
 

Abstract—This paper proposes to decompose the maternal 

transabdominal ECG signal into its linear, quadratic and cubic 

parts and retain only the linear part for further signal 

processing. The synthesiser will model the quadratic and cubic 

parts of the transabdominal ECG signal. This is done by 

predicting each sample of the maternal transabdominal full 

cardiac cycles. In order to linearise (retain the linear part and 

remove the quadratic and cubic parts) ECG signals, non-linear 

structures should be utilised. This paper proposes to linearise 

the fetal scalp electrode, the maternal chest, and the maternal 

transabdominal ECG signals using adaptive least-mean-square 

(LMS) and least-mean-fourth-based (LMF), quadratic and 

cubic Volterra structures.  

 
Index Terms—Adaptive algorithms, volterra filters, ECG 

signals. 

 

I. INTRODUCTION 

The maternal transabdominal ECG signal is non-Gaussian 

and possesses quadratic and cubic non-linearities [1]. The 

contaminating noise contains Gaussian, non-Gaussian, and 

non-linear components [2]. The maternal transabdominal 

ECG signal is a combined maternal and fetal ECG and there 

is also another signal combined with it, the uterine 

contraction interference signal during labour [3]. Each one of 

these combined signals is non-linear by its own right [4]. A 

non-linear synthesiser is sought to carry out this task because 

employing a linear structure to cater for such non-linear 

signals would lead to a suboptimal solution. 

The structure of the paper is as follows; First brief 

summaries of the standard LMS and LMF algorithms are 

given in Section II. This is followed by descriptions of the 

LMS- and LMF- Quadratic and Cubic Volterra structures in 

Section III. The Volterra synthesisers are applied to fetal 

scalp electrode, maternal chest, and maternal transabdominal 

ECG signals in Section 4. Conclusions are drawn in Section 

V. The following abbreviations are followed; LMSQV: 

LMS-Quadratic Volterra, LMFQV: LMF-Quadratic 

Volterra, LMSCV: LMS-Cubic Volterra, and LMFCV: 

LMF-Cubic Volterra. 

 

II. ADAPTIVE LMS AND LMF ALGORITHMS 

Filtering implies extracting information from a signal at 

time t by using data before and including time t. Prediction, 

however, is aimed at deriving information about the signal at 

time t +  in the future by using data available before and 
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including time t. The design of Wiener filters, which is a class 

of optimum linear discrete-time filters, requires prior 

information about the statistics of the data to be processed. 

However, adaptive filters do not require such information. 

For adaptive filters, the parameters of the filter are updated 

from one iteration to the next. The parameters become data 

dependent which makes it possible for the filter to perform 

satisfactorily in an environment where complete knowledge 

of the relevant signal statistics is not available. In a stationary 

environment, after successive iterations of the adaptive 

filtering algorithm it converges to the optimum Wiener 

solution in some statistical sense. In a non-stationary 

environment, the algorithm offers a tracking capability, 

whereby it can track time variations in the statistics of the 

input data, provided that the variations are sufficiently slow. 

Adaptive algorithms have fast speed of operation in terms of 

the CPU time and they are computationally efficient. There 

are four basic classes of adaptive filtering applications: (a) 

class I: identification; (b) class II: inverse modelling; (c) class 

III: prediction; and (d) class IV: interference cancellation. 

The issue of prediction is one of the most basic and 

pervasive learning tasks. It is a temporal signal processing 

problem in that we are given a set of N past samples x(n-1), 

x(n-2), …, x(n-N) that are usually uniformly spaced in time, 

and the requirement is to predict the present sample x(n). 

