
  

 

Abstract—This paper proposes a CS based watermarking 

algorithm. In this algorithm, the watermarking image embeds 

into the compressive measurement vectors by the encoder. The 

measurement vectors are sparse in suitable basis. The resulting 

watermarked measurements recover by using both the OMP 

and the OMP-PKS reconstruction algorithms. Then the 

decoder uses to extract the watermarking image. 

In an experimental study, results obtained by the OMP and 

the OMP-PKS algorithms are compared. The results show that 

the OMP-PKS algorithm achieves performance superior to that 

of the OMP reconstruction algorithm.  

 

Index Terms—Watermarking image, CS, OMP and 

OMP-PKS algorithms. 
 

I. INTRODUCTION 

In the Shannon-Nyquist sampling approach, a signal data 

reconstructs if the signal is sampled at the rate at least twice 

higher than the maximum frequency in the signal. Storing or 

transmission these signals can be difficult because of large 

size, sometimes it is expensive and not reasonable.  

The recent studies use the Compressive Sensing CS 

[1]-[4]. In CS, the signals can be reconstructed by using a 

small number of random measurements that is called sensing 

matrix and the signals must be sparse. The sparse image 

contains a few coefficients as non-zero and other coefficients 

are zero.  

However, the natural images almost are not sparse. 

Therefore, some transformation methods such as DCT, DFT 

and DWT utilize to convert these natural images into sparse 

images. The CS image reconstruction bases on different 

methods such as the optimization and the greedy methods.  

In this study, two greedy algorithms use to reconstruct the 

sparse image, the orthogonal matching pursuit OMP and 

orthogonal matching pursuit with partially known support 

OMP-PKS [5]-[8]. The fundamental difference between the 

OMP and the OMP-PKS is that the OMP-PKS has a prior 

knowledge support about some coefficients of the sparse 

image; and the other coefficients are unknown support. 

Moreover, the ability to recover the sparse image from a 

small band of information is achieved.  

The digital watermarking provides data protection [9], 

[10]. In the digital watermarking, the embedded algorithm 

(encoder) inserts any information or data to the measurement 

matrix.  
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After sparse image reconstruction, the decoder detects a 

successful watermark. The paper is organized as follows: 

Section I gives an introduction. Section II explains the basic 

concepts of CS approach. Section III presents the encoder 

and decoder algorithms to insert and extract the 

watermarking image into the watermarked measurements. 

Section IV shows the experimental results and the conclusion 

presents in Section V. 

 

II. COMPRESSIVE SENSING 

A signal x ∈ 
NR is a k-sparse when the most k elements of 

x are non-zero. Let f ∈ 
NR is a k-sparse signal in the   

space that is a linear combination of N,  represents an 

orthonormal basis and f shows as:  
 

                                  .f x                                      (1) 

 

Then the signal x can be represented as a sparse signal by 

using x f  and one can sample the information as [11], 

[12]: 

 

                                 .y f                                     (2) 

 

where y ∈
MR is a measurement vector and   is an MxN 

sensing matrix. Then the previous equation rearranges as: 
 

                  .y f x x                           (3) 

 

where ϕ ∈ 
MxNR  represents as underdetermined matrix, 

with M ≪ N. The reconstruction method estimates the signal 

x


that is at most k values are non-zero and k < M ≪ N. If the 

matrix ϕ satisfies the Restricted Isometry Property (RIP), 

x


can be exactly reconstructed using the OMP and 

OMP-PKS algorithms. Candès and Tao introduced RIP in 

[13] as follows: 

Definition: A matrix ϕ satisfies RIP of order k if there 

exists a k ∈ (0, 1) such that: 

 

           
2 2 2

2 2 2
(1 ) (1 )k kx x x      .             (4) 

 

where k is the Restricted Isometry Constant RIC. If ϕ 

satisfies the RIP of order 2k with 2k < 2 1 , the k sparse 

vector x given in equation (3) can reconstruct by using the 

OMP and the OMP-PKS algorithms: 
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1

arg minxx x


 St. 0y x  .                 (5) 

 

When ϕ is a random Gaussian matrix, then M=O (k) log 

(N/k) measurements represent the row of the sensing matrix. 

