋 𝑘|𝑘−1 are selected as follows:  

𝑋 𝑘−1
(𝑖)

= 𝑋 𝑘\𝑘−1, 𝑖 = 0                           (22) 

𝑋 𝑘\𝑘−1
(𝑖)

= 𝑋 𝑘\𝑘−1 +   (𝑛 + 𝜆) 𝑃𝑘\𝑘−1 𝑖
, 𝑖 = 1,… ,𝑛    (23) 
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𝑅0, corresponding to the measurement model of the filter. In 

literature, the variance of measurement noise is noted 𝑅 . 

However, in this paper, it is noted 𝑅0, in order to avoid 

confusion with earth radius noted . 𝑅



  

𝑋 𝑘\𝑘−1
(𝑖)

= 𝑋 𝑘|𝑘−1 −   (𝑛 + 𝜆) 𝑃𝑘|𝑘−1 𝑖
, 𝑖 = 𝑛 +

1,… ,2𝑛    (24) 

 

b) Computing predicted output: 

Compute the corresponding output for each sigma point at 

time instant k|k-1: 

 

𝑌 𝑘|𝑘−1
(𝑖)

= 𝑔(𝑋 𝑘|𝑘−1
 𝑖 ,𝑢𝑘)                          (25) 

 

Then, the predicted output is determined by 

 

𝑌 𝑘|𝑘−1 =  𝑊𝑚
(𝑖)
𝑌 𝑘|𝑘−1

(𝑖)2𝑛
𝑖=0                        (26) 

 

c) Computing the Kalman gain Kk: 

 

𝑃𝑦𝑘𝑦𝑘 =  𝑊𝑐
 𝑖 (𝑦 𝑘\𝑘−1

 𝑖 − 𝑦  𝑘|𝑘−1
2𝑛
𝑖=0 )(𝑦 𝑘|𝑘−1

 𝑖 − 𝑦  𝑘|𝑘−1)𝑇 +

𝑅0 (27) 

 

𝑃𝑥𝑘𝑦𝑘 =  𝑊𝑐
 𝑖 (𝑋 𝑘|𝑘−1

 𝑖 − 𝑋 𝑘|𝑘−1
2𝑛
𝑖=0 )(𝑦 𝑘\𝑘−1

 𝑖 − 𝑋 𝑘|𝑘−1)𝑇(28) 

 

𝐾𝑘 = 𝑃𝑥𝑘𝑦𝑘𝑃𝑦𝑘𝑦𝑘
𝑇                            (29) 

 

In (27)–(29), 𝑃𝑦𝑘𝑦𝑘  is the predicted output covariance 

matrix. 𝑃𝑥𝑘𝑦𝑘  is the cross-covariance between the predicted 

output and the state estimate at time instant k|k-1. 

d) Determining a posteriori state estimate 𝑋 𝑘  and a 

posteriori estimate error covariance 𝑃𝑘 : At time step k, 

given the output measurement, the state estimate and 

error covariance are obtained by 

 

𝑋 𝑘 = 𝑋 𝑘|𝑘−1 + 𝐾𝑘(𝑦 𝑘 − 𝑦 𝑘|𝑘−1)                    (30) 

 

𝑃𝑘 = 𝑃𝑘\𝑘−1 − 𝐾𝑘𝑃𝑦𝑘𝑦𝑘𝐾𝑘
𝑇                         (31) 

 

where 𝑦 𝑘  represents the measurement taken at step k. 

C. The AEKF and AUKF Algorithms 

The process and measurement noise covariance matrices Q 

and R0 are assumed constant for EKF and UKF described in 

(3)–(7) and (12)–(31). It should be noticed that the optimality 

of Kalman filters estimation depends on the quality of the 

prior knowledge about the noise statistics [19]. Proper 

selection of Q and R0 is essential to the filter estimation 

performance. Improper Q and R0 may lead to large 

estimation error or filter divergence. To compensate for 

unknown or time-varying Q and R0, an adaptive approach for 

EKF and UKF is utilized to achieve better estimation 

performance and avoid divergence. The main advantage of 

adaptive Kalman filtering is to achieve less reliance on the 

prior statistical information and to adapt the noise covariance 

matrices according to filter learning history [20]. Therefore, 

building on the application of EKF and UKF, two adaptive 

Kalman filtering algorithms, AEKF and AUKF, are also 

applied in this section to obtain better tracking results. Such 

adaptive Kalman filters add an online adjustment block to 

adapt the filter parameters Q and R0. In each step, after 

achieving the state estimate, Q and R0 are updated using the 

Innovation based Adaptive Estimation(IAE) approach [21], 

for both AEKF and AUKF.  