Prediction may be solved using error-correction learning in a 

supervised manner in the sense that the training examples are 

drawn directly from the time series itself. Specifically, the 

sample x(n) serves the purpose of the desired response; hence 

given the corresponding prediction x(n) produced by the 

structure on the basis of the previous samples x(n-1), x(n-2), 

…, x(n-N), the prediction error  may be computed as:  

 

( ) ( ) ( 1, , ),e n  = x n  - x n | n - n - N                   (1) 

 

and thus use the error-correction learning to modify the 

step-size parameter of the structure. Prediction may be 

viewed as a form of model building in the sense that the 

smaller we make the prediction error in a statistical sense, the 

better will the structure serve as a statistical model of the 

underlying process responsible for the generation of the time 

series. The problem of designing an optimum linear filter that 

provides the theoretical framework for linear adaptive filters 

was first conceived by Kolmogorov [5] and solved shortly 

afterwards independently by Wiener [6]. The LMS algorithm 

is a stochastic implementation of the method of the steepest 

descent. The LMS algorithm was introduced for adaptive 

noise cancellation [7]. Variations and improvements show 

faster convergence or better tracking abilities. A thorough 

examination of the LMS performance analysis was provided 
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in [8]. The LMS algorithm is not demanding in 

computational complexity. It is relatively simple to 

implement. The LMS does not require measurements of the 

pertinent correlation functions, nor does it require matrix 

inversion.  

A standard linear LMS filter with transversal, 

tapped-delay, has an output that is related to its input by the 

relation: 

1

( ) ( )
N-

n i n-i

i=0

y = a x ,                            (2) 

and the weights of the filter are updated using a standard 

LMS adaptation rule, which is derived from the 

Widrow-Hoff algorithm that uses an instantaneous 

estimation of the gradient. 

( 1) ( ) 2 ( ) )a n =a n + μ e n x(n ,                       (3) 

where x(n) is the input vector, y(n) is the output vector, a(n) is 

the N × 1 tap weight coefficients vector and  is the step-size 

parameter. The LMS algorithm minimises the expected value 

of the squared difference between the estimated output and 

the desired response. A more general case is to minimise 

E{e(n)
2N

} [9]. This represents a general class of steepest 

descent algorithms for adaptive filtering which allow error 

minimisation in the mean fourth, sixth, … etc. N = 1 is the 

LMS and N = 2 is the Least-Mean-Fourth (LMF). The LMF 

has a faster convergence than the LMS algorithm. It has 

generally a lower weight noise than the LMS algorithm, with 

the same speed of convergence. It was shown to have 3 dB to 

10 dB lower Mean-Squared Error (MSE) than the LMS 

algorithm. There are three parameters to optimise in order to 

achieve the best performance: the number of tap weight 

coefficients of the filter, N, the step size parameter,  and the 

number of delay elements, . The LMF algorithm updates the 

weights as follows: 

 
3( 1) ( ) 2 . ( ). ( )i i ia n a n e n x n   .                   (4) 

 

III.  VOLTERRA STRUCTURES 

In the 1950s a major work was done by Zadeh [10], 

Wiener et al. [11] and others that did much to clarify the 

nature of the problem. Gabor was the first to conceive the 

idea of a non-linear adaptive filter [12] and built such a filter 

[13]. The Volterra series is a well-known method of 

describing non-linear dynamic systems. It is a generalisation 

of the Taylor series expansion of a function. However, the 

Volterra series has a large number of parameters to be 

estimated leading to a large CPU time. The output of the filter 

is expressed in the form 

1 1 1 2 1 2

1 1 2

1 2

1 , 1 1

1 1 1

 
N N N

i k-i + i i k-i + k-i +

i = i = i =

y(n)= a x + a x x +....      (5) 

where x(0), x(1), …, x(N) are samples of the filter input. This 

polynomial is referred to as the Gabor-Kolomogrov 

polynomial or a discrete form of the Volterra series. The 

popularity of the Volterra filtering is due to the advancement 

in computer technology, which allows one to estimate the 

relevant Higher-Order Statistics (HOS) required to calculate 

the higher-order Volterra kernels for non-linear systems [14], 

[15]. The truncated Volterra series (the Volterra filter) is an 

attractive non-linear system representation because the 

parameters of this model are linearly related to the output.  