 

III. WATERMARKING ALGORITHM FOR THE CS 

MEASUREMENTS 

The watermarking algorithm used in this study is same 

with the algorithm in [14], but for the reconstruction, we used 

OMP and OMP-PKS algorithms instead of 1l  minimization 

method. 

The watermarking process includes three algorithms: 

encoder, reconstruction and decoder.  

A. The Encoder  

In the encoder process, a watermark v embeds into the 

Compressive Sensed Measurements of a sparse signal x. The 

watermarking image represents as v ∈{ , }L   , L is the 

number of bits, and the watermarked measurement vector 

symbolizes as vy ∈
MR : 

 

                                    vy x Dv  .                            (6) 

  

where D is a random matrix with M × L, and it must be known 

prior to the insertion and extraction procedures. The 

watermarked measurements may be changed by parasitical or 

by channel defects and the decoder receives: 

 

                                   ny x Dv  .                               (7) 

That reorders as: 

 

              v

x
y H

v

 
  

 
 , such that  |H D .            (8) 

B. The Reconstruction Algorithms 

The OMP is a greedy algorithm that is developed version 

of the matching pursuit MP [15]. The OMP estimates the 

magnitude of the nonzero coefficients of x by solving the 

least square error between the orthogonal projection of the 

recovered x and measurement vector y. 

The watermarking compressive sensing measurement vy  

includes both k-sparse x and L bit watermarking image v, then 

vy  reconstructs by using the OMP and the OMP-PKS 

algorithms from the computed ny  by using equation (7). 

 

                    
2

arg minxx y x 


.                         (9) 

 

It changes as:
2

arg minx vZ y HZ 


.             (10) 

 

where:          
x

Z
v

 
  
 

 


 and

x
Z

v

 
  
 

. 

The OMP-PKS [16] is a greedy algorithm uses for sparse 

image reconstruction and it is developed from the traditional 

OMP algorithm. It uses the sparse image that has some 

components more important than the others.  

The OMP-PKS successfully reconstructs y, which is 

defined in equation (3), where the M dimensions of y are very 

small, that mean the OMP-PKS has a very low measurement 

rate (M/N).   

The sparse image generates from discrete wavelet 

transform (DWT) [17]. Let T is a set includes the indexes of 

the approximation LL sub-bands and represents as known 

support part that all components of it are nonzero, 

T=
1 2 | |{ , ,...., }T   . 

The procedure of the OMP-PKS algorithm divides into 

two parts; the first part uses the partially known support, 

which provides a priori knowledge to compute the important 

sub-bands in the sparse image. 

    T = (index of known part), T=
1 2 | |{ , ,...., }T   .     (11) 

  
1 2 3 | |
, , .........,

T
H        

 
.                   (12) 

?  ( ) vZ H H H y .                         (13) 

          | |Ta HZ .                                (14) 

          
| |v Tr y a   or  

†( )v T Tr y H H y  .            (15) 

The second part shows the OMP algorithm. 

C. The Decoder 

The decoder utilizes for the watermarking image 

extraction. After reconstruction of the watermarking 

compressive sensing measurements, the decoder uses to 

extract the watermark as [18]: 

2
arg minx vZ y HZ 


, 

x
Z

v

 
 

 




. 

              *sgn( )v v
  .                              (16) 

             
2

arg min ( )x vx y Dv x  
 

.                (17) 

where x


is the recovered image and v


is the extracted 

watermark image. 

 

IV. EXPRIMENTAL RESULTS 

In the experimental study, at first, the watermarking image 

embeds into the CS measurements, then the watermarked 

measurements reconstruct by OMP and OMP-PKS 

algorithms, and finally watermarking image successfully 

extracts. Results compare performance both OMP and 

OMP-PKS algorithms using 64 × 64 watermark image and 

256 × 256 Lena image. The performance evaluation bases on 

PSNR of the reconstructed image. 

