



Abstract—Cloud Storage provide users with abundant

storage space and make user friendly for immediate acquiring

of data, which is the foundation of all kinds of cloud

applications. However, there is a lack of deep studies on how to

optimize cloud storage aiming at improvement of data access

performance. With the development of storage and computer

technology, digital data has occupied more and more space.

According to statistics, 60% of these digital data is redundant,

and the traditional data compression can only eliminate the

intra-file redundancy. The growth in redundant data will

continue, unabated. The issue is how to manage this

phenomenon, while operating with the assumption that the

growth will likely accelerate. In order to solve these problems,

Data De-Duplication has been proposed. Many organizations

have set up private clouds for best resource utilization. An

organization can built private cloud storage with their unused

resources for storing their personal data. Since private cloud

storage has a limited amount of hardware resources, they need

to optimally utilize the space to accommodate maximum data.

Data De-Duplication is an effective technique to optimize the

utilization of storage space backup by avoiding the redundancy.

In this paper, we are going to discuss the flaws in the existing

de-duplication methods and introduce new methods for Data

De-Duplication. Our proposed method namely Intensive

Indexing (I2D) De-duplication which is the enhanced File level

de-duplication that provides dynamic space optimization in

private cloud storage backup as well as increase the throughput

and de-duplication efficiency.

Index Terms—Cloud backup, cloud computing, constant-size

chunking, data de-duplication, full-file chunking, private

storage cloud, redundancy.

I. INTRODUCTION

Cloud computing delivers flexible applications, web

services and IT infrastructure as a service over the internet

using utility pricing model. The Cloud is a cost-effective

approach to technology as there is no need to make usage

predictions, upfront capital investments or over purchase

hardware or software to meet the demands of peak periods.

Cloud computing incorporates virtualization, data and

application on-demand deployment, internet delivery of

services, and open source software. The different forms of

cloud design are Public cloud, Private cloud and Hybrid

cloud. Public clouds are run by third party service providers

and applications from different customers are likely to be

mixed together on the cloud‟s servers, storage systems, and

networks. Here the computing infrastructure is hosted by the

cloud vendor at the vendor‟s premises. Private clouds are

Manuscript received March 19, 2014; revised May 14, 2014.

M. Shyamala Devi and Steven S. Fernandez are with R.M.D Engineering

College, Chennai, India (e-mail: shyamalapmr@gmail.com).

built for the exclusive use of one client. Private clouds can

also be built and managed by the organization‟s own

administrator. Here the computing infrastructure is dedicated

to a particular organization and not shared with other

organizations. Private clouds are more secure when

compared to public clouds. Hybrid clouds combine both

public and private cloud models which may be used to handle

planned workload spikes, or storage clouds configuration.

A. Cloud Storage

Cloud storage is a service model in which data is

maintained, managed and backed up remotely and made

available to users over a network. Cloud storage [1] provides

users with storage space and make user friendly and timely

acquire data, which is foundation of all kinds of cloud

applications. There are many companies providing free

online storage. The storage cloud provides

Storage-as-a-Service. The organization providing storage

cloud uses online interface to upload or download files from

a user‟s desktop to the servers on the cloud. Typical usage of

these sites is to take a backup of files and data. Storage cloud

exists for all the types of cloud. A cloud storage SLA is a

service-level agreement between a cloud storage service

provider and a client that specifies details of the service,

usually in quantifiable terms.

B. Advantages of Cloud Storage

Cloud storage has several advantages over traditional data

storage. For example, if we store our data on a cloud storage

system, we will be able to get that data from any location that

has internet access. There is no need to carry around a

physical storage device or use the same computer to save and

retrieve our information. Thus cloud storage is convenient

and offers more flexibility.

C. Private Cloud Storage

Public cloud storage such as Amazon's Simple Storage

Service (S3) [2], provide a multi-tenant storage environment

that is most suitable for unstructured data. Private cloud

storage services provide a dedicated environment protected

behind an organization‟s firewall. Private clouds are

appropriate for a user who need customization and more

control over their data and is shown in Fig. 1. Hybrid cloud

storage is a combination of at least one private cloud and one

public cloud infrastructure. An organization store actively

used and structured data in private cloud and unstructured

and archival data in a public cloud.