From the incoming measurement 𝑑(𝑘)  and the optimal 

prediction 𝐷 (𝑘) obtained in the previous step, the innovation 

sequence is defined as : 
 

𝑒 𝑘 = 𝑑 𝑘 − 𝐷 (𝑘)                             (32) 
 

The covariance of e(k) is written as 
 

𝛷𝑒(𝑘) = 𝐸 𝑒 𝑘 𝑒(𝑘)𝑇                              (33) 

 

According to the maximum likelihood estimation for the 

multivariate normal distribution approach, the statistical 

sample variance of 𝛷𝑒(𝑘) : 

 

𝛷 𝑒(𝑘) =
1

𝑘
 𝑒 𝑘 𝑒(𝑘)𝑇𝑘
𝑖=1                             (34) 

 

The AEKF algorithm adds the following adjusting block 

(35) and (36) to the EKF algorithm (3)–(7) 
 

𝑅0𝑘 =  𝜙 𝑒(𝑘) −𝐻𝑘𝑃𝑘𝐻𝑘
𝑇                           (35) 

 

𝑄𝑘  =  𝐾𝑘𝜙 𝑒(𝑘)𝐾𝑘
𝑇                            (36) 

 

For the AUKF algorithm, the adjusting block (37) and (36) 

is added to the UKF algorithm (12)–(31) 
 

𝑅0𝑘 = 𝜙 𝑒(𝑘) −  𝑊𝑐
 𝑖 (𝑦 𝑘\𝑘−1

 𝑖 − 𝑦  𝑘|𝑘−1
2𝑛
𝑖=0 )(𝑦 𝑘|𝑘−1

 𝑖 −

𝑦 𝑘|𝑘−1)𝑇                    (37) 

 

IV. EXPERIMENT 

In order to compare the effectiveness of the four 

approachs, we tested the positioning of our system in the 

Algiers centre area. Besides, we used information obtained 

through drive test image as a reference to quantify the 

positioning error. 

 

 
Fig. 2. The tools used in the experience. 

 

Fig. 2 shows the drive test image of the MS positioning 

area. In order to extract the measurements that will be 

employed in the filter. 

Fig. 3 provides the result in terms of signal strength as 

obtained using TEMS Investigation software. 

Table I provides the result in terms of signal strength as 

obtained using TEMS Investigation software and the 

BTS-MS distances obtained using Walfish-Ikigami 

propagation model, respectively. 
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Fig. 3. Drive test experience. 

 
TABLE I: DISTANCE CALCULATION USING WALFISH-IKIGAMI MODEL 

Cell ID Hb Tx Rxlev ARFCN Walfish distances (Km) 

16139E 52 43 -69 764 0.455334 

16212F 36 45 -74 756 0.537776 

16203F 15 45 -95 766 0.443333 

 

TABLE II: AVERAGE OF LOCATING ERRORS WITH DIFFERENT FILTERS 

Tracking filters EKF AEKF UKF AUKF 

Average of locating 

errors (Km) 
0.1789 0.1769 0.1752 0.1635 

 

The measurements are recorded during the MS dynamics 

at a sampling time of 30 seconds throughout 8 minutes, which 

means that this test path is sampled into 16 positions. For 

each position, the three distances MS-BTS are calculated 

using Walfish-Ikigami model. 

 

V. SIMULATION RESULTS 

𝑅00 = 1 

𝑃0 =  
0.0001 0

0 0.0001
  

𝑄0 =  3.7 10−9 0
0 4.9 10−9 . 

