

Abstract—Cloud computing, is network based model used to

illustrate a variety of computing concepts that involves a large

number of computers connected through a synchronized

communicational network such as the Internet. Cloud users

demands security to their data which are stored in data

repositories of cloud service provider. Thus the concept of

Network Security can be applied over the cloud network, where

several encryption algorithms are applied to provide integrity

on the data. Such algorithms include Symmetric encryptions,

Asymmetric encryptions, Hashing algorithms and Digital

signatures. Even though these algorithms provide security,

however these are not applied on query based data retrieval

from databases where certain queries are used to invoke the

data. Till to date many researchers proposed several models to

provide security to the data in database and are not upto the

mark. Since the operations are done in database which is

located remotely, away from user, providing encryption on

queries and data together will make an efficient approach. Such

mechanisms like Homomorphic encryption, Order-preserving

encryption are examined and a novel approach is defined to

meet all security issues over a cloud termed as “CryptDB”.

Index Terms—Cloud computing, encryption mechanisms,

homomorphic encryption, oder preserving encryption,

CryptDB.

I. INTRODUCTION

The rapid development in data processing and data storage

technologies; the success of the Internet, computing

resources have become cheaper, more powerful and more

ubiquitously available than ever before. This technological

trend has evolved in new network based computing called as

Cloud computing [1]. Cloud computing, recently emerged as

a new archetype for hosting and delivering wide range of

services over the Internet.

There are several definitions which provide the perfect

meaning to cloud computing. CISCO defined cloud

computing as, IT resources and services that are abstracted

from the underlying infrastructure and provided on-demand.

According to NIST (National Institute of Standards &

Technology) cloud computing is defined as, it is a model for

enabling on-demand access to shared pool of configurable

computing resources with minimal management effort. It is

sold on demand, typically by the minute or the hour.

Summarizing all the definitions it is defined as, Cloud

computing is computational model, not a technology where

wide range of services such as Iaas, Paas, Haas, Saas are

provided through Virtualization concept. In this model of

Manuscript received February 25, 2014; revised April 26, 2014.

Swetha Tera, S. Ramachandram and P. Shankar Murthy are with the

Computer Science & Engineering, Osmania University, India

(e-mail:{swethareddy.07, schandram, murthy619}@gmail.com).

computing, all the network servers, networks, application

interfaces (API) and other elements related to data centers are

made available to cloud users via the Internet.

Till date there is no exact meaning of cloud computing,

several researchers proposed several different definitions of

cloud computing. Reuven Cohen defined cloud computing as

an Internet Centric Software, which is the shift of the

traditional single tenant approach to software development to

scalable, multi network etc. Jeff Kaplan defined it as, cloud

computing is a broad array of web-based services aimed at

allowing cloud users to obtain a wide variety of functional

capabilities on a 'pay-as-you-go' basis that previously

required tremendous hardware and software investments and

professional skills to acquire. Douglas Gourlay stated that

Cloud computing [1] is a Virtual network, where network

components are used virtually.

Cloud computing is often compared with other computing

methods like Grid computing: it is a distributed computing

prototype which coordinates on networked resources to

achieve a common computational objective. Utility

Computing: this computing represents the model of

providing resources on-demand and charging end-users

based on usage of service rather than a flat rate. Autonomic

computing: this computing is developed by IBM, where a

system acts as a sole responsible for internal and external

processes without any interference of human simply it is a

network with automated machines. Virtualization: is a

technology that abstracts away the details of physical

hardware and provides hardware and software resources

virtually. Cloud computing is the combination of all the

techniques which is available to the end user based on

different payment schemes.

In a cloud computing environment, the conventional role

of the service provider is divided into two categories: the

infrastructure providers, who manage cloud platforms and

lease resources such as CPU, storage system etc., (according

to a usage-based pricing model), and service providers, who

rent resources from one or many infrastructure providers to

serve the cloud users.

The infrastructure providers distribute their infrastructure

elements based on pricing system, mainly static price system:

where the fixed price is maintained whatever may be the

demand of it in the market, dynamic pricing system: it is a

payment scheme where the service provider charges the end

user based on what the infrastructure used at that particular

moment.