Consider a single input single output discrete 

time-invariant system with non-linearities, a polynomial of 

order N and filter length M. The output Yk is expressed in 

terms of the inputs xk as follows: 

 

1 1 1 1 2

1 1 2

1 1

1

0 1 2

1 1 1

1 1 1

1 1

1 1



 

 

2

N N

N

N N N

k i k-i + i ,i k-i + k-i +

i = i = i =

N N
N

i ,...,i k-i + k-i

i = i =

Y =a + a x + a x x +....

+ ... a x ....x

    (6) 

where 
1 n

n

i ,...,ia , i1,...,in{1,...M} are referred to as the Volterra 

Kernels. An estimate of x(n+1) can be derived via: 

 

1 1 1 2

1 1 2

1

1

1^
1

0 , 1 2

0 1 1
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  N

N

N- N N

i n-i i i

i = i i

N N

i i N

i i

x n a a x + a x n i x n i

a x n i x n i

       (7) 

 

where N is the number of samples. A Quadratic Volterra 

structure consists of a parallel combination of linear and 

quadratic filters and has the form of: 

1 1 1 2 1 2

1 1 2

0 1 2

1 , 1 1

1 1 1

   

  

  
N N N

k i k-i + i i k i k i

i i i

Y a a x + a x x        (8) 

A Cubic Volterra structure has the form of: 

 

1 1 1 2 1 2

1 1 2

1 2 3 1 2 3

1 2 3

0 1 2

1 , 1 1

1 1 1

3

, 1 1 1

1 1 1

     

  

     

  

    

 

N N N

k i k i i i k i k i

i i i

N N N

i i i k i k i k i

i i i

Y a a x a x x

a x x x

   (9) 

 

Adaptive LMF- Quadratic and Cubic Volterra structures 

were developed [16]. The LMS algorithm in the Volterra 

structure is replaced by an adaptive LMF algorithm. The 

linear, quadratic, and cubic weights of the LMF-Volterra 

structure are updated as: 

 

1 1 1

3( 1) ( ) 2 . ( ). ( )  i i in n e n x na a                (10) 

 

1 2 1 2 1 2

3( 1) ( ) 2 . ( ). ( ). ( )i i i i i in n e n x n x n  a a           (11) 

 

1 2 3 1 2 3 1 2 3

3( 1) ( ) 2 . ( ). ( ). ( ). ( )i i i i i i i i ia n a n e n x n x n x n             (12) 

 

The extension of the LMS-Volterra to the LMF- Volterra 

is done to make use of the advantages of HOS, its robustness 

to Gaussian noise and its tracking capability in the HOS 

domain [17], [18]. The parameters of the LMF algorithm 
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were optimised by trial and error to achieve the best 

performance in terms of the speed of convergence, minimum 

mean-squared error and tracking. The reason for applying an 

LMF-based filter to the ECG signals is because it has the 

ability to track higher-order statistical variations while the 

LMS algorithm is limited to tracking variations in the 

second-order statistics domain only. The LMF algorithm is 

based on updating the error to the power four, which makes it 

converge faster than the LMS algorithm, which is based on 

updating the squared error. 

Model Order Selection 

The best choice of the filter order, N, is not generally 

known a priori and it is usually necessary to postulate several 

model orders then compute error criteria that indicate which 

model order to choose. One well-known criterion is the 

Akaike Information Criteria (AIC). The AIC determines the 

model order by minimising an information theoretic function 

AIC(N) = Nd ln(N) + 2N                       (13) 

where Nd is the number of data samples and N is the 

estimated white noise variance, the linear prediction error 

variance will be used for this estimate,  

2

( ) .  
mm

t

e t                                     (14) 

IV. RESULTS 

Using as input fetal scalp electrode, maternal chest, and 

maternal transabdominal ECG signals [12], the MSE 

performance of the LMSQV synthesiser is compared with 

that of the LMFQV synthesiser. This is followed by 

comparing the MSE performance of the LMSCV synthesiser 

with that of the LMFCV synthesiser. In each case the 

parameters have been optimised to yield the best 

performance for individual signals. 

