
  

 

Abstract—In this paper, we propose a real-time fault 

detection system for the semiconductor domain, which aims to 

detect abnormal wafers from a recent history of electrical 

measurements. It is based on a dynamic model which uses our 

filter method as feature selection approach, and one-class 

support vector machines algorithm for classification task. The 

dynamicity of the model is ensured by updating the database 

through a temporal moving window. Two scenarios for 

updating the moving window are proposed. In order to prove 

the efficiency of our system, we compare it to an alternative 

detection system based on the Hotelling’s T
2
 test. Experiments 

are conducted on two real-world semiconductor datasets. 

Results show that our system outperforms the alternative 

system, and can provide an efficient way for real-time fault 

detection. 

 
Index Terms—Real-time detection, feature selection, 

one-class support vector machines, semiconductor. 

 

I. INTRODUCTION 

Nowadays, the control of manufacturing processes is an 

essential task to ensure consistently safe operation and high 

quality production. This is challenging particularly when 

processes have a large number of operations and complex 

systems, which is the case in manufacturing process of 

semiconductor devices and integrated circuits. Early and 

accurate detection of faults is then required for maintaining a 

process at its optimal condition, and reducing manufacturing 

costs.  

Once the manufacturing process of semiconductor ends, an 

electrical test, called Parametric Test (PT), is performed. PT 

aims to detect within shortest possible time the abnormal 

wafers (semiconductor material used in manufacturing of 

semiconductor devices) by looking at a set of static electrical 

parameters measured on multiple sites of each wafer.  

The purpose of this work is to implement an automatic 

real-time detection system at PT level. Based on a 

multivariate statistical approach, this system aims to detect 

abnormal wafers through a moving temporal window of 

electrical measurements.  

Multivariate statistical approaches have been successfully 

used for monitoring industrial processes [1]–[3]. Principal 

Component Analysis (PCA) was considered to develop 

respectively a static (off-line testing) and dynamic (in-line 

testing) models for fault detection in biological Wastewater 

Treatment Plant (WWTP) [4], [5]. PCA was also considered 
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in [3] to detect faults in a semiconductor etch process. PCA is 

one of the most widely multivariate techniques used for 

extracting relevant information from high dimensional data. 

The goal of PCA is to reduce the dimensionality of the 

original data by projecting them into a lower dimensionality 

space without a significant loss of information. This can be 

done by identifying the directions that explain the maximum 

variation of the data. The PCA method captures the 

variability of a process by monitoring the T2 metric on the 

new PCA components or by monitoring the residuals (Q 

chart) of the PCA model [4]. In case of non-linear processes, 

kernel principal component analysis (KPCA) was used to 

handle non-linearity with the help of kernel functions [6].  

Another multivariate method based on statistical learning 

approaches is the one-class Support Vector Machines 

(1-SVM) [7], which is a variant of the original Support 

Vector Machine (SVM) algorithm [8]. 1-SVM is a useful and 

popular tool used for anomaly detection. A static model 

based on 1-SVM method and the SVM-recursive feature 

elimination algorithm (RFE-SVM) [9] was used in [10] for 

fault detection in a semiconductor etch process, and in 

chemical engineering simulation problem. It has been shown 

that 1-SVM method is an efficient method for fault detection 

in both domains. Moreover, the 1-SVM technique performed 

better than PCA. Even in non-linear cases, simulation 

experiments showed that 1-SVM technique outperformed the 

KPCA method.  

However the SVM-RFE algorithm requires a huge 

computational time since the number of SVM models to be 

trained is O(p2), where p is the dimension of variable space. 

In our study, the variable space is characterized by several 

electrical parameters (hundreds or thousands). High 

dimensional variable space restricts the use of the SVM-RFE 

algorithm. Moreover, as part of the training stage at each 

iteration of a real-time application, this algorithm would not 

be computationally useful, especially when we use a short 

temporal moving window to update the detection algorithm.  