Cloud computing provides wide variety of services such as

IaaS, infrastructure as a service, where all the hardware

elements are made virtual so that they are made available to

the cloud users this concept is termed as virtualization. PaaS,

platform as a service, this service provides a platform like

user interfaces and programming interfaces which helps users

Computational Analysis of Encrypted Database to Provide

Confidentiality

Swetha Tera, S. Ramachandram, and P. Shankar Murthy

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

108DOI: 10.7763/IJCTE.2015.V7.940

to interact with the remote databases or servers through these

interfaces and users can also develop their own applications

and run them on their servers through these platforms. DaaS,

data as a service, this type of service provides only data

which are requested by the user and also stores the user data

remotely and is made avail upon user request.

Among all these services DaaS is considered to be the most

demanded service from cloud users as they exchange, store,

modify their information through internet. Since this service

is processed through internet there is chance of intrusion in

the data and hack it. The very confidential data such as credit

card numbers, online banking, passwords etc are readily

available to the hacker if there is no security provided over

the network [2]. In order to overcome such attacks certain

security prototypes have been developed which resists such

ad hoc attacks, Denial-of-Service attacks, jamming attacks

and other fabrication attacks. Security algorithms are based

on encryption standards, where the original text is encrypted

to cipher text in the sender‟s end and is transmitted through

any network, upon receiving cipher text by the receiver,

decrypts it and reads the original message.

Fig. 1. Encryption and decryption scheme.

Such security algorithms [3], shown in Fig. 1, can be

classified into symmetric algorithms and asymmetric

algorithms. A single key is shared among sender and receiver

to encrypt and decrypt the data known as common key/shared

key/symmetric key. Algorithms like AES (Advanced

Encryption Standard), Big-fish, Two-fish are based on single

key encryptions [4], [5]. Other algorithms includes RSA,

DSA are based on two key management schemes where the

public key is used to encrypt the data and secret key/private

key is used to decrypt the data, these algorithms are called as

asymmetric algorithms since they use different keys for

encryption and decryption.

All these security paradigms involve generation of keys to

encrypt and decrypt the original message. Cipher text is sent

through the network instead original text there is less chance

of leaking the original message and other attacks are

moderately prevented. Since this encryption revolves around

keys for encryption and decryption, in order to decrypt the

encrypted message by the receiver he must know the

private/secret key which the sender has to send besides the

cipher message. Simply one cannot send the key along with

cipher text as attackers can easily decode it. Here, Key

Exchange comes in play to exchange these secret keys in

unreadable format which the attacker cannot understand

(only the sender and receiver can understand).

Key exchange algorithms are only meant for exchanging

the keys among sender and receiver. Such algorithms are

Diffie-Hellman, German Army Enigma, and Key Wrap etc.

II. LITERATURE REVIEW

Now-a-days the data is stored in a database where the DBA

controls the data and access controls of that data are under the

DBA, who cannot be easily trustworthy.

Theft of sensitive private data from the database is a

significant problem. Database management systems

(DBMSs) [6] are an especially appealing target for attackers,

because they often contain large amounts of confidential

information. When individual users or enterprises store their

sensitive data in a DBMS, they must trust that the server

hardware and software are under safe state, that the data

center itself is physically protected, and assume that the

system and database administrators (DBAs) are trustworthy.

Otherwise, an adversary who gains access to any of these

avenues of attack can compromise the entire database.

Fig. 2. CryptDB architecture.

For this reason we can make use of modern cryptosystem

in database i.e., CryptDB. It works by intercepting all user

issued SQL queries [6] in a cryptdb-database proxy, which

rewrites queries to execute on encrypted data, as CryptDB

assumes that all queries go through its proxy. The proxy

encrypts and decrypts data and query, by generating parse

tree preserving the semantics of the query. The DBMS server

never receives keys to decrypt the cipher text to get plaintext,

so there is no chance of accessing confidential data by DBMS

server. This ensures that a curious DBA cannot gain access to

private information (which is termed as Threat 1). The

servers such as Application server, CryptDB-proxy and

DBMS server are not guarded against hacking. They may get

compromise (termed as Threat 2), if this happens the hacker

gains control over all the servers and that data in database of

the currently logged in user and still CryptDB assures that the

data of the other users who are not logged in are under safe

state.

Although CryptDB provides data confidentiality, it does

not ensure the data integrity, completeness of results returned

to the application (cryptdb user terminal). An antagonist that

compromises the application, proxy, and DBMS server, or a

malicious DBA, can modify or delete any or all of the data

stored in the database.