D. Private Cloud Storage Backup

Cloud storage backup [1] is a strategy for backing up data

that involves removing data offsite to a managed service

provider for protection. Data moved offsite should be

Enhanced Intensive Indexing (I2D) De-Duplication for

Space Optimization in Private Cloud Storage Backup

M. Shyamala Devi and Steven S. Fernandez

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

113DOI: 10.7763/IJCTE.2015.V7.941

http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci1230589,00.html

de-duplicated to avoid the redundancy and it is done by

Cloud Storage Controller (CSC). The three benefits of CSC

are as follows. First, it creates a seamless and highly robust

connection to cloud storage, while requiring no changes to

applications running in the data center. Applications are able

to access the cloud using standard block and file access

protocols. Second, it accelerates the performance of

applications using cloud storage through advanced WAN

techniques including caching, de-duplication, compression,

and protocol optimization. Third, the Cloud Storage

Controller provides the same features and capabilities

expected of local storage arrays

Fig. 1. Private cloud storage.

E. Overview of De-Duplication

Data De-duplication identifies the duplicate data to

remove the redundancies and reduces the overall capacity of

data transferred and stored. De-duplication often called as

"intelligent compression" or "single-instance storage"[3]

which is the method of reducing storage needs by eliminating

redundant data. Only one unique instance of the data is

actually retained on storage media, such as disk or tape.

Redundant data is replaced with a pointer to the unique data

copy. For example, if an organization webmail system might

contain 50 instances of the same one megabyte (MB) file

attachment. If the webmail platform is backed up or archived,

all 50 instances are saved, requiring 50 MB storage space.

With data de-duplication, only one instance of the attachment

is actually stored. Each subsequent instance is just referenced

back to the one saved copy. In this example, a 50 MB storage

demand could be reduced to only one MB. Data de-

duplication offers three benefits. First, lower storage space

requirements will save money on disk expenditures. Second,

efficient use of disk space also allows for longer disk

retention periods and reduces the need for tape backups.

Third, it also reduces the data that must be sent across a WAN

F. De-Duplication Techniques

The optimization of backup storage technique is shown in

Fig. 2. The Data de-duplication [4]-[6] can operate at the

whole file, block (Chunk), and bit level.

Whole file de-duplication or Single Instance Storage

(SIS) finds the hash value for the entire file which is the file

index. If the new incoming file matches with the file index,

then it is regarded as duplicate and it is made pointer to

existing file index. Block De-duplication [6], [7] divides the

files into fixed-size block or variable-size blocks. For

Fixed-size chunking, a file is partitioned into fixed size

chunks for example each block with 8KB or 16KB. In

Variable size chunking, a file is partitioned into chunks of

different size. Both the fixed size and variable size chunking

creates unique ID for each block using a hash algorithm such

as MD5 or SHA-1 [8] or MD5 [9]. The unique ID is then

compared with a central index. If the ID exists, then that data

block has been processed and stored before. Therefore, only

a pointer to the previously stored data needs to be saved. If

the ID is new, then the block is unique. The unique ID is

added to the index and the unique chunk is stored. Block and

Bit de-duplication looks within a file and saves unique

iterations of each block or bit.

Fig. 2. De-duplication methods.

The rest of the paper is organized as follows. In Section II,

we analyze the existing methods of de-duplication with its

advantages and disadvantages. In Section III, we discuss

about our proposed system and its functions. In Section IV,

we conclude our design of DWFD and prove that our scheme

greatly increases the de-duplication efficiency. We show our

implementation analysis in Section V.

II. ANALYSIS OF EXISTING METHODS

In this section, we describe the advantages and

disadvantages of each de-duplication method.

A. Advantages of Existing Methods

1) Indexes for whole file de-duplication are significantly

smaller, which takes less computational time and space

when duplicates are being determined. Backup

performance is less affected by the de-duplication

process.

2) Fixed-size chunking is conceptually simple and fast

since it requires less processing power due to the smaller

index and reduced number of comparisons.

3) In variable size chunking, the impact on the systems

performing the inspection and recovery time is less. The

efficiency of identifying the duplicate is high.

4) Bit De-duplication done exact de-duplication and it is

more efficient since it eliminates redundancy.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

114

B. Disadvantages of Existing Methods

1) Whole File de-duplication is not a very efficient, because

a little change within the file causes the whole file to be

saved again. For example, if 500 identical attachments

are sent by a insurance coordinator, this method will find

all those 500 attachments that are exactly the same, but it

would not find the exact duplicate copies that we have

saved (i.e) Insure.Aug,Insure.Sep,Insure.Oct etc. This

de-duplication checks only the size of the file regardless

of the file content.