To overcome this problem, we have developed in [11] a 

new filter technique selecting the most relevant features 

(electrical parameters). This technique is based on the 

Median Absolute Deviation method denoted by MADe [12], 

a robust approach for detecting univariate outliers. The key 

idea is to use the MADe method to determine the percentage 

of outlier in each parameter. Then parameters with a 

percentage of outliers exceeding a predefined threshold will 

be potential discriminative features. We denote this method 

by MADe-FS (MADe for Feature Selection). 

The remainder of the paper is structured as follows. First, 

our main contributions in this work are mentioned in the 

Section II. In Section III we recall the one-class support 

vector machine method. Then, our filter method MADe-FS 

which selects the most informative parameters is also 

Real-Time Fault Detection in Semiconductor Using 

One-Class Support Vector Machines 

Ali Hajj Hassan, Sophie Lambert-Lacroix, and Francois Pasqualini 

International Journal of Computer Theory and Engineering, Vol. 7, No. 3, June 2015

191DOI: 10.7763/IJCTE.2015.V7.955



  

recalled in Section IV. Section V describes our real-time 

detection system according to two proposed scenarios for 

updating moving window. A short description of Hotelling’s 

T2 test which is the basis of an alternative detection system is 

given in Section VI. Before concluding, Section VII serves as 

an application of our system on a two real-world 

semiconductor datasets.  

 

II. MAIN CONTRIBUTIONS 

In our work [11], we have considered the problem of 

detecting abnormal wafers in semiconductor using electrical 

measurements. We have developed a static model for fault 

detection based on 1-SVM method for anomaly detection and 

our filter method MADe-FS for selecting the most relevant 

electrical parameters.  

In this work, we consider the problem of real-time fault 

detection, becoming increasingly important in semiconductor 

domain. We develop a dynamic model which shares the same 

approaches of classification and feature selection as in our 

static model. Our dynamic model consists of updating the 

MADe-FS method and the 1-SVM algorithm at each update 

of the moving temporal window. We propose two scenarios 

for updating this window, and we explain our technique used 

to optimize the initial choice of model parameters and their 

updating strategy. 

As an alternative system of real-time detection, we 

implement a similar dynamic model based on PCA method to 

reduce dimension and model the normal behavior, and 

Hotelling’s T2 statistic as multivariate control chart. 

Parameters of this model is selected and updated under the 

same strategy used in our developed dynamic model.  

At our knowledge, this work is the first one to implement a 

real-time fault detection system in semiconductor domain, 

and at the same time the first one to develop a dynamic model 

based on the 1-SVM method. This model is applied on high 

dimensional data consisting of hundreds of variables while 

previous works on fault detection in industrial processes 

considered data with tens of variables. 

 

III. ONE-CLASS SUPPORT VECTORS MACHINES 

Support Vector Machine (SVM) [13] is as an effective 

learning algorithm for binary classification. This algorithm 

aims to find an optimal hyperplane to separate the two classes 

of training data.  

An extension of SVM, called one-class SVM (1-SVM), 

was subsequently proposed in [7] to handle one-class 

classification problem. The 1-SVM strategy is to find an 

optimal hyperplane in a feature space separating the training 

data (positive samples) from the origin (considered as 

negative samples) with maximum margin (the distance from 

the hyperplane to the origin). 

Given a training dataset of n positive samples (normal 

wafers) {x1,…,xn} where each xiϵRp is described by a vector 

of p features (electrical parameters). Each xi is first 

transformed via a feature map φ: Rp --> F where F is a high 

(possibly infinite) dimensional Hilbert space generated by a 

positive-definite kernel K. The kernel function corresponds to 

an inner product in the feature space F through K(x, x’)= 

φ(x) ∙ φ(x’) . 