Fig. 1 shows the MSE of both the LMSQV and the 

LMFQV synthesisers when applied to a fetal scalp electrode 

ECG signal. At the start of the iterations, the MSE of the 

LMFQV is about 3 dB below that of the LMSQV. Then, both 

synthesisers equalise towards convergence. It is interesting to 

note that the fetal scalp electrode ECG signal is 

predominantly linear and is decomposed as follows; input = 0 

dB, output = - 0.03 dB linear and –20 dB quadratic.  

 

 
Fig. 1. The mean-squared error of (a) the LMSQV and (b) the LMFQV 

Synthesisers when applied to the fetal scalp electrode ECG signal. 

Fig. 2 shows the MSE of both the LMSQV and LMFQV 

synthesisers when applied to a maternal chest ECG signal. At 

the start of the iterations, the MSE of the LMFQV is about 3 

dB below that of the LMSQV. Then, both synthesisers 

equalise towards convergence. Note that the maternal chest 

ECG signal is predominantly linear and is decomposed as 

follows; input = 0 dB, output = - 0.02 dB linear and –19 dB 

quadratic. 

Fig. 3 shows the MSE of both the LMSQV (l. h.s.) and 

LMFQV (r.h.s.) synthesisers when applied to a maternal 

transabdominal ECG signal. The LMFQV starts with an 

initial error which is about 39% of that of the LMSQV. The 

LMFQV takes only two cardiac cycles to converge whilst the 

LMSQV converges in nine cardiac cycles. Also, the LMFQV 

approaches convergence with an MSE of 2.5 x 10-4 which is 

less than that of the LMSQV (7.4 × 10-3); a definite 

improvement of 14 dB. Note that the maternal 

transabdominal ECG signal is predominantly linear and is 

decomposed as follows; input = 0 dB, output = - 0.015 dB 

linear and –17 dB quadratic. 

 

 
Fig. 2. The mean-squared error of (a) the LMSQV and (b) the LMFQV 

synthesisers when applied to the maternal chest ECG signal. 

 

 
Fig. 3. The mean-squared error of (a) the LMSQV and (b) the LMFQV 

synthesisers when applied to the maternal transabdominal ECG signal. 

Fig. 4 shows the MSE of both the LMSCV and LMFCV 

synthesisers when applied to a fetal scalp electrode ECG 

signal. At the start of the iterations, the MSE of the LMFCV 

is about 3 dB below that of the LMSCV. Then, both 

synthesisers equalise towards convergence. Note that the 

fetal scalp electrode ECG signal is predominantly linear and 

is decomposed as follows; input = 0 dB, output = - 0.03 dB 

linear, –20 dB quadratic, and -39 dB cubic.  

Fig. 5 shows the MSE of both the LMSCV and LMFCV 

synthesisers when applied to a maternal chest ECG signal. At 

the start of the iterations, the MSE of the LMFCV is about 3 

dB below that of the LMSCV. Then, both synthesisers 
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A. LMSQV versus LMFQV Synthesisers 

B. LMSCV versus LMFCV Synthesisers 



equalise towards convergence. Note that the maternal chest 

ECG signal is predominantly linear and is decomposed as 

follows; input = 0 dB, output = - 0.02 dB linear, –19 dB 

quadratic, and -36 dB cubic.  

 

 
Fig. 4. The mean-squared error of (a) the LMSCV and (b) the LMFCV 

synthesisers when applied to the fetal scalp electrode ECG signal. 