2) In Fixed-size chunking, when a small amount of data is

inserted into a file or deleted from a file, an entirely

different set of chunks is generated from the updated file.

3) The indexes for both fixed and variable size chunking

are large which leads to larger index table and more

number of comparisons which leads to low throughput.

4) Bit de-duplication takes more processing time to identify

the duplicate bit.

C. Methods of Block Level De-Duplication.

The block level de-duplication divides the incoming file

into fixed size chunks or variable size chunks. Depending on

the duplicate detection of incoming chunk, the variable size

chunk de-duplication can be divided into Chunk level

de-duplication and File level de-duplication.

D. Chunk Level De-Duplication – DDDFS

When a file has to be written, then every chunk of that file

is checked for duplicate with chunks of all files. This method

of detecting duplicates is Chunk level de-duplication. Data

Domain De-duplication File System [10] DDDFS is a file

system which performs chunk level de-duplication. It

supports multiple access protocols. Whenever a file to be

stored, it is managed by the interfaces such as Network File

System (NFS), Common Internet File System (CIFS) or

Virtual Tape Library (VTL) to a generic file service layer.

File service layer manages the file metadata using

Namespace index and forwards the file to the content store.

Content store divides the file into variable sized chunks.

Secure Hash Algorithm SHA-1 [8] or MD5 [9] finds the hash

value for each variable size chunk, which is ChunkID.

Content store maintains the File Reference Index (FRI)

which contains the sequence of ChunkID constituting that

file. Chunk store maintains a chunk index for duplicate

chunk detection. In this chunk level de-duplication, the

efficiency of duplicate detection is high but the throughput of

the de-duplication is low. So this method can be used for the

applications with locality of reference between the data

streams in the cloud storage.

E. File level De-Duplication – Extreme Binning

When a file has to be written, then every chunk of that file

is checked for duplicate with all the chunks of the similar

files. This method of detecting duplicates is File level

de-duplication. Extreme Binning [7] uses this approach by

dividing the chunk index into two tiers namely Primary index

and Bin [11], [12]. Primary Index contains the representative

ChunkID, Whole file hash and pointer to bin. The disk

contains bin, Data chunks and the File recipes. The file

recipes [13], [14] contain the sequence of chunked for that

file. Fig. 3 shows the structure of a backup node in extreme

binning de-duplication. When a file has to be backed up, it

performs variable size chunking and finds the representative

ChunkID and the hash value for the entire file [15], [16]. The

Representative ChunkID is checked in the primary index and

if it is not there, then the incoming file is new one and a new

bin is created with all ChunkID, chunksize and a pointer to

the actual chunks are added to the disk. Then Representative

ChunkID, file hash value and the pointer to bin of a newly

created bin are added to the primary index [17]. If the

representative ChunkID, file hash of the incoming file is

already present in the primary index, then the file is a

duplicate [18] and it is not loaded into disk and the bin is not

updated. If the representative ChunkID of the incoming file is

already present in the primary index [19] but the hash value

of the whole file does not match, then the incoming file is

considered to be nearly similar to the one that is already on

the disk. Most of the chunks of this file will be available in

the disk. The corresponding bin is loaded to RAM from the

disk, and now searches for the matching chunks of the

incoming file. If the ChunkID is not found in the bin, then its

metadata of the chunk is added to the bin and the

corresponding chunk is written to the disk. The whole file

hash value is not modified in the primary index and the

updated bin is written back to the disk. Here every incoming

chunk is checked only against the indices of similar files, this

approach achieves better throughput compared to the chunk

level de-duplication. Since non-traditional backup workload

demands better de-duplication throughput, file level

de-duplication approach is more suited in this case.

Fig. 3. Backup node in extreme binning.

III. OUR CONTRIBUTION

Cloud computing is used for better utilization of available

resources [20]. The unused materials of an organization can

be used to build up a private cloud. Here we try to optimize

the private cloud storage backup in order to provide high

throughput to the users of the organization by increasing the

de-duplication efficiency.

A. Proposed System

Generally the backup of the private storage cloud belongs

to the non-traditional backup. Traditional backup contains

data streams with locality of reference. But the

non-traditional backup contains the individual files that owns

by the individual users of the organization with no locality of

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

115

reference. The storage of the private cloud should be

optimized as there is physical limitation on the storage space.

Here we try to enhance the File level de-duplication since it

provides high de-duplication throughput. However a single

primary index is used for de-duplication that takes more time

in merely checking the representative ChunkID of the file.