CryptDB‟s architecture (as shown in Fig. 2) consisting of

two parts: CryptDB-proxy server (CryptDB server) and

DBMS server. CryptDB uses user-defined functions (UDFs)

to perform cryptographic operations in the DBMS. Database

proxy and cryptdb udf‟s are the components added by

CryptDB and the application server is the default component

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

109

used by DBMS server. CryptDB addresses two kinds of

threats, shown as dotted lines. In threat 1, a curious database

administrator with complete access to the DBMS server

snoops on private data, in this case CryptDB prevents the

DBA from accessing secret information. In threat 2, an

adversary gains complete control over both the software and

hardware of the application, proxy and DBMS servers, in this

case CryptDB ensures the adversary cannot obtain data

belonging to users that are not logged in (e.g., user 2), but the

data of the logged in user may get hacked.

III. WORKING WITH CRYPTDB

CryptDB is a library file which is linked dynamically while

installing Mysql database, it adds new components besides

mysql server such as parser, mysql proxy, key table,

encrypted data etc.

CryptDB is a new encrypted system [7] that provides

realistic and incontestable confidentiality in the face of these

attacks for applications backed by SQL databases. It works

by executing SQL queries over encrypted data using a

collection of efficient SQL-aware encryption schemes.

CryptDB chains encryption keys to the user passwords, so

that the data item can be decrypted only by using the

password of one of the users to access that data. As a result, a

Data Base Administrator (DBA) never gets access to

decrypted data, and even if all servers are compromised, an

adversary cannot decrypt the data of any user who is not

logged in [8]. Here, CryptDB address two threats, as

specified above.

A. Downloading the CryptDB

CryptDB is developed in MIT University; it is stored in

public repository called git-hub. This version of cryptdb is a

freeware; any interested personnel can make use of it. The

command to download this library is “git clone -b public

git://g.csail.mit.edu/cryptdb”

B. Packages Needed to Support CryptDB

Linux packages like Bazaar, Bison, Gtk-doc, Autoconf,

Automake, Libtool, Flex, Gcc, G++, MYSQL,

MYSQL-Proxy.

C. Commands to Install and Run CryptDB

As cryptdb is supported only in Linux operating system,

we may use Debian or Ubuntu flavors of Linux. Command to

install Cryptdb is“./scripts/install.rb file-path-root”

Upon successful installation, use the following command

to run cryptdb.“obj/main/cdb_test ./shadow database-name”

D. Onion Layers

Fig. 3. Onion Layers for JOIN operation.

Cryptdb has a special function called Onion layer. It is

defined as layer-by-layer encryption/decryption schemes

which are called upon when a specific query is issued, such as

JOIN operation calls ONION-JOIN onion layer, as shown in

Fig. 3, each is identified by an onion_id. There are certain

onion layers which are predefined and are specified as stored

procedures and are called when appropriate query is

triggered.

IV. RESULTS AND DISCUSSIONS

CryptDB‟s design supports most relational queries,

encryption schemes [9] and aggregates on regular data types,

such as numbers and varchar types. Besides regular

operations additional operations can be added to CryptDB by

extending udf‟s, which is done by modifying existing onion

layers of encryption, or by adding new onion layers for

specific data types (e.g., spatial, aggregate functions and

multi-dimensional range queries). There are certain SQL

computations CryptDB cannot support on encrypted data. For

example, it does not support both computation and

comparison on the same column, such as WHERE salary

>age*3+20. CryptDB can process a part of this query, but it

would also require some help from the proxy. The general

query processing done in cryptdb is shown below.

A. Processing a Query in CryptDB

1) User issues a query, which is intercepted by Database

proxy and re-writes the table and column name using a

„Key‟.

2) Proxy checks if the DBMS server is to be given keys to

adjust onion layers, the proxy issues update command

instead of issuing keys to call appropriate UDFs.

3) The Database proxy forwards the query to the DBMS

server which executes using standard SQL.

4) DBMS server returns the query result to Database proxy

which decrypts and returns plain text to the user.

Fig. 4. CryptDB initialization.

In order to launch the cryptdb, the users need to log-in into

the system as the root user by using his root password (i.e., by

logging in as sudo user). The user needs to enter into the

directory where the downloaded cryptdb is located, by cd

cryptdb command. The above Fig. 4 shows the downloaded

software is in student directory and the command

“obj/main/cdb_test” initializes the cryptdb and the second

half command “./shadow cryptdbtest” creates a new database

in the MYSQL. Therefore the cryptdb is now ready to setup.

