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Abstract—This paper proposes an interactive texture 

segmentation method base on graph cuts. It extracts the texture 

features by using multi-scale nonlinear structure tensor, and 

discusses dissimilarity measure and probability distribution of 

features in the Riemannian space, which are used to design the 

edge-based and region-based items of the segmentation model 

respectively. To construct distributions, we employ the 

Gaussian mixture model with covariant-scale based full 

covariance structure. Additionally, we propose the spectral 

decomposition based recursive clustering algorithm to estimate 

the corresponding statistics. The comparisons of various texture 

segmentation experiments demonstrate the validity of the 

proposed method. 

 
Index Terms—Multi-scale nonlinear structure tensor 

(MSNST), graph cuts, texture segmentation.  

 

I. INTRODUCTION 

Texture segmentation is a key issue in the field of 

computer vision. To model the texture features, there are 

many different approaches, such as multiple resolution 

techniques, Gabor wavelet filters and so on [1]. However, 

they all need to estimate many unknown parameters and may 

include some redundant information. To extract texture 

features more compactly, the multi-scale nonlinear structure 

tensor (MSNST) is used in this paper, which has been 

introduced in our previous work [2]. 

After the extraction of texture features, the problem is 

transformed into the matter of how to segment in this new 

feature space. The graph cuts model proposed in [3] is one of 

the most widely researched and applied interactive image 

segmentation methods [4]-[6], and Lazy Snapping [7] and 

GrabCut [8] are the most successful applications of it. In the 

literature of [2], it integrates MSNST into the GrabCut 

framework for color-texture segmentation and obtains the 

satisfied experimental results. However, [2] discusses the 

distance measure and probability distribution of MSNST 

features in the space of information theory, and it does not 
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take into account the Riemannian manifold structure of 

MSNST. Besides, the Gaussian mixture model (GMM) used 

in [2] is designed with variance structure, which is not 

accurate enough when used to describe those feature sets 

with high relevance. Furthermore, the clustering algorithm 

adopted in [2] is the simplest K-means clustering, which is 

seriously sensitive to initial clustering centers. To address the 

problems mentioned above, this paper proposes a graph cuts 

based interactive texture segmentation method, and the main 

idea is: calculating t-links base on our new proposed spectral 

decomposition recursive clustering algorithm and GMM by 

means of Lazy Snapping type interactions; discussing the 

distance measure and GMM statistics of MSNST features in 

the Riemannian manifold space, and designing the GMM 

with covariant-scale based full covariance structure. 

 

II. MULTI-SCALE NONLINEAR STRUCTURE TENSOR 

To construct the MSNST, we need first to define the 

multi-scale structure tensor (MSST), and then apply the 

nonlinear filtering for smoothing.  

MSST can be obtained by using the non-orthogonal 

(redundant) discrete wavelet frames [9]. Let θ(x, y) be a 2-D 

differentiable smoothing function. Define two wavelets 

( , ) ( , )x x y x y x     and ( , ) ( , )y x y x y y    . Let 
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where subscript s denotes the s-th scale, and α can be set as 2. 

The wavelet transform of the image I(x, y) at the s-th scale 

has two components, which are named as 

( , ) ( , )x x
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Therefore, MSST can be constructed using the tensor 

product of the gradient of ( )( , )sI x y  at each scale as: 

 

2

, , ,2

2
1 , , ,

( ) ( )

( ) ( )

x x yH
h s h s h ss

s x y y
h h s h s h s

D D D

D D D
 



 
   

 
T                    (1) 

where [0, 1]s S  , S is the total number of scales, the 

subscript h denotes the h-th color channel of image I, and H is 

the total number of the color channels. 
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 Finally, nonlinear diffusion [10] is applied to all scales of 

MSST separately for computing the MSNST as 
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where , ( 0)s iu t   are the independent channels of sT , 3J   

is the total number of independent channels, and g is a 

decreasing function that can be given as 
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Above,   is a small positive constant, and the constant p is 

used to balance edge enhancement and smoothing.  

 To get good texture features, each pixel is represented with 

the MSNST  
0 1 1, , ... , S

  


 T T T , which is described as a set 

of matrices (they are sized as 2 2 ). Here, the “hat” denotes 

that the corresponding component has been nonlinearly 

diffused, and we will remove the expression of “hat” in the 

following description for convenience. 

 

III. TEXTURE SEGMENTATION MODEL 

A. Graph Cuts Framework 

This paper constructs the MSNST field segmentation 

model based on graph cuts framework [3], which is posed as 

the minimizing of the following energy function: 
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where α denotes the assigned label, with 0 for background 

and 1 for foreground, I represents all the image pixels, C is 

the set of pairs of neighboring pixels, γ ≥ 0 is the smoothness 

coefficient. 