For the UKF and AUKF algorithms additional parameters 

are initialized to κ=0, α=3, β=5. 

The location accuracy is the most important criterion to 

evaluate the localization and tracking algorithms, three 

metrics were used to calculate the difference between the 

estimated position and the real position: the Locating Error, 

its Cumulative Distribution Function (CDF) and the Root 

Mean Square Error (RMSE) calculated as follows: 

 

RMSE 𝑘 

=  
1

𝑁
  𝑋𝑟𝑒𝑎𝑙  𝑘 − 𝑋𝑖,𝑒𝑠𝑡  𝑘  

2

+  𝑌𝑟𝑒𝑎𝑙  𝑘 − 𝑌𝑖,𝑒𝑠𝑡  𝑘  
2

𝑁

𝑖=1

 

 

 
Fig. 4. Locating error at each position. 

 

The Fig. 4, Fig. 5 and Fig. 6 show that the location error of 

the four algorithms are almost the same at the beginning of 

the tracking process, this is due to the fact that the initial 
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To compare the performance of the presented estimation 

algorithms, we set the initial parameters of P, R0, Q for EKF, 

UKF, AEKF and AUKF to: 

 

With N is the number of BTS, in our case, N=3. 𝑋𝑖,𝑒𝑠𝑡  𝑘  

and 𝑌𝑖,𝑒𝑠𝑡  𝑘  are the coordinates of the k-th position 

estimated by the i-th BTS. The results are illustrated in Fig. 4, 

Fig. 5 and Fig. 6. The average of locating errors with different 

filters is given in Table II. 

 



  

 

 
Fig. 5. Cumulative distribution Function of locating error. 

 

 
Fig. 6. RMSE of locating with different filters. 

 

VI. CONCLUSION 

The performance comparison of the conventional non 

linear Kalman Filters and their adaptive variants for mobile 

dynamic location, has been analyzed, from the theoretical 

analysis and simulation results. We conclude that all of the 

applied filters can accomplish the dynamic location task, but 

the EKF has the worst accuracy, while the AUKF can achieve 

the best performance. 

REFERENCES 

[1] A. Shareef, Y.-F. Zhu, M. Musavi, and B.-X. Shen, “Comparison of 

MLP neural networks and kalman filter for localization in wireless 

sensor networks,” in Proc. the 19th IASTED International Conference 

on Parallel and Distributed Computing and Systems, Cambridge, MA, 

USA, November 19-21, 2007. 

[2] D. Choi, “Personalized local internet in the location-based mobile web 

search,” Decision Support Systems, vol. 43, no. 1, pp. 31–45, 2007. 

[3] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and 

Applied Kalman Filtering: With Matlab Exercises and Solutions, John 

Wiley & Sons, New York, NY, USA, 3rd edition, 1997. 

[4] A. Gelb, Applied Optimal Estimation, The MIT Press, Cambridge, MA 

and London, UK, 1974. 

[5] A. Kotanen, M. Hannikainen, H. Leppakoski, and T. D. Hamalainen, 

“Experiments on local positioning with Bluetooth,” in Proc. 

International Conference on Information Technology: Coding and 

Computing [Computers and Communications] (ITCC 2003), 2003, pp. 

297–303. 

[6] P. S. Maybeck, Stochastic Models, Estimation, and Control, vol. I, II 

and III, Academic Press, 1982. 

[7] S. Hamani and M. Oussalah, “Mobile location system using netmonitor 

and mappoint server,” in Proc 6th Annual Post Graduate Symposium 

on the Convergence of Telecommunications, Networking and 

Broadcasting, Liverpool John Moores University, June 2006, pp. 

17-23. 

[8] V. S. Abhayawardhana, I. J. Wassell, D. Crosby, M. P. Sellars, M. G. 

Brown, “Comparison of empirical propagation path loss models for 

fixed wireless access systems,” in Proc. the 61st IEEE Vehicular 

Technology Conference, Stockholm, Sweden, 2005, pp. 73-77. 

[9] M. Shahajahan and A. Q. M. A. Hes-Shafi, “Analysis of Propagation 

Models for WiMAX at 3.5 GHz,” M.S. thesis, Blekinge Institute of 

Technology, 2009. 