 

Fig. 6 shows the MSE of both the LMSCV (l. h.s.) and 

LMFCV (r.h.s.) synthesisers when applied to a maternal 

transabdominal ECG signal. At the start of iterations, the 

LMFCV is 6 dB below that of the LMSCV. The LMFCV 

takes only two cardiac cycles to converge whilst the LMSCV 

converges in nine cardiac cycles. Also, the LMFCV has a 

steady-state MSE of 1.5 × 10-6 whilst that of the LMSCV is 3 

× 10-5 which is an improvement of approximately 13 dB. 

Note that the maternal transabdominal ECG signal is 

predominantly linear and is decomposed as follows; input = 0 

dB, output = - 0.015 dB linear, –17 dB quadratic, and -33 dB 

cubic.  The parameters for the adaptive LMS- and LMF- 

Quadratic and Cubic Volterra synthesisers are summarised in 

[16] along with flowcharts and block diagrams. The 

parameters for the adaptive LMS- and LMF- Quadratic and 

Cubic Volterra synthesisers are summarised in Table I. The 

LMS and LMF algorithms are summarised in Table II and 

Table III, respectively. 

 

 
Fig. 5. The mean-squared error of (a) the LMSCV and (b) the LMFCV 

synthesisers when applied to the maternal chest ECG signal. 

 

 
Fig. 6. The mean-squared error of (a) the LMSCV and (b) the LMFCV 

synthesisers when applied to the maternal transabdominal ECG signal. 

 

TABLE I: THE OPTIMISED PARAMETERS OF THE LMSQV, LMSCV, LMFQV, AND LMFCV ADAPTIVE ALGORITHMS COMPARED IN FIGS. 1-6 FOR (A) FETAL 

SCALP ELECTRODE, (B) MATERNAL CHEST, AND (C) MATERNAL TRANSABDOMINAL ECG SIGNALS 

(A) 

 Number of elements, N Delay,  Step-size parameters,  CPU (msec) 

LMS Quadratic Volterra 8 6 0.002, 0.0004 25 

LMS Cubic Volterra 6 6 0.001,0.0001, 0.0001 350 

LMF Quadratic Volterra 8 5 0.001, 0.0002 40 

LMF Cubic Volterra 6 5 0.001,0.0002, 0.0004 450 
 

(B) 

 Number of elements, N Delay,  Step-size parameters,  CPU (msec) 

LMS Quadratic Volterra 6 2 0.002, 0.0004 35 

LMS Cubic Volterra 6 2 0.001,0.0001, 0.0001 700 

LMF Quadratic Volterra 6 2 0.001, 0.0002 50 

LMF Cubic Volterra 6 2 0.001,0.0002, 0.0004 850 
 

(C) 

 Number of elements, N Delay,  Step-size parameters,  CPU (msec) 

LMS Quadratic Volterra 6 2 0.002, 0.0004 35 

LMS Cubic Volterra 6 2 0.001,0.0001, 0.0001 700 

LMF Quadratic Volterra 6 2 0.001, 0.0002 50 

LMF Cubic Volterra 6 2 0.001,0.0002, 0.0004 850 

 
                                TABLE II: SUMMARY OF THE LMS ALGORITHM                TABLE III: SUMMARY OF THE LMF ALGORITHM 

 
1. Initialisation: Set ai(1) = 0                                             1.  Initialisation: Set ai(1) = 0 

                       for k = 1, 2, …, p                                                                                       for k = 1, 2, …, p 

2. Filtering: For time n = 1, 2, .. compute                                            2.  Filtering: For time n = 1, 2, .. compute 

                       

1

( ) ( )

0






N

n i n-i

i

y a x ,                           

1

( ) ( )

0






N

n i n-i

i

y a x , 

                        e(n) = d(n) – y(n),                               e(n) = d(n) – y(n), 

                      ( 1) ( ) 2 ( ) ( )n n e n x n  a a ,                               3

i( 1) ( ) 2 . ( ). ( )i in n e n x n  a a . 

                      for k = 1, 2, …, p.                                     for k = 1, 2, …, p. 
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V. CONCLUSIONS 

The objective of this paper is to decompose the maternal 

transabdominal ECG signal into its linear, quadratic, and 

cubic parts and retain only the linear part. The maternal 

transabdominal ECG signal is a combined maternal and fetal 

ECG and there is also the uterine contraction interference 

signal (UCS) during labour combined with it. Each one of 

these three combined signals is non-linear by its own right. 