This leads to low de-duplication throughput. So we try to

refine file level de-duplication further to increase the

throughput and de-duplication efficiency. So we propose a

new method for de-duplication namely Intensive Indexing

(I2D) File De-duplication which is the modified File Level

de-duplication that provides grouping of files of individual

users.

B. Intensive Indexing (I2D) File De-Duplication

The single Primary index contains representative

ChunkID, whole file hash and bin pointer which points to the

bin of the backup node which is used for finding the

duplication regardless of the users of the private cloud which

leads to low de-duplication throughput. Private storage cloud

consists of personal documents of the individual users

belonging to organization. If we use Extreme Binning, then

there will be only one primary index for all user files. So all

the incoming files that belong to the different user‟s merely

waste time for checking the representative chunkID of the

single primary index that reduce the throughput and

de-duplication efficiency. In our Intensive Indexing (I2D)

File De- duplication, the users accessing the private cloud

storage are identified by their unique user-id. Here the chunk

index is divided into File Index and Bin. We create separate

file index and bin for each user and each file belonging to an

individual user is grouped with their folders and is shown in

Fig. 4. With this method, it is possible to group the files of

each users of the organization.

Fig. 4. Intensive indexing file de-duplication.

IV. DESIGN OF INTENSIVE INDEXING (I2D) FILE

DE-DUPLICATION

Before we start our design, we have the following

assumptions:

i) The users of the private cloud are provided with separate

user id. ii) The files of the individual users are collected in

separate folders in the cloud backup. Our new Intensive

Indexing (I2D) File De-duplication scheme has the following

modules,

1) Cloud Service Providing Module

2) Cloud Storage Initiation Module

3) Cloud Storage Controller Module

4) Intensive Indexing Module.

5) Cloud Backup De-duplication Module.

A. Cloud Service Providing Module

The user authentication is done in this module. If the user

is new, then the registration process is done in this module

and is shown in Fig. 5.

Fig. 5. Cloud service providing module.

B. Cloud Storage Initiation Module

After the user authentication is done in the private cloud,

then he / she can start viewing, editing and saving their

personal files into their folders and it is shown in Fig. 6. In

this module, the authenticated user can perform their own

work and they may also try to upload the files from online.

Fig. 6. Cloud storage initiation module.

Provide Viewing, Editing

and saving the file

Cloud Storage

Controller Module

Authenticated user request

Get the User

request

No

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

Yes

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

No

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

Providing

User Access

Cloud Storage

Initiation Module

Login Request from User

Get the Login

User Name

Get the Login

Password

Verify

User

Yes

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

New

User

New User

Registration

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

116

C. Cloud Storage Controller Module (CSCM)

This module performs the function of integrating the files

of the individual users. This module groups the files of all

users and is shown in Fig. 7.

Fig. 7. Cloud Storage controller module.

D. Intensive Indexing Module

Fig. 8. File Index in I2D.

The chunk index for each user is created in this module.

The chunk index is divided into file index and bin and it is

shown in Fig. 8. The chunk index for each user is created in

this module and it is shown in Fig. 9. The file index has three

field‟s namely minimal chunkID, File hash and Binptr. The

minimal chunkID is found for all the files. First the file is

divided into variable sized chunks. Then the minimal

chunkID is found using Broder‟s theorem [21]. The hash

value is found for all the different sized chunks. The ID with

minimum hash value is choosen to be the minimal ChunkID

for the file index. The purpose of finding the minimal

ChunkID is that according to Broder‟s theorem, the

probability that the two sets S1 and S2 have the same

minimum hash element is the same as their Jaccard similarity

coefficient [22]. In other words, if two files are highly similar

they share many chunks and hence their minimum chunk ID

is the same with high probability. The file hash is found by

SHA-1 [8] or MD5 [9]. The Binptr provides pointer to the

corresponding bin. Each bin contains two fields as chunkID

and the chunksize. The hash value of the chunk is found and

it named as ChunkID

E. Cloud Backup De-Duplication Module

This module performs the function of de-duplication

detection by comparing the incoming file index with the

backup node file index. It starts by checking the whole file

hash. If the match is found with the hash value along with the

file type, then the file is a duplicate one. If the file is

identified as duplicate, then it is not saved into the disk. If the

match is not found with the hash value, then the file assumed

as new file and it is updated into backup node So here the file

is assumed to be duplicate if and only if both the hash value

and the file type matches thereby increasing the

de-duplication efficiency and it is shown in Fig. 10.