The 1-SVM algorithm finds in the feature space a 

hyperplane H {z ϵ F; w∙z= ρ} that separates the cluster of 

normal samples from the origin. wϵ F is the normal vector 

defining H. The margin is equal to ρ/||w||. The one-class SVM 

requires solving the following quadratic optimization 

problem:  

min𝑤 ,𝑏 ,𝜉

1

2
 | 𝑤 |2 +

1

𝜈𝑛
 𝜉𝑖 − 𝜌

𝑛

𝑖=1

 

st    w  ∙ φ(xi) ≥ ρ - 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛.      (1) 

 

𝜉𝑖 ’s are slack variables introduced to allow 

misclassification for some points, and ν∈[0, 1] is a free 

parameter controlling the impact of the slack variables, i.e. 

the fraction of training data which are allowed to fall wihtin 

the margin. In fact, it can be shown that ν is an upper bound 

on the fraction of training errors [7].  

The dual problem, to be maximized, is given by:  

min𝛼

1

2
 𝛼𝑖

ij

𝛼𝑗  𝐾 𝑥𝑖 , 𝑥𝑗   

st  0 ≤  𝛼𝑖  ≤ 
1

𝜈𝑛
 ,  𝛼𝑖𝑖 = 1. (2) 

The data xi with non-zero αi are the so-called support 

vectors. They are the training data that determine the 

separating hyperplane. It can also be shown that ν lower 

bounds the fraction of support vectors [7].Once the optimal 

values of the parameters are found, one can classify the new 

data (new wafers) according to the decision function  

𝑔 𝑥 = 𝑠𝑔𝑛  𝛼𝑖  𝐾 𝑥𝑖 , 𝑥 −  𝜌𝑖  ϵ 𝑠𝑣  , (3) 

where sv is the set of the support vectors’ indices. 

In practice, the 1-SVM has been successfully applied with 

the RBF kernel K(xi, xj)=exp(-γ || xi – xj ||2) where γ is a 

parameter that controls the width of the kernel function. After 

many experiments in which we have tested many values for γ 

(γ=1/mp, with m ϵ {0.5, 1, 2, 3, 4, 5}), results have showed 

that best performance of 1-SVM algorithm is obtained for 

m>1, and this performance is not very sensitive to the kernel 

parameter. Hence fine-tuning of the parameter is not 

required. We set γ=1/5p. 

 

IV. OUR FILTER METHOD 

In machine learning and statistics, feature selection is the 

process of selecting an optimal subset of relevant features in 

order to obtain good classification performances.  

To achieve the task of feature selection, we use our filter 

approach based on MADe method, which is a robust 

univariate outlier detection method. Before presenting this 

method, we first introduce the Maximum Absolute Deviation 

(MAD) [14] of a variable xjϵRn (j = 1,…, p):  

MAD 𝑗 =  median𝑖  ϵ [1,𝑛]  𝑥𝑖𝑗 − median 𝑥 𝑗    .           (4) 

MAD is a robust estimator of the spread in a data, similar 

to the standard deviation. When the MAD value is scaled by a 

factor of 1.483, it represents a consistent estimator of the 

standard deviation in a normal distribution [12]. This scaled 
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To conclude, our filter method consider the top 100(1−q) 

% outlying variables as the most relevant electrical 

parameters for the classification task. 

 

V. REAL TIME DETECTION SYSTEM 

The motivation behind the development of a real-time 

detection system is to use the MADe-FS and 1-SVM 

approaches for in-line testing in the context of industrial 

application. This system aims to detect in real-time abnormal 

wafers using a recent history of electrical measurements. In 

the following, we denote our model of feature selection and 

classification by 1-SVM.FS (one-class SVM with Feature 

selection). This model consists of determining firstly the 

most relevant features in the training data using our filter 

method MADe-FS, and secondly applying the 1-SVM 

algorithm on the subset of relevant features. 

Our detection system is based on three major steps:  

1) Selection of a correct performance reference data set, 

representing the normal operating behavior  

2) Real-time data updating through a moving window, to 

obtain a real-time procedure.  

3) 1-SVM.FS application to the updated real-time data.  