After successful installation of CryptDB we have created

„emp‟ table and inserted the columns „eno‟ of number type

and „ename‟ of varchar type. When a query such as SELECT

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

110

* FROM emp; is issued, .It returns the encrypted query and

equivalent result of that query, as shown in Fig. 5. Only

CryptDB users can able to visualize the encrypted results and

decrypted results. Whereas, the normal Database

Administrator (DBA) can visualize only the encrypted data

when he attempts to access the emp table from MYSQL,

cryptdb prevents him accessing the decrypted results.

Fig. 5. Creating and selecting a „emp‟ table from cryptdb.

Fig. 6. Illegal access of the emp table data by DBA using MYSQL.

Fig. 7. Results displayed to the illegal user.

In order to guess the encrypted name of the „emp‟ table by

DBA, he can call any of the DET [10] encryption method,

suppose let the „emp‟ table is encrypted using AES

encryption algorithm, one of the DET (deterministic)

method.

Select * from AES(emp);

Which requires a symmetric key , which can generated

through a Key Generator() [11], one cannot assure that the

key generated in cryptdb is same as the key generated by the

DBA manually, but there is a chance of getting same key, by

which the DBA can know the encrypted name of „emp‟ table

[12]. Suppose the DBA or attacker successfully knows the

encrypted name of the „emp‟ table, and if he issues a query

from MYSQL, he encounters only cipher text, as shown in

Fig. 6, and plain text is hidden from him. Thus the private

data is secured even though the DBA knows the encrypted

names as shown in Fig. 7.

If the DBA or attacker is clever enough to crack the

encrypted names of the table, column names and tries to

modify/delete the data from MYSQL console by issuing

certain commands like update, drop or delete, the cryptdb

prevents such instances by throwing errors. Such situation is

shown in Fig. 8 [13].

Fig. 8. Errors thrown by Cryptdb while illegal user modifies the data from

MYSQL.

Fig. 9. Result of sum ().

Fig. 10. Result of avg ().

The observations over aggregate functions such as sum()

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

111

and avg() when triggered in SQL commands in cryptdb

resulted as in Fig. 8 and in Fig. 9 respectively. As the sum ()

should return the summation of the column „eno‟ it returned

value as 65, whereas the avg() function returned the same

value of 65 instead of 21.6. By this analysis it is depicted that

the avg() is not fully implemented.

As in the Fig. 4, the contents of the „emp‟ table are „eno‟

and „ename‟ fields. The „eno‟ field consists of employee

number i.e., 35, 15, 15. The sum(eno) results in summation of

these field values as 65. When avg(eno) is called it meant to

return the avg of eno field values as shown in Fig. 10.

The User defined function for the avg() in cryptdb can be

defined by using SQL statements within in C++ language[14],

[15]. The blue print for avg() is shown below.

User defined Onion Layer for AVG()

AVG ()

{

Onion1: Decrypt using DET to get plain text.

Select “SUM(column name)” from “table _name”;

Store the result in „S‟ variable;

Select “COUNT(column name)” from “table_name”;

Store the result in „C‟ variable;

Return (S/C);

Onion 1: Encrypt using DET to get cipher text.

}

The other observation observed is on the multiplication

operator. Certain operators like „*, /, %, ^, like‟ are not

implemented in cryptdb. The following figure shows the „*‟

operator bug.

V. CONCLUSIONS

Analysis done over cryptdb concludes that the cryptdb

provides confidentiality to the user‟s private data through

encryption schemes. It is based on relational databases and

supports SQL queries, but not upto full extent. There are

certain limitations which are observed in some of the queries

where there it needs some improvements such as in avg () and

moreover the onion layers need to be improved and can user

defined onion layers can be implemented. Finally this paper

concludes encryption in cloud tasks are very innovative,

future extends some of the sql functions are not working in

the CryptDB, it needs to improve CryptDB by working with

all sql functions with results.

REFERENCES

[1] R. Buyya, “Introduction to the IEEE transactions on cloud computing,”

IEEE Transactions on Cloud Computing, vol. 1, no. 1, January-June

2013.

[2] Privacy rights clearinghouse. Chronology of data breaches. [Online].