[10] GSM: Global System for Mobile CommunicationsArchitecture, 

Interfaces et Identités. [Online]. Available: 

http://www.efort.com/r_tutoriels/GSM1_EFORT.pdf 

[11] G. Gunnarsson, M. Allen, T. Rantalainen, V. Ruutu, and V.-M. 

Teittinen, “Location trial system for mobile phones,” in Proc. the IEEE 

Global Telecommunication Conference. The Bridge to Global 

Integration, 1998, pp. 211-2216. 

[12] Guvenc, C. T. Abdallah, R. Jordan, and O. Dedeoglu, “Enhancements 

to RSS based indoor tracking systems using kalman filters,” in Proc. 

International Signal Processing Conference and Global Signal 

Processing Expo, Dallas, TX, 2003. 

[13] J. L. Crassidis and J. L. Junkins, “Optimal estimation of dynamic 

systems,” Chapman & Hall/CRC Applied Mathematics & Non-linear 

Science Series, CRC Press, Boca Raton, FL, 2004, p. 152. 

[14] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-whyte, “A new method 

for the nonlinear transformation of means and covariances in filters and 

estimators,” IEEE Trans. Auto. Control, vol. 45, no. 3, pp. 477–482, 

2000. 

[15] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear 

estimation,” Proceeding of IEEE, vol. 92, no. 3, pp. 401–422, 2004. 

[16] A. Mohamed and K. Schwarz, “Adaptive Kalman filtering for 

INS/GPS,” Journal of Geodesy, vol. 3, pp. 193–203, 1999. 

[17] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory And 

Practice Using MATLAB, 3rd ed. Wiley, 2008. 

[18] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to 

nonlinear systems,” in Proc. AeroSense: The 11th Int. Symp. on 

Aerospace/Defence Sensing, Simulation and Controls, 1997, pp. 

182–193. 

[19] E. Wan and R. van der Merwe, “The unscented kalman filter,” in 

Kalman Filtering and Neural Networks, S. Haykin, Ed. Wiley, 2001, 

ch. 7, pp. 221–280. 

[20] R. Mehra, “On the identification of variances and adaptive Kalman 

filtering,” IEEE Trans. Automatic Control, vol. 15, pp. 175–184, 1970. 

[21] V. M. Moreno and A. Pigazo, Kalman Filter: Recent Advances and 

Applications, I-Tech, Vienna, Austria, p. 584, April 2009. 

 

Naima Bouzera was born in Bejaia, Algeria, in 1980. 

She is a Ph.D. student at the Department of Genie 

Electric, University of A/Mira Bejaia in Algeria, 

where her research is the application of wireless 

network mobile localization with Kalman filter and its 

variants. She obtained her graduation state in 

electronic from the Bejaia University and a graduation 

magister in electronics in Houari Boumediene 

University of Science and Technology from Algeria, 

in 2009. She was a visiting Ph.D. student of College of 

Engineering and Physical Sciences in Birmingham, UK. Her present 

research interests include the wireless mobile localization, Kalman filter and 

fuzzy logic. 

 

 

Naima Mezhoud was born in Bejaia, Algeria. She  

received her graduation state in electronics from 

Bejaia University in 2001. She also received the 

graduation magister in electronics systems from the 

Military Polytechnic School in Algiers, in 2003. In 

2004, Her main research interests are in statistical 

signal and image processing, estimation and filtering, 

optimization techniques, and telecommunications. 

 

 

 

 

International Journal of Computer Theory and Engineering, Vol. 7, No. 5, October 2015

360

values of the noises covariance matrices (R0 and Q) were 

well adjusted. For the rest of the trajectory, the adaptive 

Kalman filters (AEKF and AUKF) outperform the 

conventional nonlinear ones (EKF and UKF). This proves 

that the values of R0 and Q are iteratively tuned to fit the 

noises variations. Globally, the performance comparison of 

the four filters from the figures and Table II, leads to the 

following descent sorting according to their accuracy: 

AUKF, UKF, AEKF and EKF, respectively. 
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