So we first define the reference correct performance 

dataset, representing a well-behaved operating condition. For 

this, we select from the historical database of considered 

products, a set of operational positive samples (normal 

wafers) corresponding to a nominal condition of processes. 

Concerning the reference data size, a large data set increases 

the detection reliability. Hence reference data must be large 

enough allowing us to define a normal region which 

encompasses a wide variety of positive samples.  

The correct performance dataset is used as a training set to 

build a model describing the normal behavior of the process. 

When a new lot (group of 25 wafers that run together all 

processing steps) arrives, the 1-SVM.FS model trained on the 

correct performance dataset is used to test whether each of 25 

wafers is normal or abnormal. The tested lot will join the 

initial training set while oldest lot in this set will be removed 

or maintained depending on the used scenarios explained 

below. Thus a new training set is formed. 1-SVM.FS model is 

retrained on the updated training set and will be used to 

predict the operating state of the next 25 new wafers. 

1-SVM.FS model is retrained on the updated training set and 

will be used to predict the operating state of the next 25 new 

wafers. 1-SVM.FS model is retrained on the updated training 

set and will be used to predict the operating state of the next 

25 new wafers. This procedure is repeated with the arrival of 

each new lot. A general view of our detection system is 

presented in the Fig. 1. 

 

 
Fig. 1. Schema of our real-time detection system based on 1-SVM.FS 

dynamic model. 

 

As we described before, the basic 1-SVM.FS model was 

made dynamic by updating the database through a moving 

window. We consider 2 scenarios reflecting two updating 

modes of the moving window:  

 Scenario 1 (increased length): with this scenario, the 

tested lot at each iteration is added to the existing training 

set without removing old data. So 1-SVM.FS model is 

updated according to a moving window of increased 

length. Since normal behavior keeps evolving, we have 

decided to remove at once some old data from the 

increased training set after a defined period Δt. Δt 

depends on the volume production of the considered 

product(s).  

 Scenario 2 (fixed length): during the real-time operation, 

the window still maintains the length of the correct 

performance dataset and operates as a First-In-First-Out 

(FIFO) shift-register, discarding old data and including 

new ones.  

The two scenarios are illustrated respectively in the Fig. 2 

and the Fig. 3. 

Recall that 1-SVM.FS model requires setting the 

parameter ν (the threshold in 1-SVM algorithm) and two 

hyperparameters: the order q of the threshold 𝛳𝑞  in feature 

selection method, and the kernel parameter γ. Consequently 

some kind of model selection (parameter search) must be 

done. 
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MAD value is the MADe:  

MAD𝑒 = 1.483 × MAD.                                (5) 

The MADe method is defined as follows:  

𝐿𝐿𝑗 = Median 𝑗 − 3 × MAD𝑒(𝑗)                      
(6) 

𝑈𝐿𝑗 = Median 𝑗 + 3 × MAD𝑒(𝑗), 

where LLj and ULj are respectively the lower and upper limits 

for the variable j. 

The MADe approach is similar to the Standard Deviation 

(SD) method that considers the observations outside the 

interval [𝑥 ±3σ] as outliers, where x  and σ are respectively the 

empirical mean and standard deviation for a univariate 

samples. However, the median and MADe are employed 

instead of the mean and the standard deviation. Since this 

approach uses two robust estimators, it is largely unaffected 

by the presence of extreme values in the data set. 

Thus the percentage of outliers OOLj (Out Of Limit) of the 

variable xj represents the proportion of data outside the 

interval determined by the lower and upper limits of the 

MADe method. Therefore we have:  

 

𝑂𝑂𝐿𝑗 =
# 𝑖  𝜖  [𝐿𝐿𝑗 ,𝑈𝐿𝑗 ]

𝑛
                  (7) 

 
Finally, the Subset of Relevant Variables (SRV) contains 

variables for which the percentage of outliers exceeds the 

threshold ϴq (cf. Eq. 8). ϴq is defined as the quantile of order 

q of the values in the vector OOL=(OOL1,…, OOLp).  