Fig. 9. Intensive indexing module.

V. IMPLEMENTATION

We have implemented this by creating the cloud server,

cloud controller and multiple clients on WINDOWS platform.

Any number of clients can be registered to the cloud server.

The coding is done by using visual studio.Net and back end

as Microsoft SQL server. The cloud server node is executed

followed by the users registration. All the users can have their

individual username and password. They can upload any type

of files. Our proposed method namely Intensive Indexing

Create Separate Chunk

Index for each user

Cloud Backup

De-duplication Module

Files of the individual users

Get the User Files

and their folders

Find the minimal chunkID

using Borders theorem

Find the hash value for each

file using SHA-1 or MD5

Update the minimal chunkID

and hash value in the file Index

Create a Bin pointer

Find the hash value for each chunk of

the file using SHA-1 or MD5

Find the chunk size

Update the chunkID and

chunk size in the Bin

Create Separate folders for each user

Intensive Indexing Module

Saved files From Memory

Get the User Files

Group files of each user in their folders

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

117

(I2D) File De-duplication is compared with the Extreme

Binning file de-duplication. Our analysis is showing that our

proposed system will have efficiency based on the number of

files being stored in the backup node. Our result analysis is

shown in the Fig. 11, 12 and 13.

Fig. 10. Cloud backup de-duplication module.

Fig. 11. Registering client node to the cloud controller.

Fig. 12. Making backup for the particular client.

Fig. 13. Performance analysis.

VI. CONCLUSION

In this paper, we have designed our new scheme namely

Intensive Indexing (I2D) De-duplication that effectively

removes duplication. It is highly desirable to improve the

private cloud backup storage efficiency by reducing the

de-duplication time. Our future enhancement is to use chunk

level de-duplication in the private cloud storage by

overcoming the negative factors in its efficiency.

REFERENCES

[1] Y. Abe and G. Gibson, “PWalrus: Towards better integration of

parallel file systems into cloud storage,” in Proc. IEEE International

Conference on Cluster Computing Workshops and Posters, Heraklion,

Crete, 2010, pp. 1–7.

[2] Amazon Web Services LLC. (2009). Amazon simple storage service.

[Online]. Available: http://aws.amazon.com/s3/

[3] W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur, “Single

instance storage in windows 2000,” in Proc. Fourth USENIX Windows

Systems Symp., 2000, pp. 13-24.

[4] J. Min, D. Yoon, and Y. Won, “Efficient De-duplication techniques in

modern backup operation,” IEEE Transactions on Computers, vol. 60,

no. 6, June 2011.

[5] J. Wei, H. Jiang, K. Zhou, and D. Feng, “Mad2: A scalable

high-throughput exact de-duplication approach for network backup

No

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

Yes

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

Perform Multithreading for parallel

comparison of file index

End

File Index from Cloud Storage

Controller for Backup

Get the File Index

of all the users

Compare the file Index of Cloud Storage

Controller with the backup file index

Detection of Duplicate file

Discard the file for backup and

create the pointer with the previous

file

Compare

Minimal

ChunkID

Create a new bin with

chunkID, chunk size

Yes

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

Compare

the whole

file hash

Update the Backup File

Index with minimal

chunkID, file hash

Update the file Index

and Bin into Disk

Save the new file

into Backup Disk

Update the data chunks and file

recipes in to the disk

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

118

services,” in Proc. IEEE / NASA Goddard Conference on Mass Storage

Systems and Technologies, NV, USA, May 2010.

[6] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the

data domain de-duplication file system,” in Proc. the 6th USENIX

Conference on File and Storage Technologies, Berkeley, CA, USA,

2008, pp. 18:1–18:14.

[7] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge, “Extreme

binning: Scalable, parallel de-duplication for chunk-based file

backup,” in Proc. IEEE International Symposium on Modeling,

Analysis & Simulation of Computer and Telecommunication Systems,

2009, pp. 1-9.

[8] Secure Hash Standard, National Institute of Standards and Technology,

FIPS 180-1. (Apr. 1995). [Online]. Available:

http://www.itl.nist.gov/fipspubs/fip180-1.htm

[9] R. Rivest. (Apr. 1992). The MD5 message-digest algorithm. IETF,

Request For Comments (RFC) 1321. [Online]. Available: http:

//www.ietf.org/rfc/rfc1321.txt

[10] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey, “Redundancy

elimination within large collections of files,” in Proc. USENIX Ann.