 The data term ( )iD   indicates the MSNST similarity of 

the pixel i to the foreground or background as: 

 

  ( ) lni i iD P                                   (3) 

 

 Additionally, the smoothness term , ( )m nS   evaluates the 

penalty for assigning neighboring pixels m and n to different 

regions, can use the MSNST contrast ( )dis   as: 
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where   is denoising constant,   is 2L  Euclidean norm, 

and the parameter   can be adaptively set to be 
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where C  denotes the number of pairs in the set C , and 

( )dis   can be defined as the square root of the square sum of 

tensor distance for all scales as: 
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B. Gaussian Mixed Model (GMM) 

In order to fit the formula (4) into the t-links of graph cuts 

framework, we need to define the probability density 

function (PDF) of extracted features. The usual modeling 

approaches include thresholding, histogram, extremum 

picking, nonparametric nearest-neighbor model, support 

vector machine, Gaussian distribution model, and Markov 

random field, etc [11]. In this paper, we choose the GMM as 

the MSNST data modeling, which can be used to describe 

any complex probability distribution more flexibly and more 

accurately by means of the linear combinations of some 

Gaussian distributions. Moreover, in order to maximize the 

discriminating ability of GMM, the covariant-scale based full 

covariance structure is employed for it.  

Corresponding to the ( )P   in (4), the K-component GMM 

distribution can be described as: 
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where 0k  is the mixture weighting coefficient and it 

meets 
1
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 ; k  and 1 1{ , , , , , }K K        are the 

set of statistics for the k-th component and the whole GMM 

respectively. 

In details, k can be further expressed as { , }k k  , namely 

the mean and covariance matrix of MSNST in the 

covariant-scale space. Here,  ,0 ,1 , 1, , ... ,k k k k S      and 
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cluster region that corresponds to the k-th component. 

Besides, 
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where ,( , )s k s T is the gradient mapping of tensor manifold 

vector ,k s s T
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, and ,k s  is the s-th scale mean of the MSNST 

features in k . So, we can define ( )kP  as: 
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C. Spectral Decomposition Based Recursive Clustering 

In order to estimate the statistics   in formula (7), the 

traditional idea is: first of all, given the number of clusters K; 

and then, initialize the model parameters randomly; finally, 

update these statistics iteratively using K-means or EM 

algorithm. However, many problems exist in this kind of 

clustering. For instance, cluster number K must be given in 

advance, which does not meet the requirement of 

unsupervised parameter estimation; the clustering results are 

usually sensitive to the initializations; since the introduction 

of iterations, it is bound to reduce the computational 

efficiency. 

To address the problems just mentioned, a recursive 
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clustering algorithm base on spectral decomposition in the 

covariant-scale MSNST space is proposed in this paper, 

which can estimate the statistics directly without any 

initializations. The main idea is to perform the following 

recursive process until the termination condition is met: 

calculate the covariant-scale covariance matrixes of all the 

current clusters, and select the cluster with the maximum 

eigenvalue; and then, divide this cluster into two clusters 

using the spectral decomposition algorithm as shown in Fig. 

1. The termination condition here is reaching some specified 

cluster number K.  

 

 

Fig. 1. Spectral decomposition based clustering algorithm. 

 

Assuming AB is the current selected cluster with the 

maximum eigenvalue, and here we will give the details of 

dividing it into cluster A and cluster B using the spectral 

decomposition. By means of the covariant-scale statistical 

calculations, we can obtain AB  and AB  of the MSNST 

features in cluster AB. Since AB  is symmetric positive 

semi-definite matrix, we can perform the singular value 

decomposition as 
T

AB AB AB ABQ E Q  . Here, ABE  is a 

diagonal matrix composed of all the eigenvalues of AB  in 

descending order, and the column vectors of ABQ  is the 

eigenvectors corresponding to these eigenvalues. Thus, a 

splitting hyper-plane equation 
T (1)( , ) 0AB AB   q  can be 

constructed in the covariant-scale MSNST space, where 
(1)

ABq  

is the eigenvector corresponding to the maximum eigenvalue 
(1)

ABe  of ABE . Therefore, for any a random MSNST sample S 

in the cluster AB, it can be clustered into cluster A or B as: 
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D. Riemannian Manifold Calculation 

Taking into account the positive definite structure of 

tensor space, the Riemannian manifold calculations of the 

distance and statistics are more suitable for the MSNST 

features. According to the definition in [12], the tensor 

distance for some scale corresponding to formula (6) can be 

described as: 
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where ( )tr   denotes the matrix trace operator. 

 

Algorithm 1: Riemannian estimation of tensor mean. 
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The tensor mean corresponding to formula (8) can be 

estimated using algorithm 1. Here, X indicates the total 

number of features, 2
Sym



 is the real symmetric positive 

definite matrix space sized as 2 2 , Inf indicates infinite 

value, and  is set as 0.01 in this paper.  