Available: http://www.privacyrights.org/data-breach

[3] P. Arora, R. C. Wadhawan, and Er. S. P. Ahuja, “Cloud computing

security in infrastructure as a service,” International Journal of

Advanced Research in Computer Science and Software Engineering,

vol. 2, January 2012.

[4] O. Goldreich, Foundations of Cryptography: Volume I Basic Tools,

Cambridge University Press, 2001.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving

encryption for numeric data,” in Proc. the 2004 ACM SIGMOD

International Conference on Management of Data, Paris, France, June

2004.

[6] G. Amanatidis, A. Boldyreva, and A. O‟Neill, “Provably-secure

schemes for basic query support in outsourced databases,” in Proc. the

21st Annual IFIP WG 11.3 Working Conference on Database and

Applications Security, RedondoBeach, CA, July 2007.

[7] A. Desai, “New paradigms for constructing symmetric encryption

schemes secure against chosen-ciphertext attack,” in Proc. the 20th

Annual International Conference on Advances in Cryptology, August

2000, pp. 394-412.

[8] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable

computing: Outsourcing computation to untrusted workers,” in Proc.

Advances in Cryptology (CRYPTO), Santa Barbara, CA, August 2010.

[9] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in

Proc. the 41st Annual ACM Symposium on Theory of Computing,

Bethesda, MD, May-June 2009.

[10] M. Bellare, M. Fischlin, A. O‟Neill, and T. Ristenpart, “Deterministic

encryption: Definitional equivalences and constructions without

random oracles,” in Proc. CRYPTO 2008, 2008, pp. 360-378.

[11] J. Daemen and V. Rijmen, “Rijndael: The advanced encryption

standard,” Dr. Dobb's Journal, pp. 137-139, 2001.

[12] E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P.

Samarati, “Balancing confidentiality and efficiency in untrusted

relational DBMSs,” in Proc. the 10th ACM Conference on Computer

and Communications Security, Washington, DC, October 2003.

[13] C. Curino, E. P. C. Jones, R. A. Popa et al., Relational Cloud: A

Database-as-a-Service for the Cloud, 2011, pp. 235-240.

[14] R. A. Popa, C. M. S. Redfield, N. Zeldovich and H. Balakrishnan,

“CryptDB: Protecting confidentiality with encrypted query

processing,” in Proc. 5th Biennial Conference on Innovative Data

Systems Research, pp. 85-100.

[15] R. A. Popa, N. Zeldovich, and H. Balakrishnan, “CryptDB: A Practical

Encrypted Relational DBMS,” in Proc. the Twenty-Third ACM

Symposium on Operating Systems Principles, 2011, pp. 1-13.

Swetha Tera received the bachelors degree in computer

science and engineering from Jawaharlal Nehru

Technological University, Hyderabad, India in 2008 and the

M.Tech degree in computer science and engineering from

Jawaharlal Nehru Technological University, Hyderabad,

India in 2010. She is currently pursuing the Ph.D. degree in

computer science and engineering at Osmania University,

Hyderabad, India from 2011.

S. Ramachandram received the bachelers degree (BE) in

electronics and communication engineering in 1983 from

Osmania University, Hyderabad, India. He received the

masters degree (ME) in computer science and engineering

in 1985 from Osmania University and the Ph.D. degree in

processing of read-only transactions in mobile broadcast

environment in June 2005 from Osmania University,

Hyderabad. He is working as a professor since June 2005 and the head of the

Dept. of CSE from June 25, 2007. He worked as an associate professor since

Sept. 1991 to June 2005; as an assistant professor from Oct. 1988 to Sept.

1991; as an adhoc lecturer from Feb. 1988 to Oct. 1988; as a senior faculty

member from June 1987 to Jan. 1988 at Computer Literacy Foundation,

Hyderabad; as a lecturer from Nov. 1986 to April 1987 at CBIT, Hyderabad;

as an associate faculty member from Feb. 1985 to Oct .1986 at Indian

Institute of Computer Technology, Cochin. He is the author of many books

and publications.

P. Shankar Murthy received the bachelor degree in

computer science and engineering from JNTU, Hyderabad,

India in 2008 and the M.Tech degree in computer science

and engineering from Jawaharlal Nehru Technological

University, Hyderabad, India in 2010. He is currently

working as an assistant software engineer in Cognizent.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

112