Fig. 1 with Fig. 2 show Lena and watermarking images 

respectively. Fig. 3 and Fig. 4 show the recovery quality of 

Lena and watermarking images obtained by OMP and 
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OMP-PKS algorithms respectively for a different 

measurement rate (M/N). Fig. 5 represents PSNR, MSE and 

residual (error) values for varying number of measurement 

rates obtained by OMP and OMP-PKS. Fig. 6 shows the 

performance of OMP and OMP-PKS approaches by 

computing the PSNR values for different number of non-zero 

coefficients k, where k varies between (5506 to 9433). 

The results in Table I show that the OMP algorithm has a 

steady state at M/N= 0.528 with PSNR= 29.885. While 

OMP-PKS algorithm has a steady state when M/N= 0.293 

with PSNR=36.854. The higher values of M/N after the 

steady state rate give same PSNR value. As it is seen, OMP 

requires higher measurement rates than the OMP-PKS 

algorithm to obtain reasonable PSNR values. Therefore, the 

OMP-PKS has a better performance than the OMP. 

 

 
 
             Fig. 1. Original image.              Fig. 2. Watermark image. 

 

 
M/N rates: 0.176                0.293                  0.313                    0.528 

PSNR values:7.708            8.565                  9.475                   29.885 

Fig. 3. Quality of recovered and watermarking images in different M/N rates 

by OMP. 

 

 
M/N rates:         0.176                 0.293                 0.313                0.586   

PSNR values:  10.115                36.854               36.854              36.854  

Fig. 4. Quality of recovered and watermarking images in different M/N rates 

by OMP-PKS. 

 

 

 

 
Fig. 5. (a). Residual, (b). MSE and (c). PSNR values, respectively for varying 

measurement rates M/N. 
 

 
Fig. 6. Performance OMP and OMP-PKS algorithms for different K values. 

 

TABLE I: PERFORMANCE OF OMP AND OMP-PKS ALGORITHMS FOR 

VARYING M/N VALUES 

OMP algorithm OMP-PKS algorithm 

M/N 

values 

PSNR values M/N 

values 

PSNR values 

0.176 7.708 0.176 10.115 

0.196 7.324 0.196 12.748 

0.215 7.486 0.215 17.224 

0.235 7.668 0.235 23.289 

0.254 8.154 0.254 23.670 

0.274 8.728 0.274 29.955 

0.293 8.565 0.293 36.854 

0.313 9.475 0.313 36.854 

0.333 11.677 0.333 36.854 

0.352 10.131 0.352 36.854 

0.372 13.290 0.372 36.854 

0.391 15.892 0.391 36.854 

0.411 17.493 0.411 36.854 

0.430 16.510 0.430 36.854 

0.450 21.722 0.450 36.854 

0.469 28.744 0.469 36.854 

0.489 29.298 0.489 36.854 

0.508 29.599 0.508 36.854 

0.528 29.885 0.528 36.854 

0.547 29.885 0.547 36.854 

0.567 29.885 0.567 36.854 

0.586 29.885 0.586 36.854 

 

V. CONCLUSION 

In this paper, the OMP and OMP-PKS algorithms use to 

reconstruct the watermarked compressive sensing 

measurements. The watermarked measurements consist of 

the original and watermarking images. The results compare 

the performance of the OMP and OMP-PKS algorithms. 

Experimental result explains that the OMP-PKS has a higher 

PSNR value in lower M/N rates than the OMP.   

In addition, the recovered Lena and extracted watermark 

images have a good quality in lower measurement rates by 

using the OMP-PKS than the OMP. Therefore, the 

OMP-PKS algorithm improves the performance, thereby 
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requiring fewer samples than OMP to reconstruct the sparse 

signal. Also the OMP-PKS has a faster run time and more 

efficient than the OMP. 
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