The tensor gradient mapping mentioned in (8) can be 

constructed as   1/2 1/2( , ) Vec logs s s s s    T T , where 

the mapping Vec( )T equals to 
T

1,1 1,2 2,2( , 2 , )t t t , and it is 

used to compose the three separate components 1,1t , 1,2t  and 

2,2t of 2 2  sized symmetric matrix T into a standard 

orthogonal basis. 

 

IV. EXPERIMENT RESULTS AND ANALYSIS 

In this section, some experiments are given to verify the 

performance of our proposed method when compared with 

the literature [2]. There are a number of parameters that must 

be appropriately determined before. Such as, the number of 

scales of the MSNST S is chosen as 2; the parameters   and 

p in (1) are fixed as 0.001 and 0.6 respectively; the weighted 

coefficient   in (2) is fixed as 50; denoising constant   in (4) 

is set as 2.5; in (7), the number of Gaussian components K in 

GMM is set as 5. 

 

 

Fig. 2. The compared n-link images using the different distance measure in 

MSNST space. 

(a) Original synthetic 
image 

(b) Information theory 
n-link image for (a) 

(c) Riemannian n-link 
image for (a) 

 
 
 

 

(d) Original real-world 
 image 

(e) Information theory 
n-link image for (d) 

(f) Riemannian n-link 
image for (d) 
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In the first experiment, the compared MSNST n-link 

images between information theory distance (used in [2]) and 

the Riemannian distance (used in this paper) are visualized in 

Fig. 2. Since the n-links of graph cuts model are mainly 

determined by the distance measure, we can sum up the 

8-neighborhood n-links of each pixel for the visualizations. 

The comparison results verify that, when compared with 

information theory distance, Riemannian distance obtains 

smoother regions and larger differences among these regions. 

Therefore, the Riemannian measure has better 

descriptiveness about MSNST consistency and the better 

MSNST discriminating ability. 

 

 

Fig. 3. The compared visualizations of MSNST distributions using the 

different GMM structures. 

 

 

Fig. 4. The compared clustering results between K-means algorithm and 

spectral decomposition algorithm. 

 

Modeling GMM in the Riemannian manifold space, Fig. 3 

further compares the visualizations of MSNST distributions 

between variance structure (used in [2]) and covariant-scale 

covariance structure (used in this paper). The comparisons 

demonstrate that the variance structure can not model the 

MSNST distributions accurately at any scale. The main 

reason is that, in practical applications, the distributions of 

similar features are usually irregular and that of different 

features are usually much overlapped. Obviously, the 

isotropy based variance structure is not so flexible and 

accurate as the anisotropy based covariance structure. The 

modeling results show that the covariant-scale covariance 

structure is more suitable to describe the actual distributions 

of MSNST features. 

 
User interactions Method in [2] Our proposed method 

   

   

   

   

   

   

   

   

Fig. 5. The compared segmentation results between method in [2] and our 

proposed method by means of Lazy Snapping type interactions. 

 

According to the conclusions drawn from the above 

experiments, Fig. 4 compares the texture clustering results 

between K-means algorithm and spectral decomposition 

algorithm in the covariant-scale Riemannian space. All the 

textures used to synthesize the first three experimental 

images are of the same type, and only differ in orientation or 

scale, or both, and the last image is synthesized using 

different kinds of textures. Since the K-means algorithm is 

seriously sensitive to the initial clustering centers, the 

displayed clustering result is the best among the 6 random 

initialization tests. All the experimental results indicate that, 

no matter what kinds of the texture differences are, the 

spectral decomposition algorithm is more accurate and more 

robust than the K-means algorithm. 

In order to further demonstrate the superiority of our 

proposed method, a number of experimental comparisons are 

shown in Fig. 5 using the GMM based Lazy Snapping 

framework. The comparison experiments verify that, when 

segmenting the complex natural texture images base on the 

same user interactions, our proposed method can perform 

better than the method in [2] in terms of accuracy, 

(a) The original images 

 

   (b) The K-means clustering results of (a) 

(c) The spectral decomposition clustering results of (a) 

(a) Original image 

Class 1  Class 2  

Class 4  Class 3  

(b) The 0-th scale 
variance 

(c) The 1-th scale 
variance 

(d) The 0-th scale covariance (e) The 1-th scale covariance 
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availability, and practicality.  

 

V. CONCLUSION 

Base on our previous work [2], this paper proposes a more 

effective interactive texture segmentation method, which 

uses the GMM based Lazy Snapping framework to complete 

the texture segmentation, and takes full account of the 

Riemannian manifold structure of MSNST features to design 

the distance measure and GMM statistics. Here, the GMM is 

constructed with covariant-scale covariance structure, and a 

spectral decomposition based recursive clustering algorithm 

is proposed to estimate the statistics. The comparison 

experiments using a large number of synthesized texture 

images and real natural scene images show that our proposed 

method obtains more satisfactory segmentation results than 

that in [2]. 
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