To synthesise the maternal transabdominal ECG signal, a 

non-linear predictor / synthesiser is sought to carry out this 

task because employing a linear structure to cater for such 

non-linear signals would lead to a suboptimal solution. The 

predictor / synthesiser will try to model as faithfully as 

possible the linear, quadratic and cubic parts of the ECG 

signal.  When dealing with a process of a non-linear nature, 

the use of a Volterra structure provides a powerful method 

for solving the prediction problem by virtue of the non-linear 

processing units built into its construction. The only 

exception to the use of non-linear units, however, is the 

output of the structure, which is linearly related to its inputs. 

The coefficients of the Volterra filter are adjusted via 

gradient descent to minimise the mean squared value of the 

difference between the desired response and the actual filter 

output. 

A non-linear synthesiser is sought to carry out this task. 

Quadratic and Cubic Volterra synthesisers are used to 

linearise the fetal scalp electrode, the maternal chest, and the 

maternal transabdominal ECG signals by removing the 

quadratic or the quadratic and cubic parts, respectively, and 

retaining only the linear part. The Volterra structures are 

attractive since they can deal with a general class of 

non-linear systems while their outputs are still linear with 

respect to their inputs via their linear, quadratic and cubic 

parts of their transfer functions. 

Throughout this paper, Quadratic Volterra referred to a 

filter that consists of a linear and a quadratic part. A Cubic 

Volterra referred to a filter that consists of a linear, a 

quadratic, and a cubic part. Adaptive LMF- Quadratic and 

Cubic Volterra structures are developed and applied to full 

cardiac cycles of the fetal scalp electrode, the maternal chest, 

and the maternal transabdominal ECG signals. The extension 

of the conventional LMS-Volterra to the LMF-Volterra is 

done to make use of the advantages of higher-order statistics, 

especially its robustness to Gaussian noise and its tracking 

capability. Adaptive LMS- and LMF- Quadratic and Cubic 

Volterra structures are used to decompose the 

aforementioned ECG signals into their linear, quadratic and 

cubic parts and retain only the linear part. The LMFQV takes 

only two cardiac cycles to converge whilst the LMSQV 

converges in nine cardiac cycles when both structures are 

applied to maternal transabdominal ECG signals. Also, the 

LMFQV approaches convergence with an MSE which is 14 

dB below that of the LMSQV. The LMFCV takes only two 

cardiac cycles to converge whilst the LMSCV converges in 

nine cardiac cycles when both structures are applied to 

maternal transabdominal ECG signals. After convergence of 

both synthesisers, the MSE of the LMFCV is 13 dB below 

that of the LMSCV. Hence, both the adaptive LMF- 

Quadratic and Cubic Volterra structures outperform the 

adaptive LMS- Quadratic and Cubic Volterra structures by 

14 dB and 13 dB, respectively. The Cubic Volterra structure 

yields a better performance in terms of the MSE than the 

Quadratic Volterra structure by approximately 20 dB. The 

CPU time could be reduced by eliminating redundant 

coefficients from the Cubic Volterra synthesiser [16]. In 

practice, however, it might be prudent to compromise and use 

an LMF- Quadratic Volterra as opposed to an LMF- Cubic 

Volterra structure. This would simplify the implementation 

of the algorithm in software or hardware and reduce the CPU 

time required by two orders of magnitude which will make it 

more attractive for on-line implementations in handheld or 

portable devices. 
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