 

SRV = {𝑥𝑗, OOL𝑗 > 𝛳𝑞}                             (8) 
 



  

To accomplish the model selection task, a validation set 

containing normal data contaminated by some abnormal 

wafers is needed. It is used to identify good (q, ν) so that the 

classifier can accurately predict unknown data (i.e. testing 

data). A “grid search” on q and ν is performed. 1-SVM.FS 

model is built on training set using various pairs of (q, ν) 

values. For each pair, samples from validation set are 

projected onto the trained 1-SVM.FS model. Then Detection 

Rate and the False Alarms Rate (cf. Section VII-A) are 

computed. The pair that optimizes these two performance 

measures is picked. More precisely, the best pair (q, ν) is the 

one giving the optimal compromise between maximizing the 

Detection Rate and minimizing the False Alarms Rate. The 

selected pair is used at each update of the 1-SVM.FS model. 

 

 
Fig. 2. Real-time moving window using scenario 1. 

  

 
Fig. 3. Real-time moving window using scenario 2.  

 

VI. HOTELLING’S T2
 TEST 

To make our study comparable to previous studies, we 

have investigated the Hotelling’s T2 test. Hotelling’s T2 

statistic provides an indication of novel variability within the 

model space. 

The principle of this test is to use PCA method to model 

the behavior of the normal samples. Anomalies are then 

detected by comparing the behavior observed with that given 

by the PCA model. Having established a PCA model of the 

positive training data, testing data are projected onto this 

model, and Hotelling’s T2 statistic can be computed based on 

the first k principal components of the model. The T2 statistic 

for a sample xi is:   

2 1 1

i

    T T T

i i i k k iT t t x p p x                   (9) 

where ti =Pk
T xi is the orthogonal projection of the data xi into 

the model subspace defined by the k first principal 

components, and Λ is a diagonal matrix containing the first k 

eigenvalues of the covariance matrix of the positive training 

data. 

A threshold T2
α can be obtained using the Fisher 

distribution. If T2
i> T2

α, the sample is categorized as 

abnormal, and normal otherwise. For further details on fault 

detection based on PCA readers are advised to read the 

literature [4]. 

To choose k, we use the Cumulative Proportion of 

Variance (PCV): 

PCV 𝑘 = 100 ×
 𝜆𝑗
𝑘
𝑗=1

 𝜆𝑗
𝑝
𝑗=1

 , 

where λ1,…, λp are the eigenvalues sorted in descending 

order. Thus we retain the first k components that account for a 

predefined percentage of the variance in the data: 

𝑘 = arg min𝑢  {PCV(𝑢) ≥  𝛽 }. 

For example, if we set β=0.8 we retain the minimal number 

of components that preserve 80% of the information in the 

data. 

Detection system based Hotelling’s T2 test is dynamically 

the same as our system. The data and model update is 

performed at the level of 25 wafers (each new lot) following 

the proposed two scenarios. 

 

VII. APPLICATION 

Our experimental goal was to assess the ability of our 

detection system to detect abnormal wafers. It is also 

important to minimize false alarms rate as they cause 

unwarranted interruption in plant operation. Let us first 

introduce the performance measures used in our study. 

 
TABLE I: CONFUSION MATRIX OF METRICS USED IN PERFORMANCE 

MEASURES 

True class vs Decision Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 

A. Performance Measures and Data 

In order to evaluate and compare the results obtained from 

the different methods, we used two performance criteria: 

Detection Rate (DR) and False Alarms Rate (FAR). 

Detection Rate quantifies the percentage of data predicted to 

be negative by the classifier that are actually negative; False 

Alarms Rate quantifies the percentage of data predicted to be 

negative by the classifier that are actually positive. These two 

measures are computed using the four metrics described in 

the Table I as follows: 

𝐷𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
 

We notice that the resulting false alarms rate in the context 

of application of real-time detection system over a production 

period represents the average of false alarms rates obtained 

when testing separately each of all lots that have to be tested. 