Technical Conf. on General Track, 2004, pp. 59-72.

[11] B. Hong and D. D. E. Long, “Duplicate data elimination in a san file

system,” in Proc. 21st IEEE / 12th NASA Goddard Conf. on Mass

Storage Systems and Technologies (MSST), 2004, pp. 301-314.

[12] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P.

Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,

“HYDRAstor: A scalable secondary storage,” in Proc. the 7th USENIX

Conference on File and Storage Technologies (FAST), San Francisco,

CA, USA, Feb. 2009.

[13] C. Policroniades and I. Pratt, “Alternatives for detecting redundancy in

storage systems data,” in Proc. Conf. USEXNIX ‟04, June 2004.

[14] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep store: An archival

storage system architecture,” in Proc. Int’l Conf. Data Engineering,

2005, pp. 804-8015.

[15] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and

P. Camble, “Sparse indexing: large scale, inline deduplication using

sampling and locality,” in Proc. Seventh USENIX Conf. File and

Storage Technologies, 2009.

[16] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving

duplicate elimination in storage systems,” ACM Trans. Storage, vol. 2,

no. 4, pp. 424-448, 2006.

[17] W. Zeng, Y. Zhao, K. Ou, and W. Song, “Research on cloud storage

architecture and key technologies,” in Proc. the Second International

Conference on Interaction Sciences, 2009, pp. 1044-1048.

[18] C. Policroniades and I. Pratt, “Alternatives for detecting redundancy in

storage systems data,” in Proc. ATEC ’04, 2004, pp. 1-15.

[19] G. Forman, K. Eshghi, and S. Chiocchetti, “Finding similar files in

large document repositories,” in Proc. the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery in Data Mining,

2005, pp. 394–400.

[20] Amazon‟s elastic block storage, elastic block storage. [Online].

Available: http://aws.amazon.com/ebs/.

[21] A. Z. Broder, “On the resemblance and containment of documents,” in

Proc. SEQUENCES ’97: the Compression and Complexity of

Sequences 1997, 1997, pp. 21–29.

[22] P. Jaccard, “Etude comparative de la distribution orale dans une portion

des Alpes et des Jura,” Bulletin del la Soci ét é Vaudoise des Sciences

Naturelles, vol. 37, pp. 547–579, 1901.

M. Shyamala Devi was born in Madurai in 1984. She has

completed B.E degree in computer science and

engineering at P.S.N.A College of Engineering and

Technology, Dindigul, TN, India in 2005. She completed

her M.E computer science and engineering at P.S.N.A

College of Engineering and Technology, Dindigul, TN,

India in 2009. She completed her M.B.A systems area at

Madurai Kamaraj University, Madurai, TN, India. She is

now pursuing her Ph.D. in Anna University, Chennai.

She worked as a lecturer at P.S.N.A College of Engineering and

Technology, Dindigul, TN, India from 2005 to 2009. Then she joined as an

assistant professor at R.M.D Engineering College, Chennai, TN, India from

2009 to till date. She has authored 7 engineering books titled Theory of

Computation, Principles of Compiler Design, Data Structures and Algorithm

Analysis, Graphics and Multimedia, Fundamentals of Computer

Programming, Digital Computer Fundamentals and Visual Programming, by

Shri Krishna HiTech Publishing Pvt Ltd, Chennai, TN, India. She have

published three papers in IEEEXplore.

 Mrs. M. Shyamala Devi is an active life member of CSI, ISTE, ICST,

IAEST and IACSIT. She has received a funded project from CSI on March

2010 for „Web based speech recognition for visually challenged Users‟.

S. Steven Fernandez was born in Chennai in 1994. He

has completed his SSLC at Don Bosco Matric Higher

Secondary School, Chennai, TamilNadu, India in April

2009. He completed his HSC at Don Bosco Matric

Higher Secondary School, Chennai, TamilNadu, India in

April 2011. Currently he is a third-year student pursuing

B.E degree in computer science and engineering at

R.M.D Engineering College, Chennai, TamilNadu, India.

He is online certified professional in artificial intelligence. He is an active

student member of CSI. He is a BEC certified Professional. He is an member

of Entrepreneurial Development Cell of R.M.D Engineering college,

Chennai, TamilNadu, India.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

119

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5353818
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5353818
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5353818
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5353818