Furthermore, the FAR-DR curve is suitable for evaluating 

classifiers by integrating their performance over a range of 

decision thresholds. It depicts the relation between DR 

(x-axis) and FAR (y-axis) varying the range of thresholds. 

The lower the misclassification error of a classifier, the closer 

the corresponding point is to the upper right-hand corner of 

the ROC curve.  
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The real-time detection system proposed in this paper has 

been tested on two real-world industrial datasets. Each 

dataset consists of wafers corresponding to one or more 

products of a certain technology over months of production. 

Each wafer is described by a certain number of electrical 

parameters. We give the percentage of abnormal wafers in 

each dataset. The description of these two datasets is given in 

Table II. 1-SVM.FS and Hotelling’s T2 detection systems are 

investigated under the two scenarios in both datasets, in order 

to prove again the efficacy and superiority of our detection 

system. Ideally, we want high DR (to detect most of the 

abnormal wafers) and a low false alarms rate (to avoid 

mistakenly classifying normal wafers as abnormal). 

 
TABLE II: DESCRIPTION OF THE REAL WORLD INDUSTRIAL DATA USED IN 

OUR STUDY 

 Data Production time Nb of 

parameters 

% of abnormal 

wafers 

  dataset 1 2 months 756 1.75 

 dataset 2 4 months 1062 0.5 

addition, we have obtained lower false alarms rate using our 

detection system. For both detection systems, scenario 1 

reduces false alarms compared to scenario 2. 

 
TABLE III: PERFORMANCE OF 1-SVM.FS AND HOTELLING’S T2

 SYSTEMS 

ON THE DATASET 1 

 Moving window Detection system Detection Rate False Alarms 

Rate 

  Scenario 1 1-SVM.FS 95.65 12.89 

 Hotelling’s T2 65.22 13.43 

  Scenario 2 1-SVM.FS 95.65 19.25 

 Hotelling’s T2 65.22 19.85 

 

To confirm this hypothesis, FAR-DR curve is plotted in 

the Fig. 4 to study the behavior of our detection system 

regarding the two different scenarios, over the same range of 

ν defined above. It is clear that scenario 1 gives a significant 

reduction interm of false alarms compared to scenario 2. This 

is due to the increased size of its moving window where a 

new lot is added to the training database at each update. In 

fact one-class SVM requires many more positive training 

data to give an accurate decision boundary because its 

support vectors come only from the positive data. However 

scenario 2 tends to detect more quickly abnormal wafers (i.e. 

for any value of ν, scenario 2 has higher or the same DR than 

scenario 1). The short fixed window in scenario 2 has a more 

efficient updating strategy and contains fewer abnormal 

wafers in the moving training dataset, which improves the 

performance of 1-SVM algorithm since the latter requires 

normal wafers to learn the classifier.  

 

 
Fig. 4. FAR-DR curve comparing performances of 1-SVM.FS detection 

system using the two proposed scenarios. 

 

Note that, in the first experiment considering only two 

months of production, we did not remove old data in the 

actual training set after the Δt period for the scenario 1, as has 

been recommended in Section V. This action takes place in 

the second experiment considering four months of production 

where we have a larger number of wafers. 

A final comparison is realized between 1-SVM.FS and 

1-SVM detection systems. The difference between these two 

systems is that the latter ignores the feature selection step 

used by the former. Another FAR-DR curve is plotted in the 

Fig. 5 illustrating this comparison. From this curve, a very 

important improvements achieved by applying our feature 

selection method MADe-FS. These improvements were 
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1) Dataset 1 

In this experiment, the correct performance data is formed 

using 300 normal wafers. The validation set consists of 100 

wafers of which 6 wafers are abnormal. We have trained our 

1-SVM.FS model on the correct performance data using 

various pairs of values for the feature selection 

hyperparameter q and the threshold ν. We consider 

respectively 6 and 20 values for q and ν, as follows:  

qϵ{0.25, 0.4, 0.5, 0.6, 0.75, 0.9}, 

νϵ{0.01, 0.02,…, 0.19, 0.2}. 

Samples from the validation set are then predicted using 

each of 120 learned models. The Detection Rate and the False 

Alarms Rate are computed for each prediction. We have 

selected the pair that optimizes simultaneously these two 

performance measures. Here we have retained q=0.75 and 

ν=0.16 and we have obtained a DR equal to 100% and FAR 

equal to 14.21%.  

Similarly, we have selected for the Hotelling’s T2 test the 

best pair (β, α) (cf. Section VI) by taking β∈ 

{0.75, 0.8, 0.85, 0.9} and considering the same range of 

values of ν for α. The optimal performance is obtained for 

β=0.75 and α=0.2, where DR and FAR are respectively equal 

to 66.67% (4 among 6 abnormal wafers) and 17.36%.  

After defining the correct performance data set and 

selecting the optimal parameters for 1-SVM.FS and 

Hotelling’s T2 models, we now proceed to the real-time 

detection by applying both of models to the real-time data. 

The real-time data are updated at each arrival of a new lot 

through a moving window in order to obtain a real-time 

procedure. The two models are also updated. The updates 

through the moving window follow one of two defined 

scenarios: scenario 1 (increased length) and scenario 2 (fixed 

length). 

Next, we focus on comparing the performance of the two 

real-time detection systems based on 1-SVM.FS and 

Hotelling’s T2 dynamic models using the two scenarios. The 

results are reported in Table III. For both scenarios, the 

Hotelling’s T2 system has shown poor performance in 

detecting abnormal wafers (DR=65.22%), while 1-SVM.FS 

system has been able to detect 95.65% of abnormal wafers. In 



  

observed on each of the two performance measures (DR and 

FAR). 

 

 
Fig. 5. FAR-DR curve showing the importance of our filter method 

MADe-FS to improve the performance of the 1-SVM classifier, according to 

scenario 1. 

 

demonstrated using two real-world industrial datasets. For 

both scenarios, results from the two datasets showed that our 

system could detect most of the abnormal wafers with an 

admissible percentage of false alarms. In addition, our system 

outperformed the detection system based on the Hotelling’s 

T2 test in the dataset 1, and similar performance was obtained 

in dataset 2 with slightly lower rate of false alarms. 
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2) Dataset 2 

Dataset 2 contains wafers from another category of 

products collected over four months of production. This 

dataset has higher dimensional space and lower percentage of 

abnormal wafers, compared to the first dataset. We set to 500 

the size of the correct performance data. The validation set 

contains 2 abnormal wafers among of 100. 

Following the same procedure used in dataset 1 for 

selecting optimal parameters, we have retained 

(q, ν)=(0.75, 0.04) for 1-SVM.FS model and 

(β, α)=(0.8, 0.01) for Hotelling’s T2 model. We set Δt to 2 

months. 

Table IV summarizes the performances achieved by the 

two systems under the two different scenarios. The results 

reveal a degree of similarity between the performances of 

both systems. High performance was obtained using both 

systems. Observations resulting from the comparison of two 

scenarios in dataset 1 are confirmed in dataset 2. Scenario 1 

has lower false alarms rate, while scenario 2 detect more 

effectively abnormal wafers.  

 
TABLE IV: PERFORMANCE OF 1-SVM.FS AND HOTELLING’S T2

 SYSTEMS 

ON THE DATASET 2 

 Moving window Detection system Detection Rate False Alarms 

Rate 

  Scenario 1 1-SVM.FS 83.33 5.89 

 Hotelling’s T2 83.33 6.34 

  Scenario 2 1-SVM.FS 91.67 8.62 

 Hotelling’s T2 91.67 9.12 

 

VIII. CONCLUSION 

In this paper, we proposed a new real-time fault detection 

system based on the machine learning 1-SVM algorithm and 

our filter method for feature selection. A dynamic detection 

was realized by updating the database following two 

proposed scenarios. The efficacy of our system has been 

 


